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Abstract 

Pfister, G. and J.H.M. Steenbrink, Reduced Hilbert schemes for irreducible curve singularities, 

Journal of Pure and Applied Algebra 77 (1992) 103-116. 

We study the Hilbert scheme of zero-dimensional subschemes of Spec(A) for a one-dimensional 

local noetherian k-algebra. Its connected components M, parametrize the ideals of colength r in 

A. The M, are embedded in a linear subspace M of a certain Grassmanian. We study the 

structure of M by its intersection with the Schubert cells. The case of rings A with monomial 

semigroup is specially treated. 

1. Introduction 

Let k be a field and let A be a local integral noetherian k-algebra of dimension 

one, such that its normalization A is a discrete valuation ring with residue field k. 

Let u : A--+ FV U (30) be the corresponding discrete valuation. We let Z = 

v(A\{O}) denote the semigroup of A, f(n) = {f E A 1 u(f) 2 n> and Z(n) = 

Z(n) n A for n E FV. Define c : = min{n 1 j(n) C A} and m = multiplicity of A. 
Then Z(c) = c is the conductor idea1 and c = dim,(A/c). We define 6 = 

dim,(AIA) = #(FV\Z). Th en 6+1~c~26, and c=26 if and only if A is 

Gorenstein (cf. [6, p. 80, Proposition 71). 

In this paper we study the Hilbert scheme of zero-dimensional subschemes of 

Spec(A), in other words, the space Hilb(A) of nonzero ideals in A. Note that this 

is a punctual Hilbert scheme in the sense of Iarrobino [5], and not a Hilbert 

scheme in the usual sense [4, Exp. 2211. We will show that its connected 

components JEl, parametrize the ideals in A of colength T. 
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In Section 2 we will construct a space Jl which is a special linear section of the 

Grassmannian of 6-dimensional subspaces of A/1(26), and for each r a closed 

embedding of Jll, into A, which is an isomorphism for r 2 c. We will also study 

the partition of 4 by its intersection with the Schubert cells corresponding to the 

natural flag. 

In Section 3 we will investigate the structure of Jll in the case of certain 

semigroups, which we baptize monomial semigroups (see Definition 9). In that 

case the strata of the partition above appear to be isomorphic to affine spaces, 

and we determine their dimensions. 

2. Construction of A 

Let A be the local ring of a reduced and irreducible curve singularity with 

semigroup Z. We fix the following notation. Let Z be a nonzero ideal in A. We 

let r(Z) = Z(AIZ), t(Z) = min{u(f)l fEZ), r(Z)= {u(f)1 fEZ\{Ol), T,(Z)= 
T(Z) - f(Z) and 6(Z) = #(N\&,(Z)). For I= A we get 0, 0, Z and 6 respectively. 

We let [a, b]:= {xEN) a~x~b}, [a,~)= {xEN) XLLZ} an let c(Z) be the 

conductor of Z,(Z), i.e. max{n E N 1 IZ - I @I;,(Z)} = min{n E N ] [n, m) c T,(Z)}. 

We have the following relations: 

(i) r(Z) = t(Z) + 6(Z) - 6, 

(ii) c(Z) 5 6 + 6(Z). 

Indeed, let f, E Z with u(f,) = t(Z), then 

T(Z) + 6 = &4/Z) = Z(f,‘A/f,‘Z) = l(f,‘A/A) + I(A/f,‘Z) 

= r(Z) + 6(Z) . 

Moreover, Z,(Z) is a Z-module, so y E Z implies that c(Z) - 1 - y @q)(Z). Hence 

#{y E r ( y < c(Z)} 5 6(Z) . 

Definition 1. For A, r as above, we let .& be the subset of Grass(8, A/1(26)) 

consisting of the S-dimensional linear subspaces which are A-submodules. 

