Reduced Hilbert schemes for irreducible curve singularities

G. Pfister
Sektion Mathematik, Humboldt Universität, Unter den Linden 6, O-1080 Berlin, Germany

J.H.M. Steenbrink
Mathematisch Instituut, Katholieke Universiteit Nijmegen, Toernooiveld, 6525 ED Nijmegen, Netherlands
Communicated by F. Oort
Received 9 July 1990
Revised 4 January 1991

Abstract

Pfister, G. and J.H.M. Steenbrink, Reduced Hilbert schemes for irreducible curve singularities, Journal of Pure and Applied Algebra 77 (1992) 103-116.

We study the Hilbert scheme of zero-dimensional subschemes of $\operatorname{Spec}(A)$ for a one-dimensional local noetherian k-algebra. Its connected components M_{τ} parametrize the ideals of colength τ in A. The M_{t} are embedded in a linear subspace M of a certain Grassmanian. We study the structure of M by its intersection with the Schubert cells. The case of rings A with monomial semigroup is specially treated.

1. Introduction

Let k be a field and let A be a local integral noetherian k-algebra of dimension one, such that its normalization \bar{A} is a discrete valuation ring with residue field k. Let $v: \bar{A} \rightarrow \mathbb{N} \cup\{\infty\}$ be the corresponding discrete valuation. We let $\Gamma=$ $v(A \backslash\{0\})$ denote the semigroup of $A, \bar{I}(n)=\{f \in \bar{A} \mid v(f) \geq n\}$ and $I(n)=$ $\bar{I}(n) \cap A$ for $n \in \mathbb{N}$. Define $c:=\min \{n \mid \bar{I}(n) \subseteq A\}$ and $m=$ multiplicity of A. Then $I(c)=\mathfrak{c}$ is the conductor ideal and $c=\operatorname{dim}_{k}(\bar{A} / c)$. We define $\delta=$ $\operatorname{dim}_{k}(\bar{A} / 4)=\#(\mathbb{N} \backslash \Gamma)$. Then $\delta+1 \leq c \leq 2 \delta$, and $c=2 \delta$ if and only if A is Gorenstein (cf. [6, p. 80, Proposition 7]).

In this paper we study the Hilbert scheme of zero-dimensional subschemes of $\operatorname{Spec}(A)$, in other words, the space $\operatorname{Hilb}(A)$ of nonzero ideals in A. Note that this is a punctual Hilbert scheme in the sense of Iarrobino [5], and not a Hilbert scheme in the usual sense [4, Exp. 221]. We will show that its connceted components \mathscr{M}_{τ} parametrize the ideals in A of colength τ.

In Section 2 we will construct a space \mathcal{M} which is a special linear section of the Grassmannian of δ-dimensional subspaces of $\bar{A} / I(2 \delta)$, and for each τ a closed embedding of \mathscr{M}_{τ} into \mathscr{M}, which is an isomorphism for $\tau \geq c$. We will also study the partition of \mathscr{M} by its intersection with the Schubert cells corresponding to the natural flag.

In Section 3 we will investigate the structure of M in the case of certain semigroups, which we baptize monomial semigroups (see Definition 9). In that case the strata of the partition above appear to be isomorphic to affine spaces, and we determine their dimensions.

2. Construction of \mathcal{M}

Let A be the local ring of a reduced and irreducible curve singularity with semigroup I. We fix the following notation. Let I be a nonzero ideal in A. We let $\tau(I)=l(A / I), \quad t(I)=\min \{v(f) \mid f \in I\}, \quad \Gamma(I)=\{v(f) \mid f \in I \backslash\{0\}\}, \quad \Gamma_{0}(I)=$ $\Gamma(I)-t(I)$ and $\delta(I)=\#\left(\mathbb{N} \backslash \Gamma_{0}(I)\right)$. For $I=A$ we get $0,0, \Gamma$ and δ respectively. We let $[a, b]:=\{x \in \mathbb{N} \mid a \leq x \leq b\},[a, \infty)=\{x \in \mathbb{N} \mid x \geq a\}$ an let $c(I)$ be the conductor of $\Gamma_{0}(I)$, i.e. $\max \left\{n \in \mathbb{N} \mid n-1 \notin \Gamma_{0}(I)\right\}=\min \left\{n \in \mathbb{N} \mid[n, \infty) \subseteq \Gamma_{0}(I)\right\}$. We have the following relations:
(i) $\tau(I)=t(I)+\delta(I)-\delta$,
(ii) $c(I) \leq \delta+\delta(I)$.

Indeed, let $f_{1} \in I$ with $v\left(f_{1}\right)=t(I)$, then

$$
\begin{aligned}
\tau(I)+\delta & =l(\bar{A} / I)=l\left(f_{1}^{-1} \bar{A} / f_{1}^{-1} I\right)=l\left(f_{1}^{-1} \bar{A} / \bar{A}\right)+l\left(\bar{A} / f_{1}^{-1} I\right) \\
& =t(I)+\delta(I)
\end{aligned}
$$

Moreover, $\Gamma_{0}(I)$ is a Γ-module, so $\gamma \in \Gamma$ implies that $c(I)-1-\gamma \notin \Gamma_{0}(I)$. Hence

$$
\#\{\gamma \in \Gamma \mid \gamma<c(I)\} \leq \delta(I) .
$$

Definition 1. For A, Γ as above, we let \mathcal{M} be the subset of $\operatorname{Grass}(\delta, \bar{A} / I(2 \delta))$ consisting of the δ-dimensional linear subspaces which are A-submodules.

Observe that the group $1+\mathrm{m}_{A}$ acts by multiplication on $\bar{A} / I(2 \delta)$ and hence on $\operatorname{Grass}(\delta, \bar{A} / I(2 \delta))$. The fixed points of this action are exactly the points of \mathcal{M}. If we embed $\operatorname{Grass}(\delta, \bar{A} / I(2 \delta))$ by its Plücker embedding, we get $\mathscr{M}=\operatorname{Grass}(\delta$, $\bar{A} / I(2 \delta)) \cap \mathscr{P}(V)$, where $V \subseteq \Lambda_{k}^{\delta}(\bar{A} / I(2 \delta))$ is the linear subspace of fixed points under the action of $1+\mathrm{m}_{A}$ (this works because $1+\mathrm{m}_{A}$ acts by unipotent linear transformations on $\left.\Lambda_{k}^{\delta}(\bar{A} / I(2 \delta))\right)$. We endow \mathcal{M} with the reduced scheme structure. By construction, \mathcal{M} is a projective scheme.

