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Abstract. In this article we present a parallel modular algorithm to compute
all solutions with multiplicities of a given zero-dimensional polynomial system

of equations over the rationals. In fact, we compute a triangular decompo-

sition using Möller’s algorithm (cf. [Mö93]) of the corresponding ideal in the
polynomial ring over the rationals using modular methods, and then apply a

solver for univariate polynomials.

1. Introduction

One possible approach1 to find the solutions of a zero-dimensional system of mul-
tivariate polynomials is the triangular decomposition of the corresponding ideal
since triangular systems of polynomials can be solved using a univariate solver
recursively. There are already several results in this direction including an imple-
mentation in Maple (cf. [AM99], [LMX05], [Ma00]). The technique to compute
triangular sets has been refined (cf. [DMSWX05], [CLMPX07], [LMX06]), mod-
ularized and parallelized (cf. [MX07], [LM07]). We report about a modular and
parallel version of the solver in Singular (cf. [DGPS12]) and focus mainly on
a probabilistic algorithm to compute the solutions of a polynomial system with
multiplicities.

2. Preliminary technicalities

We recall the definition and some properties of a triangular decomposition. For
details we refer to [GP07], [Mö93] and [Mö97].

Let K be a field, X = {x1, . . . , xn} a set of variables, I ⊆ K[X] a zero-
dimensional ideal, and we fix > to be the lexicographical ordering induced by
x1 > . . . > xn. If f ∈ K[X] is a polynomial, then we denote by LE(f) the lead-
ing exponent of f , by LC(f) the leading coefficient of f , by LM(f) the leading
monomial of f , and by LT(f) = LC(f) · LM(f) the leading term of f .

Definition 2.1. A set of polynomials F = {f1, . . . , fn} ⊆ K[X] is called a trian-
gular set if LT(fi) = xαi

n−i+1 for some αi > 0 and each i = 1, . . . , n.
A list F = (F1, . . . , Fs) of triangular sets is called a triangular decomposition of

a zero-dimensional ideal I ⊆ K[X] if
√
I =

√
〈F1〉 ∩ . . . ∩

√
〈Fs〉.
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1In Singular (cf. [DGPS12]) this approach is implemented in the library solve.lib on the

basis of an univariate Laguerre solver (cf. [RR78, §8.9-8.13]).
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Remark 2.2.

(1) A triangular set is a Gröbner basis.
(2) A minimal Gröbner basis of a maximal ideal is a triangular set, and the

primary decomposition of
√
I is a triangular decomposition of I.

The following two lemmata are the basis for the algorithm by Möller (cf. [Mö93])
which avoids primary decomposition.

Lemma 2.3. Let G = {g1, . . . , gm} be a reduced Gröbner basis of the zero-dimen-
sional ideal I ⊆ K[X] such that LM(g1) < . . . < LM(gm). Moreover, for i =

1, . . . ,m, let αi = LE(gi) in (K[x2, . . . , xn]) [x1], i.e. gi =
∑αi

j=0 g
′
ijx

j
1 for suit-

able g′ij ∈ K[x2, . . . , xn]. Then G′ = {g′1α1
, . . . , g′m−1αm−1

} is a Gröbner basis of

〈g1, . . . , gm−1〉 : gm, and we have 〈G′, gm〉 = 〈G′, G〉.

Proof. The proof can be found in [Mö93, Lemma 7]. �

Lemma 2.4. Let I ⊆ K[X] be a zero-dimensional ideal, and h ∈ K[X]. Then the
following hold.

(1)
√
I =

√
〈I, h〉 ∩

√
I : h.

(2) dimK

(
K[X]/I

)
= dimK

(
K[X]/〈I, h〉

)
+ dimK

(
K[X]/(I : h)

)
.

Proof.

(1) The proof is an exercise in [GP07, Exercise 4.5.3].
(2) We consider two exact sequences. The first one

0 −→ (I : h)/I −→ K[X]/I
·h−→ K[X]/I −→ K[X]/〈I, h〉 −→ 0

yields dimK

(
(I : h)/I

)
= dimK

(
K[X]/〈I, h〉

)
, and the second one

0 −→ (I : h)/I −→ K[X]/I −→ K[X]/(I : h) −→ 0

yields dimK

(
K[X]/I

)
= dimK

(
(I : h)/I

)
+ dimK

(
K[X]/(I : h)

)
. Sum-

marized, we obtain

dimK

(
K[X]/I

)
= dimK

(
K[X]/〈I, h〉

)
+ dimK

(
K[X]/(I : h)

)
.