Observe that the group 1 + mA acts by multiplication on A/1(26) and hence on 

Grass(8, A/1(26)). The fixed points of this action are exactly the points of .&. If 

we embed Grass(G, A/Z(26)) by its Plucker embedding, we get Ju = Grass(G, 

A/1(26)) n P(V), h w ere V C Ai(A/Z(26)) is the linear subspace of fixed points 

under the action of 1 + m, (this works because 1 + m, acts by unipotent linear 

transformations on At(A/Z(26))). W e endow JR with the reduced scheme struc- 

ture. By construction, JR is a projective scheme. 

Definition 2. For each T > 0 let -44, be the set of ideals of codimension T in A. 
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Observe that each ideal of codimension r in A satisfies Z(T + 26) C Z C_ Z(r). 

Choose a uniformizing parameter t in A. Then Z(26) c t-‘I C_ A, and 

Z(Alt-‘Z) = Z(AIZ) - 7 = 6. Define the map 4, : JZ%,-+ A by $7(Z) = t-‘Z/1(26). 

Theorem 3. For all r, the map 4, is injective and its image is a Zariski-closed subset 

of Ju. For r 2 c the map c&~ is bijective. 

Proof. Let x E JIJ correspond to the A-submodule J of A of colength 6. Then tTJ is 
an A-submodule of A of colength r + 6, and x E Im( t’J C A. This is clearly 

the case for r L c, hence +T is bijective in that case. In general, the condition 

tTJ C A defines a Zariski-closed subset of Jtl. The injectivity of 4, is also clear. 0 

Examples. (1) Let A = k[[t*, t3]]. Then A, is a point, whereas Jll, E Ju z P”(k) 

for 7 2 2. 

(2) Let A = k[[t*, ?I]. Then Ju is defined inside P’(k) by the Plucker relation 

T12r34 - n13T24 + T,4T23 = 0 (which defines the Grassmannian) and the linear 

equations 7r,* = 7~~~ - 9r223 = 0. Thus J! is a quadratic cone. JI!~, is the vertex of this 

cone, and 4, and 4, are two different lines through this vertex. 

(3) Let A = k[[t”, t”]]. The image of & under the Plucker embedding of 

Grass(3, 6) in P”‘(k) is defined by the Plucker relations defining the Grassman- 

nian and the linear relations 

T123 = T124 = T12S = T126 = nl34 = 7T13S = n136 = n234 = n235 

= =14s - T24S = T156 - T246 + T34, = 0. 

We will consider this example later in more detail. 

For the study of JZX, a very useful observation is that A/1(26) has the 

canonically defined flag 

ocv, c.. . c v,, = A/Z(26) ) 

where V, = Z(26 - i)/Z(26). This induces a partition of Grass(G, A/1(26)) into 

Schubert cells 

W “,,UZ ,..., aa for6la,?...?a,zO, 

defined by 

= {A E Grass(G, A/1(28)) 1 dim(A tl Vs+i_O,) = i for i = 1,. . . ,6 

anddim(AnV,)<iforj<6+i-a,} 
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(see [3, p. 1951). We have 

dim W+....u8 =S2-5 a;, 
!=I 

W b, ,hii c WI, , ,U8 G biza,fori=l ,..., 6. 

Definition 4. Let A be a subset of [0,26 - l] such that #A = S and A U [26, CTJ) is a 

r-module. Let r,(Z) = T(Z) - T(Z). Then &(A) := the subset of JI!~ parametrizing 

ideals Z with c(Z) = A U [26, m). 

Lemma5. LetA={b ,,..., b,} withOsb,<...<b,<26. Leta,_,+,=b,-i+ 

lfori=l,... , 6. Then d(A) = Ju fl W, ,,,,,,, a8. 0 

The proof is left to the reader. In the sequel we will let W(A) denote the 

Schubert cell containing &(A), and by abuse of language write W(T), Ju(r) 
instead of W(T n [0,26 - l]), etc. 

Theorem 6. JH is connected. 