Definition 2. For each $\tau>0$ let \mathcal{M}_{τ} be the set of ideals of codimension τ in A.

Observe that each ideal of codimension τ in A satisfies $I(\tau+2 \delta) \subseteq I \subseteq I(\tau)$. Choose a uniformizing parameter t in \bar{A}. Then $I(2 \delta) \subseteq t^{-\tau} I \subseteq \bar{A}$, and $l\left(\bar{A} / t^{-\tau} I\right)=l(\bar{A} / I)-\tau=\delta$. Define the map $\phi_{\tau}: \mathcal{M}_{\tau} \rightarrow \mathcal{M}$ by $\phi_{\tau}(I)=t^{-\tau} I / I(2 \delta)$.

Theorem 3. For all τ, the map ϕ_{τ} is injective and its image is a Zariski-closed subset of \mathcal{M}. For $\tau \geq c$ the map ϕ_{τ} is bijective.

Proof. Let $x \in \mathcal{M}$ correspond to the A-submodule J of \bar{A} of colength δ. Then $t^{\tau} J$ is an A-submodule of \bar{A} of colength $\tau+\delta$, and $x \in \operatorname{Im}\left(\phi_{\tau}\right) \Leftrightarrow t^{\tau} J \subseteq A$. This is clearly the case for $\tau \geq c$, hence ϕ_{τ} is bijective in that case. In general, the condition $t^{\tau} J \subset A$ defines a Zariski-closed subset of \mathcal{M}. The injectivity of ϕ_{τ} is also clear.

Examples. (1) Let $A=k\left[\left[t^{2}, t^{3}\right]\right]$. Then \mathcal{M}_{1} is a point, whereas $\mathcal{M}_{\tau} \cong \mathcal{M} \cong \mathscr{P}^{1}(k)$ for $\tau \geq 2$.
(2) Let $A=k\left[\left[t^{2}, t^{5}\right]\right]$. Then \mathscr{M} is defined inside $\mathscr{P}^{5}(k)$ by the Plücker relation $\pi_{12} \pi_{34}-\pi_{13} \pi_{24}+\pi_{14} \pi_{23}=0$ (which defines the Grassmannian) and the linear equations $\pi_{12}=\pi_{14}-\pi_{23}=0$. Thus \mathcal{M} is a quadratic cone. \mathcal{M}_{1} is the vertex of this cone, and \mathscr{M}_{2} and \mathscr{A}_{3} are two different lines through this vertex.
(3) Let $A=k\left[\left[t^{3}, t^{4}\right]\right]$. The image of \mathcal{M} under the Plücker embedding of Grass $(3,6)$ in $\mathscr{P}^{20}(k)$ is defined by the Plücker relations defining the Grassmannian and the linear relations

$$
\begin{aligned}
\pi_{123} & =\pi_{124}=\pi_{125}=\pi_{126}=\pi_{134}=\pi_{135}=\pi_{136}=\pi_{234}=\pi_{235} \\
& =\pi_{145}-\pi_{245}=\pi_{156}-\pi_{246}+\pi_{345}=0 .
\end{aligned}
$$

We will consider this example later in more detail.
For the study of \mathcal{M}, a very useful observation is that $\bar{A} / I(2 \delta)$ has the canonically defined flag

$$
0 \subset V_{1} \subset \cdots \subset V_{2 \delta}=\bar{A} / I(2 \delta),
$$

where $V_{i}=\bar{I}(2 \delta-i) / I(2 \delta)$. This induces a partition of $\operatorname{Grass}(\delta, \bar{A} / I(2 \delta))$ into Schubert cells

$$
W_{a_{1}, a_{2}, \ldots, a_{\delta}} \quad \text { for } \delta \geq a_{1} \geq \cdots \geq a_{\delta} \geq 0
$$

defined by

$$
\begin{aligned}
& W_{a_{1}, \ldots, a_{\delta}} \\
& \qquad=\left\{\Lambda \in \operatorname{Grass}(\delta, \bar{A} / I(2 \delta)) \mid \operatorname{dim}\left(\Lambda \cap V_{\delta+i-a_{i}}\right)=i \text { for } i=1, \ldots, \delta\right. \\
& \left.\quad \text { and } \operatorname{dim}\left(\Lambda \cap V_{j}\right)<i \text { for } j<\delta+i-a_{i}\right\}
\end{aligned}
$$

(see [3, p. 195]). We have

$$
\begin{aligned}
& \operatorname{dim} W_{a_{1} \ldots \ldots a_{\delta}}=\delta^{2}-\sum_{i=1}^{\delta} a_{i} \\
& W_{b_{1} \ldots, b_{\hat{\delta}}} \subseteq \bar{W}_{a_{1} \ldots, a_{\delta}} \Leftrightarrow \quad b_{i} \geq a_{i} \text { for } i=1, \ldots, \delta
\end{aligned}
$$

Definition 4. Let Δ be a subset of $[0,2 \delta-1]$ such that $\# \Delta=\delta$ and $\Delta \cup[2 \delta, \infty)$ is a Γ-module. Let $\Gamma_{1}(I)=\Gamma(I)-\tau(I)$. Then $\mathcal{M}(\Delta):=$ the subset of \mathcal{M} parametrizing ideals I with $\Gamma_{1}(I)=\Delta \cup[2 \delta, \infty)$.

Lemma 5. Let $\Delta=\left\{b_{1}, \ldots, b_{\delta}\right\}$ with $0 \leq b_{1}<\cdots<b_{\delta}<2 \delta$. Let $a_{\delta-i+1}=b_{i}-i+$ 1 for $i=1, \ldots, \delta$. Then $\mathcal{M}(\Delta)=\mathcal{M} \cap W_{a_{1}, \ldots, a_{\delta}}$.