�

Consequently, for h1, . . . , hl ∈ K[X] and hl+1 = 1, we are able to apply Lemma
2.4 inductively and obtain

√
I =

√
〈I, h1〉 ∩

√
I : h1

=
√
〈I, h1, h2〉 ∩

√
〈I, h1〉 : h2 ∩

√
I : h1

= . . .

=
√
〈I, h1, . . . , hl〉 ∩

(
l+1⋂
i=1

√
〈I, h1, . . . , hi−1〉 : hi

)
.

Together with Lemma 2.3 we conclude the following corollary.

Corollary 2.5. With the assumption of Lemma 2.3, let G′ r G = {h1, . . . , hl}.
Then the following hold.

(1) If G′ rG 6= ∅, then I ( 〈G, h1〉 and I ( 〈G〉 : h1.

(2)
√
I =

√
〈G′, gm〉 ∩

(⋂l+1
i=1

√
〈G, h1, . . . , hi−1〉 : hi

)
and, in addition, I ⊆

〈G′, gm〉 ∩
(
〈G, h1, . . . , hi−1〉 : hi

)
.
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(3) dimK

(
K[X]/I

)
=
∑l+1
i=1 dimK

(
K[X]/(〈G, h1, . . . , hi−1〉 : hi)

)
.

With regard to Corollary 2.5(2), especially 〈G, h1, . . . , hl〉 = 〈G′, gm〉 with G′ ⊆
K[x2, . . . , xn] is predestined for induction since

√
〈G′, gm〉 =

√
〈F ′1, gm〉 ∩ . . . ∩√

〈F ′s, gm〉 if F ′ = (F ′1, . . . , F
′
s) is a triangular decomposition of G′. Referring to

Corollary 2.5(3), the triangular decomposition obtained by iterating the approach
of Corollary 2.5 respects the multiplicities of the zeros of I. Therefore the zero-
sets of different triangular sets are in general not disjoint as the following example
shows.

Example 2.6. Let G = {x102 , x1x32 + x52, x
11
1 } ⊆ Q[x1, x2]. Then we obtain G′ =

{x102 , x32}, G′ r G = {x32}, and the triangular decomposition F = (F1, F2) of
〈G〉 with F1 = 〈G〉 : x32 = 〈x72, x1 + x22〉 and F2 = 〈G, x32〉 = 〈x32, x111 〉. More-
over, it holds dimQ (Q[x1, x2]/〈G〉) = 40, dimQ

(
Q[x1, x2]/(〈G〉 : x32)

)
= 7, and

dimQ
(
Q[x1, x2]/〈G, x32〉

)
= 33. Note that 〈G〉 ( F1 ∩ F2.

Algorithm 1 shows the algorithm by Möller to compute the triangular decompo-
sition of a zero-dimensional ideal.2

Algorithm 1 Triangular Decomposition (triangM)

Input: I ⊆ K[X], a zero-dimensional ideal .
Output: F = (F1, . . . , Fs), a triangular decomposition of I ⊆ K[X] such that

dimK

(
K[X]/I

)
=
∑s
i=1 dimK

(
K[X]/〈Fi〉

)
.

1: compute G = {g1, . . . , gm}, a reduced Gröbner basis of I with respect to the
lexicographical ordering > such that LM(g1) < . . . < LM(gm);

2: compute G′ = {g′1, . . . , g′m−1} ⊆ K[x2, . . . , xn] where g′i is the leading coefficient
of gi in (K[x2, . . . , xn])[x1];

3: F ′ = triangM (〈G′〉);
4: F = {F ′ ∪ {gm} | F ′ ∈ F ′};
5: for 1 ≤ i ≤ m− 1 do
6: if g′i /∈ G then
7: F = F ∪ triangM (〈G〉 : g′i);
8: G = G ∪ {g′i};
9: return F ;

Note that Algorithm 1 is only based on Gröbner basis computations, and does
not use random elements. Hence, the result is uniquely determined which allows
modular computations. In the following we fix Algorithm 1 to compute a triangular
decomposition.

Remark 2.7. Replacing line 7 in Algorihtm 1 by F = F ∪ triangM (〈G〉 : g′∞i ) we
obtain a disjoint triangular decomposition (i.e. Fi, Fj ∈ F with Fi 6= Fj implies
〈Fi〉+ 〈Fj〉 = K[X]). This decomposition does in general not respect the multiplic-
ities (i.e. dimK

(
K[X]/I

)
6=
∑s
i=1 dimK

(
K[X]/〈Fi〉

)
).