Proof. Let G = 1 + mA-. It acts on A/1(26) by multiplication and leaves the 

standard flag invariant. Hence it also acts on Grass(G, A/1(26)) preserving the 

partition into Schubert cells. G obviously also acts on J4, hence it preserves each 

stratum &(A). As 1 + Z(26) acts trivially on Grass(G, A/1(26)), G acts via a 

unipotent quotient on &!. As Jtl is projective, the only closed G-orbits on ~!4 are 

points. However, G has a unique fixed point P on A, corresponding to j(a)1 

Z(26). As the image of G in Aut(A/Z(26)) IS connected, each orbit is connected 

and has P in its closure. Hence ~!4 is connected. 0 

Remark. The stratum JR(~) corresponds to the cyclic A-modules in A/1(26), 

which form one G-orbit (namely G.A//(26)), of dimension dim(G/l + m.)) = 

dim(m,/nt,) = S. Observe that .4(r) = &\{A 1 A & V2s_,}, hence J!(r) is open 

in A. Below we will see examples of strata &(A) with A # r of dimension 26. 

Hence JJ! is reducible in general. 

As a consequence of the proof of Theorem 6, one obtains a fairly good picture 

of the adjacencies of strata in JR by looking at an affine neighborhood of P in 

Grass(G, A /1(26)). Such an affine open neighborhood U, is given by putting 

n8 +, ,, ,8 f 0, and we have an isomorphism Mat,(k) g U, given by 

Z H rowspace(Z ( I), mapping 0 to P. In the sequel we will use the matrix 

coefficients Z,, (i, j = 1,. . . . , 25) as affine coordinates on U,,. 

The action of G on Grass(G, A/1(26)) 1s induced by right multiplication with 

matrices as follows. Let N E Mat,(k) be given by N,,,, , = 1, for i = 1, . . ,6 - 1 
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and Nj, = 0 else, Then ti acts by right multiplication with (:’ ‘“i, ‘) if j < S and 

with (i N[,mR ) if j 2 6. Hence 

26-I 

g = 1 + 2 a,t’ leaves rowspace(2 1 I) invariant 
I=1 

@rank c aiZN’ c a,(Z’N”-’ + N’) + c a,ZN’-’ = 6 
i 

Z I 

1x6 116 ,>S 1 

‘-’ + N’) + 2 a,%N’-“) Z - c ajZN’ = 0. 
jzS j<S 

Hence we have the following proposition: 

Proposition 7. Equations for Jtz f~ U,, can be obtained as follows. Let {g,}:, , be a 
set of generators of A/1(26) as a k-algebra. Write g, = c, a,,t’. Then 

(Zp)E.Anup e c aij(Z’NSm’Z + [N’, Z]) 
1’6 

+c ai,ZN’-‘Z=O fori=l,..., e. q 
rzfi 

3. Monomial semigroups 

From now on we assume that k is an algebraically closed field of characteristic 

zero. For simplicity we will restrict to the case that A is complete. 

Definition 8. A monomial curve singularity over k is an irreducible curve singu- 

larity with local ring isomorphic to A = k[[ tat, . . , tom]] for certain a,, . , am E 
N. Without loss of generality we may assume that gcd(a,, . , a,,) = 1. In that 

case the semigroup r of A has generators a,, . . . , a,,, , and again we may assume 

that a,, . . , a,, form a minimal set of generators for I? 

Definition 9. A semigroup r in N is called monomial if 0 E r, #(N\T) < m and 

each reduced and irreducible curve singularity with semigroup r is a monomial 

curve singularity. 

Theorem 10. For a semigroup r C N the following are equivalent: 
(1) r is a monomial semigroup. 
(2) r is a semigroup from the following list: 

6) r,,.,,, := {imji=O,l,..., s} U [sm + b, x) with 1~ b < m, s 2 1, 
(ii) q,,,, : = (0) U [m, m + r - l] U [m + r + 1, m) with 2 5 r 5 m - 1, 

(iii) r,, := (0, m} U [m + 2,2m] U [2m + 2, z) with m 2 3. 
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(3) OET, C=#(N\T)< 00 and the following property holds: if x E N\r and 
c(x) := min{n E N ( [ ~1, 00) C T U (X + r)}, then r n (x + r) C [c(x), 00). 