The proof is left to the reader. In the sequel we will let $W(\Delta)$ denote the Schubert cell containing $\mathcal{M}(\Delta)$, and by abuse of language write $W(\Gamma), \mathcal{M}(\Gamma)$ instead of $W(\Gamma \cap[0,2 \delta-1])$, etc.

Theorem 6. \mathcal{M} is connected.
Proof. Let $G=1+\mathfrak{m}_{\bar{A}}$. It acts on $\bar{A} / I(2 \delta)$ by multiplication and leaves the standard flag invariant. Hence it also acts on $\operatorname{Grass}(\delta, \bar{A} / I(2 \delta))$ preserving the partition into Schubert cells. G obviously also acts on \mathcal{M}, hence it preserves each stratum $\mathcal{M}(\Delta)$. As $1+I(2 \delta)$ acts trivially on $\operatorname{Grass}(\delta, \bar{A} / I(2 \delta)), G$ acts via a unipotent quotient on \mathcal{M}. As \mathcal{M} is projective, the only closed G-orbits on \mathcal{M} are points. However, G has a unique fixed point P on \mathcal{M}, corresponding to $\bar{I}(\delta) /$ $I(2 \delta)$. As the image of G in $\operatorname{Aut}(\bar{A} / I(2 \delta))$ is connected, each orbit is connected and has P in its closure. Hence \mathcal{M} is connected.

Remark. The stratum $\mathscr{M}(\Gamma)$ corresponds to the cyclic A-modules in $\bar{A} / I(2 \delta)$, which form one G-orbit (namely $G . A / I(2 \delta)$), of $\operatorname{dimension} \operatorname{dim}\left(G / 1+\mathrm{m}_{A}\right)$) $=$ $\operatorname{dim}\left(\mathrm{H}_{\bar{A}} / \mathrm{nt}_{A}\right)=\delta$. Observe that $\mathcal{M}(\Gamma)=\mathcal{M} \backslash\left\{\Lambda \mid \Lambda \subseteq V_{2 \delta-1}\right\}$, hence $\mathcal{M}(\Gamma)$ is open in \mathscr{M}. Below we will see examples of strata $\mathcal{M}(\Delta)$ with $\Delta \neq \Gamma$ of dimension $\geq \delta$. Hence \mathscr{A} is reducible in general.

As a consequence of the proof of Theorem 6, one obtains a fairly good picture of the adjacencies of strata in \mathcal{M} by looking at an affine neighborhood of P in $\operatorname{Grass}(\delta, \bar{A} / I(2 \delta))$. Such an affine open neighborhood U_{P} is given by putting $\pi_{\delta+1, \ldots, 2 \delta} \neq 0$, and we have an isomorphism $\operatorname{Mat}_{\delta}(k) \cong U_{P}$ given by $Z \mapsto \operatorname{rowspace}(Z \mid I)$, mapping 0 to P. In the sequel we will use the matrix coefficients $Z_{i j}(i, j=1, \ldots, \delta)$ as affine coordinates on U_{p}.

The action of G on $\operatorname{Grass}(\delta, \bar{A} / I(2 \delta))$ is induced by right multiplication with matrices as follows. Let $N \in \operatorname{Mat}_{\delta}(k)$ be given by $N_{i, i+1}=1$, for $i=1, \ldots, \delta-1$
and $N_{i j}=0$ else. Then t^{j} acts by right multiplication with $\left(\begin{array}{c}N i \\ 0\end{array} \begin{array}{c}N^{\circ}+j \\ N\end{array}\right)$ if $j<\delta$ and with $\left(\begin{array}{cc}0 & N_{j-i}^{N-s} \\ 0 & 0\end{array}\right)$ if $j \geq \delta$. Hence

$$
\begin{aligned}
g & =1+\sum_{i=1}^{2 \delta-1} a_{i} t^{i} \quad \text { leaves rowspace }(Z \mid I) \text { invariant } \\
& \Leftrightarrow \operatorname{rank}\left(\sum_{j<\delta} a_{j} Z N^{j} \quad \sum_{j<\delta} a_{j}\left(Z^{\prime} N^{\delta-j}+N^{j}\right)+\sum_{j \geq \delta} a_{j} Z N^{j-\delta}\right)=\delta \\
& \Leftrightarrow\left(\sum_{j<\delta} a_{j}\left(Z^{t} N^{\delta-j}+N^{j}\right)+\sum_{j \geq \delta} a_{j} Z N^{j-\delta}\right) Z-\sum_{j<\delta} a_{j} Z N^{j}=0
\end{aligned}
$$

Hence we have the following proposition:
Proposition 7. Equations for $\mathcal{M} \cap U_{P}$ can be obtained as follows. Let $\left\{g_{i}\right\}_{i=1}^{e}$ be a set of generators of $A / I(2 \delta)$ as a k-algebra. Write $g_{i}=\sum_{j} a_{i j} t^{j}$. Then

$$
\begin{aligned}
(Z \mid I) \in \mathscr{M} \cap U_{P} \Leftrightarrow & \sum_{j<\delta} a_{i j}\left(Z^{t} N^{\delta-j} Z+\left[N^{j}, Z\right]\right) \\
& +\sum_{j \geq \delta} a_{i j} Z N^{j-\delta} Z=0 \quad \text { for } i=1, \ldots, e
\end{aligned}
$$

3. Monomial semigroups

From now on we assume that k is an algebraically closed field of characteristic zero. For simplicity we will restrict to the case that A is complete.

Definition 8. A monomial curve singularity over k is an irreducible curve singularity with local ring isomorphic to $A=k\left[\left[t^{a_{1}}, \ldots, t^{a_{m}}\right]\right]$ for certain $a_{1}, \ldots, a_{m} \in$ \mathbb{N}. Without loss of generality we may assume that $\operatorname{gcd}\left(a_{1}, \ldots, a_{m}\right)=1$. In that case the semigroup Γ of A has generators a_{1}, \ldots, a_{m}, and again we may assume that a_{1}, \ldots, a_{m} form a minimal set of generators for Γ.