2The corresponding procedure is implemented in Singular in the library triang.lib.
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3. Modular methods

One possible modular approach for solving a zero-dimensional ideal is to just
replace each involved Gröbner basis computation by its corresponding modular al-
gorithm as described in [IPS11]. Particularly, we can replace line 1 in Algorithm
1 by G = modStd(I). In this case it is possible to apply the probabilistic variant
since we can easily verify in the end by a simple substitution whether the solutions
obtained from the triangular sets are really solutions of the original ideal. Nev-
ertheless, we propose to compute the whole triangular decomposition via modular
methods actually. The verification is then similar by just substituting the obtained
result into the input polynomials.

We consider the polynomial ring Q[X], fix a global monomial ordering > on
Q[X], and use the following notation: If S ⊆ Q[X] is a set of polynomials, then
LM(S) := {LM(f) | f ∈ S} denotes the set of leading monomials of S. If f ∈ Q[X]
is a polynomial, I = 〈f1, . . . , fr〉 ⊆ Q[X] is an ideal, and p is a prime number which
does not divide any denominator of the coefficients of f, f1, . . . , fr, then we write
fp := (f mod p) ∈ Fp[X] and Ip := 〈(f1)p, . . . , (fr)p〉 ⊆ Fp[X].

In the following, I = 〈f1, . . . , fr〉 ⊆ Q[X] will be a zero-dimensional ideal. The
triangular decomposition algorithm (Algorithm 1) applied to I returns a list of

triangular sets F = (F1, . . . , Fs) such that
√
I =

⋂s
i=1

√
〈Fi〉 and dimQ (Q[X]/I) =∑s

i=1 dimQ (Q[X]/〈Fi〉).
With respect to modularization, the following lemma obviously holds:

Lemma 3.1. With notation as above, let p be a sufficiently general prime number.
Then Ip is zero-dimensional, ((F1)p, . . . , (Fs)p) is a list of triangular sets, and√
Ip =

⋂s
i=1

√
〈(Fi)p〉.

Relying on Lemma 3.1, the basic idea of the modular triangular decomposition
is as follows. First, choose a set P of prime numbers at random. Second, compute
triangular decompositions Fp of Ip for p ∈ P. Third, lift the modular triangular
sets to triangular sets F over Q[X].

The lifting process consists of two steps. First, the set FP := {Fp | p ∈ P} is
lifted to FN with (Fi)N ⊆ (Z/NZ)[X] and N :=

∏
p∈P p by applying the Chinese

remainder algorithm to the coefficients of the polynomials occurring in FP. Second,
we obtain F with Fi ⊆ Q[X] by lifting the modular coefficients occurring in Fp
to rational coefficients via the Farey rational map3. This map is guaranteed to be
bijective provided that

√
N/2 is larger than the moduli of all coefficients of elements

in F with Fi ⊆ Q[X].
We now define a property of the set of primes P which guarantees that the lifting

process is feasible and correct. This property is essential for the algorithm.

Definition 3.2. Let F = (F1, . . . , Fs) be the triangular decomposition of the ideal
I computed by Algorithm 1.

(1) A prime number p is called lucky for I and F if ((F1)p, . . . , (Fs)p) is a
triangular decomposition of Ip. Otherwise p is called unlucky for I and F .

3Farey fractions refer to rational reconstruction. A definition of Farey fractions, the Farey
rational map, and remarks on the required bound on the coefficients can be found in [KG83].
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(2) A set P of lucky primes for I and F is called sufficiently large for I and F
if ∏

p∈P
p ≥ max{2 · |c|2 | c coefficient occuring in F}.

From a theoretical point of view, the idea of the algorithm is now as follows:
Consider a sufficiently large set P of lucky primes for I and F , compute the trian-
gular decomposition of the Ip, p ∈ P, via Algorithm 1, and lift the results to the
triangular decomposition of I as aforementioned.

From a practical point of view, we face the problem that we do not know in
advance whether a prime number p is lucky for I and F .

To handle this problem, we fix a natural number t and an arbitrary set of primes
P of cardinality t. Having computed FP, we use the following test to modify P
such that all primes in P are lucky with high probability:

deleteUnluckyPrimesTriang: We define an equivalence relation on (FP,P)
by (Fp, p) ∼ (Fq, q) :⇐⇒

(
#Fp = #Fq and {LM(Fp) | Fp ∈ Fp} = {LM(Fq) | Fq ∈

Fq}
)
. Then the equivalence class of largest cardinality is stored in (FP,P), the

others are deleted.