Proof. (2) + (3) This is an easy case-by-case check. 

(3) 3 (2) SUPP ose that r satisfies (3). Let m := min(r\{O}) and s, b be given by 

1 I b < m and sm + b = min(r\mN). If [sm + b, m) G T, then ris of type rm,S,6. 

Else there exists r > b with [sm + b, sm + r - l] C r but sm + rgr. We will 

prove that s = 1 and b 5 2. 

Assume s > 1. Then sm + b E r fl (b + r) so by (3) we have c(b) I sm + b, i.e. 

sm+b+iEru(b+r) for all i?O. But sm+b+igb+rfor O<i<b, so 
sm+b+iErfor i=l,..., b - 1. This means that r 2 2b. On the other hand, 

r<m+ b and we get 

(*I m>r-bzb. 

If r = 1 (mod m), then r = m + 1. Now 2m - l~$r and (S - l)m + 2m - 1= 
(s + l)m - 1 E r. This implies by (3) that sm + r = (s + 1)m + 1 E r U (2m - 1 + 
r), i.e. (s-l)m+2~r. Thisimpliesm=2, b=l, r=3andsm+r=2s+3= 

(s + l)m + b E r and we get a contradiction. 

If r#l (mod m), then m + r - 1 jZ’r because of (*) and s > 1. On the other 

hand, we have (S - 1)m + m + r - 1 = sm + r - 1 E I’. This implies using (3) that 

sm + r E r U (m + r - 1 + I), i.e. (S - 1)m + 1 E r. This is a contradiction and 

hence s = 1. 

Assume now that b>2. First of all r<m+b-1. For if r=m+b-1, then 

2mf1E~andm+l~~.Thiswouldimplythatm+r=2m+b-1E(m+1+ 

r) U r, i.e. m + b - 2 E r. This is a contradiction again. 

Now r<m+b-1 implies r-b+l@iT. But m+r>m+r-b+lrm+ 
b-t1 by(*),i.e.m+r-b+lE~andm+rE~U(r-b+l+T).Thisimplies 

m + b - 1 E r; a contradiction. Hence we have s = 1 and b % 2. Recall r < m + b. 
If b=2 and r=m+l, then r=r,. If b=2 and r<m, then r-1fZT. 

Because m + r- 1ET we get m + rErU(r- l+r), i.e. m+ l~r; con- 

tradiction. Remark that r # m as sm + r$e’r. 
We are left with the case b = 1. Now 2 5 r < m + 1. Assume there exists r’ > r 

with m + r’$r. Take Y’ minimal with this property. If r’ = r + 1, then m + r’ - 
r=m+1E~.Ifr’>r+1,thenm+r-1+r’-r=m+r’-1E~.Thisimplies 

by (3) that m + r’ E r U (r’ - r + r), i.e. m + r’ E r’ - r + r, so m + r E r; 
contradiction. Hence [m + r + 1, ~0) C r so r = r,,,. 

(2) + (1) Let A be a local k-subalgebra of k[[ t]] with semigroup r,. We have 

A = k[[g,, gmt2,. . . , gzm_l]], where g, = ti + bjt2”‘+l (mod t2m+2). (It is clear 

that a coordinate change will eliminate the coefficient of t”‘+’ in g, .) It is sufficient 

to find a substitution t = 4(s) = ~(1 + Ciz2 a$) in such a way that the coefficient 
of s 2m+’ in each g,(+(s)) is 0. This coefficient is equal to 
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bi + the coefficient of sZm+‘~j in 1+ c a$ 
i?Z 

So our equations for the a, can be solved recursively. The cases of rm,s,h and r, r 

can be treated in the same way. 
(l)+ (3) Suppose that r has not property (3). Then there exist x E kJ\r, 

y=~‘+txEn((~+r) and yj&TU(x+r) such that y>y. Let A,= 

k[[t’ ( i E IJ] be the monomial singularity with semigroup r. Put 

A = k[[tY’ + Aty-‘, tY + /_L P, t’ 1 i E r\{ y, 7 ‘}]I . 