Definition 9. A semigroup Γ in \mathbb{N} is called monomial if $0 \in \Gamma, \#(\mathbb{N} \backslash \Gamma)<\infty$ and each reduced and irreducible curve singularity with semigroup Γ is a monomial curve singularity.

Theorem 10. For a semigroup $\Gamma \subseteq \mathbb{N}$ the following are equivalent:
(1) Γ is a monomial semigroup.
(2) Γ is a semigroup from the following list:
(i) $\Gamma_{m, s, b}:=\{$ im $\mid i=0,1, \ldots, s\} \cup[s m+b, \infty)$ with $1 \leq b<m, s \geq 1$,
(ii) $\Gamma_{m, r}:=\{0\} \cup[m, m+r-1] \cup[m+r+1, \infty)$ with $2 \leq r \leq m-1$,
(iii) $\Gamma_{m}:=\{0, m\} \cup[m+2,2 m] \cup[2 m+2, \infty)$ with $m \geq 3$.
(3) $0 \in \Gamma, \delta:=\#(\mathbb{N} \backslash \Gamma)<\infty$ and the following property holds: if $x \in \mathbb{N} \backslash \Gamma$ and $c(x):=\min \{n \in \mathbb{N} \mid[n, \infty) \subseteq \Gamma \cup(x+\Gamma)\}$, then $\Gamma \cap(x+\Gamma) \subseteq[c(x), \infty)$.

Proof. (2) \Rightarrow (3) This is an easy case-by-case check.
(3) \Rightarrow (2) Suppose that Γ satisfies (3). Let $m:=\min (\Gamma \backslash\{0\})$ and s, b be given by $1 \leq b<m$ and $s m+b=\min (\Gamma \backslash m \mathbb{N})$. If $[s m+b, \infty) \subseteq \Gamma$, then Γ is of type $\Gamma_{m, s, b}$. Else there exists $r>b$ with $[s m+b, s m+r-1] \subseteq \Gamma$ but $s m+r \notin \Gamma$. We will prove that $s=1$ and $b \leq 2$.

Assume $s>1$. Then $s m+b \in \Gamma \cap(b+\Gamma)$ so by (3) we have $c(b) \leq s m+b$, i.e. $s m+b+i \in \Gamma \cup(b+\Gamma)$ for all $i \geq 0$. But $s m+b+i \notin b+\Gamma$ for $0<i<b$, so $s m+b+i \in \Gamma$ for $i=1, \ldots, b-1$. This means that $r \geq 2 b$. On the other hand, $r<m+b$ and we get

$$
\begin{equation*}
m>r-b \geq b \tag{*}
\end{equation*}
$$

If $r \equiv 1(\bmod m)$, then $r=m+1$. Now $2 m-1 \notin \Gamma$ and $(s-1) m+2 m-1=$ $(s+1) m-1 \in \Gamma$. This implies by (3) that $s m+r=(s+1) m+1 \in \Gamma \cup(2 m-1+$ Γ), i.e. $(s-1) m+2 \in \Gamma$. This implies $m=2, b=1, r=3$ and $s m+r=2 s+3=$ $(s+1) m+b \in \Gamma$ and we get a contradiction.

If $r \neq 1(\bmod m)$, then $m+r-1 \notin \Gamma$ because of $(*)$ and $s>1$. On the other hand, we have $(s-1) m+m+r-1=s m+r-1 \in \Gamma$. This implies using (3) that $s m+r \in \Gamma \cup(m+r-1+\Gamma)$, i.e. $(s-1) m+1 \in \Gamma$. This is a contradiction and hence $s=1$.

Assume now that $b>2$. First of all $r<m+b-1$. For if $r=m+b-1$, then $2 m+1 \in \Gamma$ and $m+1 \notin \Gamma$. This would imply that $m+r=2 m+b-1 \in(m+1+$ $\Gamma) \cup \Gamma$, i.e. $m+b-2 \in \Gamma$. This is a contradiction again.

Now $r<m+b-1$ implies $r-b+1 \notin \Gamma$. But $m+r>m+r-b+1 \geqq m+$ $b+1$ by (*), i.e. $m+r-b+1 \in \Gamma$ and $m+r \in \Gamma \cup(r-b+1+\Gamma)$. This implies $m+b-1 \in \Gamma$; a contradiction. Hence we have $s=1$ and $b \leq 2$. Recall $r<m+b$.

If $b=2$ and $r=m+1$, then $\Gamma=\Gamma_{m}$. If $b=2$ and $r<m$, then $r-1 \notin \Gamma$. Because $m+r-1 \in \Gamma$ we get $m+r \in \Gamma \cup(r-1+\Gamma)$, i.e. $m+1 \in \Gamma$; contradiction. Remark that $r \neq m$ as $s m+r \notin \Gamma$.

We are left with the case $b=1$. Now $2 \leq r<m+1$. Assume there exists $r^{\prime}>r$ with $m+r^{\prime} \notin \Gamma$. Take r^{\prime} minimal with this property. If $r^{\prime}=r+1$, then $m+r^{\prime}-$ $r=m+1 \in \Gamma$. If $r^{\prime}>r+1$, then $m+r-1+r^{\prime}-r=m+r^{\prime}-1 \in \Gamma$. This implies by (3) that $m+r^{\prime} \in \Gamma \cup\left(r^{\prime}-r+\Gamma\right)$, i.e. $m+r^{\prime} \in r^{\prime}-r+\Gamma$, so $m+r \in \Gamma$; contradiction. Hence $[m+r+1, \infty) \subseteq \Gamma$ so $\Gamma=\Gamma_{m, r}$.
(2) \Rightarrow (1) Let A be a local k-subalgebra of $k[[t]]$ with semigroup Γ_{m}. We have $A=k\left[\left[g_{m}, g_{m, 2}, \ldots, g_{2 m-1}\right]\right]$, where $g_{j} \equiv t^{j}+b_{j} t^{2 m+1}\left(\bmod t^{2 m+2}\right)$. (It is clear that a coordinate change will eliminate the coefficient of t^{m+1} in g_{m}.) It is sufficient to find a substitution $t=\phi(s)=s\left(1+\sum_{i \geq 2} a_{i} s^{i}\right)$ in such a way that the coefficient of $s^{2 m+1}$ in each $g_{j}(\phi(s))$ is 0 . This coefficient is equal to

$$
\begin{aligned}
b_{j} & + \text { the coefficient of } s^{2 m+1-j} \text { in }\left(1+\sum_{i \geq 2} a_{i} s^{i}\right)^{j} \\
& =b_{j}+j a_{2 m+1-j}+F_{2 m+i-j}\left(a_{2}, \ldots, a_{2 m+1-j-1}\right) .
\end{aligned}
$$