Since we do not know a priori whether the equivalence class chosen is indeed
lucky and whether it is sufficiently large for I and F , we proceed in the following
way. We lift the set FP to F over Q[X] as described earlier, and test the result
with another randomly chosen prime number:

pTestTriang: We randomly choose a prime number p /∈ P such that p does not
divide the numerator and denominator of any coefficient occuring in a polynomial
in {f1, . . . , fr} or F . The test returns true if (Fp | F ∈ F) equals the triangu-
lar decomposition Fp computed by the fixed Algorithm 1 applied on Ip, and false
otherwise.

If pTestTriang returns false, then P is not sufficiently large for I and F or
the equivalence class of prime numbers chosen was unlucky. In this case, we enlarge
the set P by t new primes and repeat the whole process. On the other hand, if
pTestTriang returns true, then we have a triangular decomposition F of I with
high probability. In this case, we compute the solutions S ⊆ Cn with multiplici-
ties of the triangular sets F = {f1, . . . , fn} ∈ F as follows. Solve the univariate
polynomial f1(x1) via a univariate solver counting multiplicities, substitute x1 in
f2(x1, x2) by these solutions of f1(x1), solve the corresponding univariate polyno-
mial, and continue inductively this way (call this step solveTriang). Finally, we
verify the result S ⊆ Cn partially by testing whether the original ideal I ⊆ Q[X]
is contained in every F ∈ F , and whether the sum of the multiplicities equals the
Q-dimension of Q[X]/I (call this step testZero).

We summarize modular solving in Algorithm 2.4

Remark 3.3. In Algorithm 2, the triangular sets Fp can be computed in parallel.
Furthermore, we can parallelize the final verification whether I ⊆ Q[X] is contained
in every F ∈ F .

4The corresponding procedures are implemented in Singular in the library modsolve.lib.
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Algorithm 2 Modular Solving (modSolve)

Input: I ⊆ Q[X], a zero-dimensional ideal.
Output: S ⊆ Cn, a set of points in Cn such that f(P ) = 0 for all f ∈ I, P ∈ S.

1: choose P, a list of random primes;
2: FP = ∅;
3: loop
4: for p ∈ P do
5: Fp = triangM(Ip), the triangular decomposition of Ip via Algorithm 1;
6: FP = FP ∪ {Fp};
7: (FP,P) = deleteUnluckyPrimesTriang(FP,P);
8: lift (FP,P) to F over Q[X] by applying Chinese remainder algorithm and

Farey rational map;
9: if pTestTriang(I,F ,P) then

10: S = solveTriang(F);
11: if testZero(I,F , S) then
12: return S;
13: enlarge P;

4. Examples and timings

In this section we provide examples on which we time the algorithm modSolve

(cf. Algorithm 2) and its parallel version as opposed to the algorithm solve (the
procedure solve is implemented in Singular in the library solve.lib and com-
putes all roots of a zero-dimensional input ideal using triangular sets). Timings are
conducted by using Singular 3-1-6 on an AMD Opteron 6174 machine with 48
CPUs, 2.2 GHz, and 128 GB of RAM running the Gentoo Linux operating system.
All examples are chosen from The SymbolicData Project (cf. [G13]).

Remark 4.1. The parallelization of the modular algorithm is attained via multiple
processes organized by Singular library code. Consequently, a future aim is to
enable parallelization in the kernel via multiple threads.

We choose the following examples to emphasize the superiority of modular solv-
ing and especially its parallelization:

Example 4.2. Cyclic 7.xml (cf. [G13]).

Example 4.3. Verschelde noon6.xml (cf. [G13]).

Example 4.4. Pfister 1.xml (cf. [G13]).

Example 4.5. Pfister 2.xml (cf. [G13]).

Table 1 summarizes the results where modSolve(c) denotes the parallelized ver-
sion of the algorithm applied on c cores. All timings are given in seconds.

Remark 4.6. Various experiments reveal that a sensitive choice of #P, the number
of random primes in lines 1 and 13 in Algorithm 2, can decrease the running time
enormously. To sum up, it is recommendable to relate c, the number of available
cores, to #P. Particularly, in case of having more than ten cores to ones’s disposal
it is reasonable to set c = #P.
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Example solve modSolve modSolve(10) modSolve(20)

4.2 > 18h 692 217 152
4.3 517 1223 522 371
4.4 526 800 288 165
4.5 2250 1276 323 160

Table 1. Total running times in seconds for computing all roots of
the considered examples via solve, modSolve and its parallelized
variant modSolve(c) for c = 10, 20.
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