Then A has semigroup r, but for all changes of variables t = 4(s) either s’-~ or sy 
will have a nonzero coefficient somewhere, if A and p are general enough. So A is 
not a monomial singularity. 0 

Remark. For the monomial singularities we have the following invariants: 

type embedding c 6 Gorenstein 
dimension type 

r m m,.s,b smifb-1 s(m-l)+b-1 m-l 
sm+bifb>l 

r m.r m-l m+r+l m m-r 

L m-l 2m+2 m+l 1 

Here the Gorenstein type of a Cohen-Macaulay local ring is defined as the 
minimal number of generators of its dualizing module (cf. [6, Chapter IV, Section 

31). 

Remark. Notice that the simple irreducible complete intersection curve singu- 
larities all have monomial semigroups: 

type A,, : 
type E,: 
type E,: 
type W,: 

type Z,,: 

k[[x, YIW - Y2s+‘) has semigroup r,,,Y,, , 

k]]x, Yll /(x3 - Y”> 
k]]x, Yll 4x3 - Y’> 

has semigroup r,,, , 

has semigroup r, , 

k[[x, y, z]] /(x2 - z3, y2 - X.2) has semigroup r,,, , 
k[[x, y, z]] /(x2 - yz2, y* - z’) has semigroup r4 . 

In the case of type W,, the parametrization is given by (x, y, z) = (t6, t5, t4); in 
the case Z,, it is given by (x, y, z) = (t’, t6, t4). 

Remark. Here is another view on the class of monomial semigroups. Between the 
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invariants c, m and 6 we have the following inequalities. Write c = sm + Y with 

OSrzm-1. Then 

m-156Ss(m-l)+ 1 r-1 ifrr2, 

0 else . 

Observe that r = r ,,,,,.,, eS takes the maximal possible value. All semigroups 

with 6 = m are of type r,,,, and the only semigroup with 6 = m + 1 and which is 

Gorenstein (i.e. with y E r@c - 1 - y $Zr) is r,,. 

We fix the following notation. Suppose A is as before and that the semigroup r 

of A is monomial. Let A c [0,26 - l] such that AU [26, x) is a r-module and 

#A = 6. Let S be the set of minimal generators for A U [26, xc> as a r-module, 

and let A’:=Snd={y~dlVy’~T:y-y’$A}. For each YEA let 

.I,, := [y + 1,26 - l]\A. We fix a parameter t in A such that A = k[[tY 1 y E r]]. 

Theorem 11. With these notations, for each A-submodule I of length 6 in A/1(26) 
corresponding to a point in d(A) there exist uniquely determined u,,, E k (for 

y E A’ and j E J,,) such that I is generated by the elements g, (y E A’), where 

g, := tY + c u,tj . 
IEJ, 

Proof. For each y E A’ choose h, E I such that h, = t” mod I(y + 1). If a,,t’ is 

the first term in h, with j@sJ, and a,,, # 0, replace h, by h, - a,,,tyMh,. where 

y = y’ + y” with y’ E A’, y” E T\(O). In this way we arrive at generators g, for I 

as above. Conversely, given such generators, for each y E A there exist uniquely 

determined y ’ E A’ and y” E r with y = y ’ + y” (here we use property (3) of 

Theorem lo), and we get a k-basis of I by taking all tY”gy for y E A. Because Tis 

monomial, in the process of reducing this basis to reduced row echelon form, the 

elements g,. with y’ E A’ are not affected. Hence these are uniquely determined 

by I, and I has indeed semigroup A. 0 

Corollary. If r is a monomial semigroup, then each &(A) is an affine space of 
dimension C y E3a #J,,, and the codimension c(A) of &(A) inside W(A) is equal to 

c YEL\\A #J,. 0 

We now proceed to the analysis of ~6! in the monomial cases. We first observe 

that there is a hierarchy between these, which goes as follows. Let r be a 

monomial semigroup with conductor c. Put r” = r U {c - l}. Then r” appears 

to be a monomial semigroup again. In fact, rz ,,,,, h = $, ,.,, h_, if b 2 2, rzS ,,., = 