So our equations for the a_{j} can be solved recursively. The cases of $I_{m, s, b}$ and $I_{m, r}$ can be treated in the same way.
(1) \Rightarrow (3) Suppose that Γ has not property (3). Then there exist $x \in \mathbb{N} \backslash \Gamma$, $\gamma=\gamma^{\prime}+x \in \Gamma \cap(x+\Gamma)$ and $y \notin \Gamma \cup(x+\Gamma)$ such that $y>\gamma$. Let $A_{0}=$ $k\left[\left[t^{i} \mid i \in \Gamma\right]\right]$ be the monomial singularity with semigroup Γ. Put

$$
A=k\left[\left[t^{\gamma^{\prime}}+\lambda t^{y-x}, t^{\gamma}+\mu t^{y}, t^{i} \mid i \in \Gamma \backslash\left\{\gamma, \gamma^{\prime}\right\}\right]\right]
$$

Then A has semigroup Γ, but for all changes of variables $t=\phi(s)$ either s^{y-x} or s^{y} will have a nonzero coefficient somewhere, if λ and μ are general enough. So A is not a monomial singularity.

Remark. For the monomial singularities we have the following invariants:

type	embedding dimension	c	δ	Gorenstein type
$\Gamma_{m, s, b}$	m	$s m$ if $b=1$ $s m+b$ if $b>1$	$s(m-1)+b-1$	$m-1$
$\Gamma_{m, r}$	$m-1$	$m+r+1$	m	$m-r$
Γ_{m}	$m-1$	$2 m+2$	$m+1$	1

Here the Gorenstein type of a Cohen-Macaulay local ring is defined as the minimal number of generators of its dualizing module (cf. [6, Chapter IV, Section 3]).

Remark. Notice that the simple irreducible complete intersection curve singularities all have monomial semigroups:

$$
\begin{array}{lll}
\text { type } \mathrm{A}_{2 s}: & k[[x, y]] /\left(x^{2}-y^{2 s+1}\right) & \text { has semigroup } \Gamma_{2, s, 1}, \\
\text { type } \mathrm{E}_{6}: & k[[x, y]] /\left(x^{3}-y^{4}\right) & \text { has semigroup } \Gamma_{3,2}, \\
\text { type } \mathrm{E}_{8}: & k[[x, y]] /\left(x^{3}-y^{5}\right) & \text { has semigroup } \Gamma_{3}, \\
\text { type } \mathrm{W}_{8}: & k[[x, y, z]] /\left(x^{2}-z^{3}, y^{2}-x z\right) & \text { has semigroup } \Gamma_{4,3}, \\
\text { type } \mathrm{Z}_{10}: & k[[x, y, z]] /\left(x^{2}-y z^{2}, y^{2}-z^{3}\right) & \text { has semigroup } \Gamma_{4} .
\end{array}
$$

In the case of type W_{8}, the parametrization is given by $(x, y, z)-\left(t^{6}, t^{5}, t^{4}\right)$; in the case Z_{10} it is given by $(x, y, z)=\left(t^{7}, t^{6}, t^{4}\right)$.

Remark. Here is another view on the class of monomial semigroups. Between the
invariants c, m and δ we have the following inequalities. Write $c=s m+r$ with $0 \leq r \leq m-1$. Then

$$
m-1 \leq \delta \leq s(m-1)+\left\{\begin{array}{cl}
r-1 & \text { if } r \geq 2 \\
0 & \text { else }
\end{array}\right.
$$

Observe that $\Gamma=\Gamma_{m, s, b} \Leftrightarrow \delta$ takes the maximal possible value. All semigroups with $\delta=m$ are of type $\Gamma_{m, r}$ and the only semigroup with $\delta=m+1$ and which is Gorenstein (i.e. with $\gamma \in \Gamma \Leftrightarrow c-1-\gamma \notin \Gamma$) is Γ_{m}.

We fix the following notation. Suppose A is as before and that the semigroup Γ of A is monomial. Let $\Delta \subseteq[0,2 \delta-1]$ such that $\Delta \cup[2 \delta, \infty)$ is a Γ-module and $\# \Delta=\delta$. Let S be the set of minimal generators for $\Delta \cup[2 \delta, x)$ as a Γ-module, and let $\Delta^{\prime}:=S \cap \Delta=\left\{\gamma \in \Delta \mid \forall \gamma^{\prime} \in \Gamma: \gamma-\gamma^{\prime} \notin \Delta\right\}$. For each $\gamma \in \Delta$ let $J_{\gamma}:=[\gamma+1,2 \delta-1] \backslash \Delta$. We fix a parameter t in \bar{A} such that $A=k\left[\left[t^{\gamma} \mid \gamma \in \Gamma\right]\right]$.