r ,I,.,-I.,,r-I if s 22, r:.,., = r,,-, ,.,’ r;:; = L2 and r,:.,. = L.,.,. 
Let us write .4l,. for Jcz, when we want to specify which semigroup is under 

consideration. We have a natural map j : A,.,-+ ~ti,. defined by j(Z) = 
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tl + (t’*-‘) c k[[t]]l(t*‘) for I c k[[t]]l(t2”~‘). It is clear that j is injective and 

that Im( j) is the union of all strata J!(A) in JIX,- such that A = {b,, . . , b,}, with 

O<b, <a. . < b, = 26 - 1 and b, + c - 1 E AU [26,x). 

Remarks. (1) If r is Gorenstein, then d!(A) C Im( j) @ b, > 0~ A # r. So in this 

case we have & = A(T) U Im( j). 

(2) If b, + c - 1 E A, then b, = 26 - 1. 

(3) In general, Im( j) is closed in d and & = Im( j) U U &(A), where we take 

the union over all A such that 6, = 0, b, + c - l$A U [26, z) or b, ~26 - 1. 

We start with the study of & for the semigroups which are lowest in this 

hierarchy. 

(1) r = r-,1,,. We have 6 = m - 1. From the Corollary above we see that 

&(A) = W(A) f or each A. Hence the adjacencies are determined by the remark 

before Definition 4. We have m - 1 irreducible components _44 ], . . . , Al,_, . The 

intersection of J%, with the open patch U, consists of row spaces of matrices 

(2 1 Z) such that Z,j = 0 if i > r or j < r. In particular, dim(Ar) = r(m - r) and 

dim(&) = max{r(m - r) ( r = 1,. . . , m - l} = [m*/4]. 

(11) I- = L,,,, = (0, m} U [m + 2, x). We have 6 = m. Claim: if A has the 

minimal element b,, then c(A) = 1 if b, + m + 1 @A and else c(A) = 0. Moreover, 

in the former case, &(A) n II, is defined inside W(A) f’ U, by the single equation 

tr(2) = 0. Again the adjacencies are as for the corresponding Schubert cells. This 

follows from Proposition 7; the equations for J% f’ U, are: ZN’Z = 0 for j = 

0,2, . . . , m - 1. 

Let 

A, = {b, b + 2,. . . ,2b+l,b+m,b+m+2 ,..., 2m-1). 

Ab={b,b+2 ,..., 2b,b+m ,..., 2m-l}, 

for b = 0,. . . , m - 2 (notice that A,, = T). Remark that r* = c,, ,,.,. Then 

JI =Wj) U U JW~,), with Im( j) fl J!I(A,) = m, 
h =o 

dim &(A,) = (b + l)(m - b) - b + 1 

Especially 

dim Jzl(A,nIj21_,) = [m’i4] + 1 

implies 
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Using Remark 3 above, we have to prove that if W(A) c W(A,) for some A with 
b = mm(A), then &(A) c Jd(A,). But this is clear, because in U,, &(A) and 
&(Ab) are defined by the single equation tr(.Z) = 0 inside W(A) and W(A,). 

(III) r = r,,,. Recall that r* = r,,,,,. Let 

A,={b}U[b+r+l,2b+r]~[b+m,b+m+r-l] 

U[b+m+r+1,2m-I], 

A;={b}U[b+r+1,26+r-l]U[b+m,2m-11, 

for b = 0, , . . , m-r-l. Then 

m-r-l 

J~I! = Im(j) u U &(A,,) with Im( j) n &(Ab) = m, 
b =0 

i.e. 

dim &(A,) = (b + l)(m - b - r) + r , 

dim J! = 
( &4, ::: 1: : 

Again it is enough to prove that if W(A) c W(A,) for some A with b = min(A), 
then d(A) cJd(A,). W e may assume that b + m + rgA (otherwise h!(A) = 

W(A)). In this case &(A) II U, is defined in W(A) fl 17, by the equations 
tr(ZN’) = 0, j = O,, . . , r - 1. As in the case r,,,,, we conclude that d(A) c 

&(A/, ). 
Using Proposition 7 we see that Jl fl Up is defined by the equations ZN’Z = 0, 

j=O,. . , m - 1, j # Y. We conclude the following facts: 

(1) {(Z 1 Z) E At II U, ( rk(Z) 5 l} = (.4(T) U &(A,-,_ ,)) n Up 

(notice that for r = m - 1 we have just one component); 
(2) J!(r) fl Up is defined by the equations 

rk(Z) 5 1 , 

tr(ZN’) = 0 j = 0,. . . , m - 1 , j # r , 

z,j = 0 for i = r + 2,. . , m , all j , 

whereas &(A,,_,-,) n Up is defined by 

rk(Z) 5 1 , 

tr(ZN’) = 0 j = 0,. . . , m - 1 , j # r , 

z,j = 0 forj=l,...,m-r-l, alli; 
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- (3) if m=3, th en Ju = Ju(r) U Ju(A,_,). 
It is enough to prove (1) and (2), because of the fact that in the case m = 3, 

rk(Z) 5 1 follows from Z’ = 0, hence (3) holds. It suffices to prove that 

{Z E Mat,(k) 1 rk(Z) 5 1, ZN”Z = 0 for j = 0,. . . , m - 1, j # r) 

is the union of the two irreducible components 

{Z E Mat,(k) 1 rk(Z) 5 1, ZN’Z = 0 for j = 0,. . , m - 1, j # Y , 

Zji=Ofori=r+2,...,m,allj} 

and 

{Z E Mat,(k) 1 rk(Z) 5 1, ZN’Z = 0 for j = 0, . . , m - 1, j # r , 

Z,i=Oforj=l,..,m-r-l,alli} 

because obviously &(A,_,_l) is contained in the first of these components and 

Jll(r) in the other one, and moreover ZN’Z = Oetr(ZN’) = 0 (as rk(Z) i 1). 

Now consider the Segre embedding P”-’ x Pm-’ 4 Pm’_‘, (x, y) *x.‘y. The 

image corresponds to all m x m matrices Z of rank 1. Writing Z = x.‘y we find 

that ZN’Z = Oe ‘yN’x = 0. We will prove that 

{(x, y) E cPnt-’ x v-1 ) ‘yN’x = 0 for j = 0, . . . , m - 1, j # r} 

is irreducible if r = m - 1 and the union of two components defined as the closure 

of y, # 0 resp. x,, # 0 (where x = (x,, . . . ,x,,), y = (y,, . . . , y,)). 

If Y = m - 1, we have the following system of equations: 

xly, +. . . + x,y, = 0 

x2y, +..a +x,y_, =o 
. . . 

x,-lY1 + X,?zYz = 0. 

If r<m-1, we have 

so 

i 

YIX, = 0 

YlXm-1 + Y2X, = 0 
. . . 

Y lx,+2 + . . . +ym_r-,Xm =o. 
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If y, # 0, then x,+? = . . . = x,, = 0, i.e. Z, = 0 for i 2 r + 2. 

Ifx,#O, theny,=.. .=yrtl_._, =O, i.e. Z,=O forjIm-r-l. 

We finish with the remark that 

s= 
c 

(~,y)tzP’xP’“‘I C x,y,=Oforv=O,...,r-1 
I-j=” 1 

is irreducible of dimension m - 1. Indeed, it is clear that each irreducible 

component of S has dimension rm - 1. Looking at these equations for fixed y, 

we see that there is a unique component of S of dimension m - 1 projecting 

birationally onto P”-’ and that the set of points in CP’“-’ for which the fibre has 

dimension at least i has codimension i + 1. This implies that S has no other 

component of dimension ?rn - 1. 

If one takes Y = 1 in the above description, the results remain valid, and apply 

to the case of r,,,,,. 