Theorem 11. With these notations, for each A-submodule I of length δ in $\bar{A} / I(2 \delta)$ corresponding to a point in $\mathcal{M}(\Delta)$ there exist uniquely determined $u_{\gamma_{j}} \in k$ (for $\gamma \in \Delta^{\prime}$ and $\left.j \in J_{\gamma}\right)$ such that I is generated by the elements $g_{\gamma}\left(\gamma \in \Delta^{\prime}\right)$, where

$$
g_{\gamma}:=t^{\gamma}+\sum_{j \in J_{\gamma}} u_{\gamma_{j}} t^{i}
$$

Proof. For each $\gamma \in \Delta^{\prime}$ choose $h_{\gamma} \in I$ such that $h_{\gamma} \equiv t^{\gamma} \bmod I(\gamma+1)$. If $a_{\gamma_{i}} t^{\prime}$ is the first term in h_{γ} with $j \notin J_{\gamma}$ and $a_{\gamma_{j}} \neq 0$, replace h_{γ} by $h_{\gamma}-a_{\gamma_{j}} t^{\gamma^{\prime}} h_{\gamma}$, where $\gamma=\gamma^{\prime}+\gamma^{\prime \prime}$ with $\gamma^{\prime} \in \Delta^{\prime}, \gamma^{\prime \prime} \in \Gamma \backslash\{0\}$. In this way we arrive at generators g_{y} for I as above. Conversely, given such generators, for each $\gamma \in \Delta$ there exist uniquely determined $\gamma^{\prime} \in \Delta^{\prime}$ and $\gamma^{\prime \prime} \in \Gamma$ with $\gamma=\gamma^{\prime}+\gamma^{\prime \prime}$ (here we use property (3) of Theorem 10), and we get a k-basis of I by taking all $t^{\gamma^{\prime}} g_{\gamma}$, for $\gamma \in \Delta$. Because Γ is monomial, in the process of reducing this basis to reduced row echelon form, the elements $g_{\gamma^{\prime}}$ with $\gamma^{\prime} \in \Delta^{\prime}$ are not affected. Hence these are uniquely determined by I, and I has indeed semigroup Δ.

Corollary. If I is a monomial semigroup, then each $\mathcal{M}(\Delta)$ is an affine space of dimension $\Sigma_{\gamma \in \Delta^{\prime}} \# J_{\gamma}$, and the codimension $c(\Delta)$ of $\mathscr{M}(\Delta)$ inside $W(\Delta)$ is equal to $\sum_{\gamma \in \Delta \Delta^{\prime}} \# J_{\gamma} . \sqcap$

We now proceed to the analysis of \mathcal{M} in the monomial cases. We first observe that there is a hierarchy between these, which goes as follows. Let Γ be a monomial semigroup with conductor c. Put $\Gamma^{*}=\Gamma \cup\{c-1\}$. Then Γ^{*} appears to be a monomial semigroup again. In fact, $\Gamma_{m, s, b}^{*}=\Gamma_{m, s, b}$ if $b \geq 2, \Gamma_{m, s, 1}^{*}=$ $\Gamma_{m, s-1, m-1}$ if $s \geq 2, \Gamma_{m, 1,1}^{*}=\Gamma_{m-1,1,1}, \Gamma_{m}^{*}=\Gamma_{m, 1,2}$ and $\Gamma_{m, r}^{*}=\Gamma_{m, 1,1}$.

Let us write \mathcal{M}_{Γ} for \mathscr{M}, when we want to specify which semigroup is under consideration. We have a natural map $j: \mathscr{A}_{r^{+}} \rightarrow \mathcal{M}_{r}$ defined by $j(I)=$
$t I+\left(t^{2 \delta-1}\right) \subseteq k[[t]] /\left(t^{2 \delta}\right)$ for $I \subseteq k[[t]] /\left(t^{2 \delta-2}\right)$. It is clear that j is injective and that $\operatorname{Im}(j)$ is the union of all strata $\mathcal{M}(\Delta)$ in \mathcal{M}_{Γ} such that $\Delta=\left\{b_{1}, \ldots, b_{\delta}\right\}$, with $0<b_{1}<\cdots<b_{\delta}=2 \delta-1$ and $b_{1}+c-1 \in \Delta \cup[2 \delta, \infty)$.

Remarks. (1) If Γ is Gorenstein, then $\mathscr{M}(\Delta) \subseteq \operatorname{Im}(j) \Leftrightarrow b_{1}>0 \Leftrightarrow \Delta \neq \Gamma$. So in this case we have $\mathcal{M}=\mathcal{M}(\Gamma) \cup \operatorname{Im}(j)$.
(2) If $b_{1}+c-1 \in \Delta$, then $b_{\delta}=2 \delta-1$.
(3) In general, $\operatorname{Im}(j)$ is closed in \mathscr{M} and $\mathscr{M}=\operatorname{Im}(j) \cup \cup \mathcal{M}(\Delta)$, where we take the union over all Δ such that $b_{1}=0, b_{1}+c-1 \notin \Delta \cup[2 \delta, \infty)$ or $b_{\delta}<2 \delta-1$.

We start with the study of \mathcal{M} for the semigroups which are lowest in this hierarchy.
(I) $\Gamma=\Gamma_{m, 1,1}$. We have $\delta=m-1$. From the Corollary above we see that $\mathcal{M}(\Delta)=W(\Delta)$ for each Δ. Hence the adjacencies are determined by the remark before Definition 4 . We have $m-1$ irreducible components $\mathcal{M}_{1}, \ldots, \mathcal{M}_{m-1}$. The intersection of \mathcal{M}_{r} with the open patch U_{P} consists of row spaces of matrices $(Z \mid I)$ such that $Z_{i j}=0$ if $i>r$ or $j<r$. In particular, $\operatorname{dim}\left(\mathcal{M}_{r}\right)=r(m-r)$ and $\operatorname{dim}(\mathcal{M})=\max \{r(m-r) \mid r=1, \ldots, m-1\}=\left[m^{2} / 4\right]$.
(II) $\Gamma=\Gamma_{m, 1,2}=\{0, m\} \cup[m+2, \infty)$. We have $\delta=m$. Claim: if Δ has the minimal element b_{1}, then $c(\Delta)=1$ if $b_{1}+m+1 \notin \Delta$ and else $c(\Delta)=0$. Moreover, in the former case, $\mathcal{M}(\Delta) \cap U_{P}$ is defined inside $W(\Delta) \cap U_{P}$ by the single equation $\operatorname{tr}(Z)=0$. Again the adjacencies are as for the corresponding Schubert cells. This follows from Proposition 7; the equations for $\mathcal{M} \cap U_{P}$ are: $Z N^{j} Z=0$ for $j=$ $0,2, \ldots, m-1$.