Let us consider the special case of [?,, (the E, singularity). Then for A we have 

the possibilities 

{0,3,4} {2,3,5} (3,4,5) {I, 4,5} (2,495) . 

JX I” U,, is defined by rk(Z) I 1, tr(Z) = 0 = tr(ZN), i.e. by 

-Z,, -Z,, - 272 

One can prove that this defines a threefold with a singular line with transverse 

singularity of type AZ. For the different A we get for &(A) fl Up the following: 

A h(A) n U,, , 

{3,4,5) ((0 I I>> ) 

123 3,52 ([! H J:U-u], 

(1,495) (ii H +o], 

{2,4,5) r(i I +oj. 

(IV) Let r= c,,. Here r* = Tn.,,*. As r is Gorenstein, JZX = Im(i) U h!(T) 
and 
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dim & = 

Using Proposition 7 we see that J! f’ U, is defined by the equations 

Z’NZ = [Z, N’“‘] and ZN’Z=O forj=l,...,m-1. 

As before, we are interested in characterizing JR(~). The situation is not as easy 

as before. It is no longer true that d(r) is a union of Jtz(A)‘s (as is the case for 

the corresponding Schubert cells): if m = 4, then (t’, t”) E A(T) n h!(A) with 

A = {2,4,6,&g}. Ob viously W(A) C W(T). On the other hand, dim .&(A) = 

dim W(A) - 1 = 5 = dim A(r), hence &(A) is not contained in A(r). 

For m = 3 (the singularity E,) one can check by explicit computation that 

JX = A(r). We omit the details. We just mention that Sing(&) is the union of the 

closures of _&({2. 5, 6, 7)) and Jcz((3, 4, 6, 7)) with transverse types A, resp. D,. 

P’> r = L., (th e singularity of type A,,). Then r is Gorenstein and r* = 

r *,,_,., (ifs 2 2). H ence again & = Im( j) U J%(T) and dim & = s by induction on 

s. Furthermore, JR(~) is dense in Ju and Im( j) = U:=, A( (x, 2s + 1 - x)) (here 

(x, y) denotes the semigroup generated by x and y). With Proposition 7 we see 

that & n I!J~ has equations Z(‘N)‘-*Z = [Z, N*]. For small s we get: 

s = 1: Ju = 9 ‘(k) ) 

s = 2: & is a quadratic cone in P’(k), 

s = 3: JR is a threefold with a singular line with transverse singularity of type 

A?. At the point P, JR has embedding dimension 5. 

Remark. Consider a ring A and A-modules E with a resolution of the form 

Let us call such modules l-n A-modules. The isomorphism classes of l-n 

A-modules are in l-1 correspondence with their Fitting ideals, i.e. with ideals in 

A which are generated by at most y1 elements (see [ 1, p. 1461). Hence for A the 

local ring of a reduced and irreducible curve singularity, the isomorphism classes 

of such modules are parametrized by open subsets of JQ (and by the whole of & if 

n is large enough). 

Remark. There is some more structure on J% which we have not exploited yet. 

First, we have the residue pairing R on k[[t]]l(t*‘). If I is an A-submodule of 

k[[t]]/(t*‘) of length 6, then also I’ = {X E k[[t]]/(t’“) 1 R(x, Z) = 0} is such an 

A-submodule. This defines an involution on A. In the neighborhood U, it is given 

by ZH -J’ZJ, where J,, = 1 if i + j = 6 - 1 and 0 else. The stratum &(A) is 

mapped to &(A’), where A’ = [0,26 - 1]\(26 - 1 - A). In particular, d(T) is 
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stable under this involution e r is Gorenstein. Hence, in the non-Gorenstein 
case, AX(r) cannot be dense in A%, as there exists another stratum with the same 
dimension. 

In the monomial case, we have an action of k* on At, induced by the k*-action 
on A, (Af)(t) =f(ht) for AE k*. There is a unique fixed point in each stratum, 
the zero point in the corresponding Schubert cell. In particular, the equations for 
Jll fl U, are quasi-homogeneous with weight (Z,,) = 6 + i - j. 
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