Let

$$
\begin{aligned}
& \Delta_{b}=\{b, b+2, \ldots, 2 b+1, b+m, b+m+2, \ldots, 2 m-1\}, \\
& \Delta_{b}^{\prime}=\{b, b+2, \ldots, 2 b, b+m, \ldots, 2 m-1\}
\end{aligned}
$$

for $b=0, \ldots, m-2$ (notice that $\Delta_{0}=\Gamma$). Remark that $\Gamma^{*}=\Gamma_{m, 1,1}$. Then

$$
\begin{aligned}
& \mathcal{M}=\operatorname{Im}(j) \cup \bigcup_{b=0}^{m-2} \overline{\mathcal{M}\left(\Delta_{b}\right)}, \quad \text { with } \operatorname{Im}(j) \cap \overline{\mathcal{M}\left(\Delta_{b}\right)}=\overline{\mathcal{M}\left(\Delta_{b}^{\prime}\right)}, \\
& \operatorname{dim} \mathcal{M}\left(\Delta_{b}\right)=(b+1)(m-b)-b+1
\end{aligned}
$$

Especially

$$
\operatorname{dim} \mathcal{M}\left(\Delta_{[m / 2]-1}\right)=\left[m^{2} / 4\right]+1
$$

implies

$$
\operatorname{dim} \mathscr{M}=\operatorname{dim} \operatorname{Im}(j)+1=\left[m^{2} / 4\right]+1
$$

Using Remark 3 above, we have to prove that if $W(\Delta) \subseteq \overline{W\left(\Delta_{b}\right)}$ for some Δ with $b=\min (\Delta)$, then $\mathcal{M}(\Delta) \subseteq \overline{\mathcal{M}\left(\Delta_{b}\right)}$. But this is clear, because in $U_{P}, \mathcal{M}(\Delta)$ and $\mathcal{M}\left(\Delta_{b}\right)$ are defined by the single equation $\operatorname{tr}(Z)=0$ inside $W(\Delta)$ and $W\left(\Delta_{b}\right)$.
(III) $\Gamma=\Gamma_{m, r}$. Recall that $\Gamma^{*}=\Gamma_{m, 1,1}$. Let

$$
\begin{aligned}
& \Delta_{b}=\{b\} \cup[b+r+1,2 b+r] \cup[b+m, b+m+r-1] \\
& \cup[b+m+r+1,2 m-1], \\
& \Delta_{b}^{\prime}=\{b\} \cup[b+r+1,2 b+r-1] \cup[b+m, 2 m-1],
\end{aligned}
$$

for $b=0, \ldots, m-r-1$. Then

$$
\begin{aligned}
& \mathcal{M}=\operatorname{Im}(j) \cup \bigcup_{b=0}^{m-r-1} \overline{\mathcal{M}\left(\Delta_{b}\right)} \quad \text { with } \operatorname{Im}(j) \cap \overline{\mathcal{M}\left(\Delta_{b}\right)}=\overline{\mathcal{M}\left(\Delta_{b}^{\prime}\right)}, \\
& \operatorname{dim} \mathcal{M}\left(\Delta_{b}\right)=(b+1)(m-b-r)+r,
\end{aligned}
$$

i.e.

$$
\operatorname{dim} \mathscr{M}=\left\{\begin{array}{cc}
3 & \text { if } m=3, \\
{\left[m^{2} / 4\right]} & \text { if } m \geq 4 .
\end{array}\right.
$$

Again it is enough to prove that if $W(\Delta) \subseteq \overline{W\left(\Delta_{b}\right)}$ for some Δ with $b=\min (\Delta)$, then $M(\Delta) \subseteq \bar{M}\left(\overline{\Delta_{b}}\right)$. We may assume that $b+m+r \notin \Delta$ (otherwise $M(\Delta)=$ $W(\Delta)$). In this case $\mathcal{M}(\Delta) \cap U_{P}$ is defined in $W(\Delta) \cap U_{P}$ by the equations $\frac{\operatorname{tr}\left(Z N^{j}\right)}{\bar{M}\left(\Delta_{b}\right)}=0, j=0, \ldots, r-1$. As in the case $\Gamma_{m, 1,2}$ we conclude that $\mathcal{M}(\Delta) \subseteq$

Using Proposition 7 we see that $\mathcal{M} \cap U_{P}$ is defined by the equations $Z N^{j} Z=0$, $j=0, \ldots, m-1, j \neq r$. We conclude the following facts:

$$
\begin{equation*}
\left.\left\{(Z \mid I) \in \mathcal{M} \cap U_{P} \mid \operatorname{rk}(Z) \leq 1\right\}=\overline{(\mathcal{M}(\Gamma)} \cup \overline{\mathcal{M}\left(\Delta_{m-r-1}\right)}\right) \cap U_{P} \tag{1}
\end{equation*}
$$

(notice that for $r=m-1$ we have just one component);
(2) $\overline{M(\Gamma)} \cap U_{P}$ is defined by the equations

$$
\begin{array}{ll}
\operatorname{rk}(Z) \leq 1, & \\
\operatorname{tr}\left(Z N^{j}\right)=0 & j=0, \ldots, m-1, j \neq r \\
Z_{i j}=0 & \text { for } i=r+2, \ldots, m, \text { all } j
\end{array}
$$

whereas $\overline{\mathcal{M}\left(\Delta_{m-r-1}\right)} \cap U_{P}$ is defined by

$$
\begin{array}{ll}
\operatorname{rk}(Z) \leq 1, \\
\operatorname{tr}\left(Z N^{j}\right)=0 & j=0, \ldots, m-1, j \neq r, \\
Z_{i j}=0 & \text { for } j=1, \ldots, m-r-1, \text { all } i
\end{array}
$$

(3) if $m=3$, then $\mathcal{M}=\overline{\mathcal{M}(\Gamma)} \cup \overline{\mathcal{M}\left(\Delta_{2-r}\right)}$.

It is enough to prove (1) and (2), because of the fact that in the case $m=3$, $\operatorname{rk}(Z) \leq 1$ follows from $Z^{2}=0$, hence (3) holds. It suffices to prove that

$$
\left\{Z \in \operatorname{Mat}_{m}(k) \mid \operatorname{rk}(Z) \leq 1, Z N^{j} Z=0 \text { for } j-0, \ldots, m-1, j \neq r\right\}
$$

is the union of the two irreducible components

$$
\begin{gathered}
\left\{Z \in \operatorname{Mat}_{m}(k) \mid \operatorname{rk}(Z) \leq 1, Z N^{j} Z=0 \text { for } j=0, \ldots, m-1, j \neq r,\right. \\
\left.Z_{i j}=0 \text { for } i=r+2, \ldots, m, \text { all } \mathrm{j}\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
\left\{Z \in \operatorname{Mat}_{m}(k) \mid \operatorname{rk}(Z) \leq 1, Z N^{j} Z=0 \text { for } j=0, \ldots, m-1, j \neq r,\right. \\
\left.Z_{i j}=0 \text { for } j=1, \ldots, m-r-1, \text { all } i\right\}
\end{gathered}
$$

because obviously $\mathcal{M}\left(\Delta_{m-r-1}\right)$ is contained in the first of these components and $\mathscr{M}(\Gamma)$ in the other one, and moreover $Z N^{j} Z=0 \Leftrightarrow \operatorname{tr}\left(Z N^{j}\right)=0($ as $\operatorname{rk}(Z) \leq 1)$.

Now consider the Scgre embedding $\mathscr{P}^{m-1} \times \mathscr{P}^{m-1} \rightarrow \mathscr{P}^{m^{2}-1},(x, y) \mapsto x .^{t} y$. The image corresponds to all $m \times m$ matrices Z of rank 1 . Writing $Z=x .{ }^{\text {t }} y$ we find that $Z N^{j} Z=0 \Leftrightarrow{ }^{t} y N^{j} x=0$. We will prove that

$$
\left\{(x, y) \in \mathscr{P}^{m-1} \times\left.\mathscr{P}^{m-1}\right|^{\mathrm{t}} y N^{j} x=0 \text { for } j=0, \ldots, m-1, j \neq r\right\}
$$

is irreducible if $r=m-1$ and the union of two components defined as the closure of $y_{1} \neq 0$ resp. $x_{m} \neq 0$ (where $x=\left(x_{1}, \ldots, x_{m}\right), y=\left(y_{1}, \ldots, y_{m}\right)$).

If $r=m-1$, we have the following system of equations:

$$
\left\{\begin{array}{l}
x_{1} y_{1}+\cdots+x_{m} y_{m}=0 \\
x_{2} y_{1}+\cdots+x_{m} y_{m-1}=0 \\
\cdots \\
x_{m-1} y_{1}+x_{m} y_{2}=0
\end{array}\right.
$$

If $r<m-1$, we have

$$
{ }^{\mathrm{t}} y N^{m-1} x=\cdots={ }^{\mathrm{t}} y N^{r+1} x=0
$$

so

$$
\left\{\begin{array}{l}
y_{1} x_{m}=0 \\
y_{1} x_{m-1}+y_{2} x_{m}=0 \\
\cdots \\
y_{1} x_{r+2}+\cdots+y_{m-r-1} x_{m}=0
\end{array}\right.
$$

If $y_{1} \neq 0$, then $x_{r+2}=\cdots=x_{m}=0$, i.e. $Z_{i j}=0$ for $i \geq r+2$.
If $x_{m} \neq 0$, then $y_{1}=\cdots=y_{m-r-1}=0$, i.e. $Z_{i j}=0$ for $j \leq m-r-1$.
We finish with the remark that

$$
S=\left\{(x, y) \in \mathscr{P}^{r} \times \mathscr{P}^{m-1} \mid \sum_{i-j=\nu} x_{i} y_{i}=0 \text { for } \nu-0, \ldots, r-1\right\}
$$

is irreducible of dimension $m-1$. Indced, it is clear that each irreducible component of S has dimension $\geq m-1$. Looking at these equations for fixed y, we see that there is a unique component of S of dimension $m-1$ projecting birationally onto \mathscr{P}^{m-1} and that the set of points in \mathscr{P}^{m-1} for which the fibre has dimension at least i has codimension $i+1$. This implies that S has no other component of dimension $\geq m-1$.

If one takes $r=1$ in the above description, the results remain valid, and apply to the case of $\Gamma_{m, 1,2}$.

Let us consider the special case of $\Gamma_{3,2}$ (the E_{6} singularity). Then for Δ we have the possibilities

$$
\{0,3,4\} \quad\{2,3,5\} \quad\{3,4,5\} \quad\{1,4,5\} \quad\{2,4,5\} .
$$

$\mathcal{M} \cap U_{P}$ is defined by $\operatorname{rk}(Z) \leq 1, \operatorname{tr}(Z)=0=\operatorname{tr}(Z N)$, i.e. by

$$
\operatorname{rank}\left(\begin{array}{ccc}
Z_{11} & Z_{12} & Z_{13} \\
Z_{21} & Z_{22} & Z_{23} \\
Z_{31} & -Z_{21} & -Z_{11}-Z_{22}
\end{array}\right) \leq 1
$$

One can prove that this defines a threefold with a singular line with transverse singularity of type A_{2}. For the different Δ we get for $M(\Delta) \cap U_{P}$ the following:

$$
\begin{array}{ll}
\Delta & \mathcal{M}(\Delta) \cap U_{P}, \\
\{3,4,5\} & \{(0 \mid I)\}, \\
\{2,3,5\} & \left\{\left(\begin{array}{lll}
0 & 0 & u \\
0 & 0 & v \\
0 & 0 & 0
\end{array}\right): v \neq 0\right\}, \\
\{1,4,5\} & \left\{\left(\begin{array}{lll}
0 & v & u \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right): v \neq 0\right\}, \\
\{2,4,5\} & \left\{\left(\begin{array}{lll}
0 & 0 & u \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right): u \neq 0\right\} .
\end{array}
$$

(IV) Let $\Gamma=\Gamma_{m}$. Here $\Gamma^{*}=\Gamma_{m, 1,2}$. As Γ is Gorenstein, $\mathcal{M}=\operatorname{Im}(j) \cup \mathcal{M}(\Gamma)$ and

$$
\operatorname{dim} \mathcal{M}=\left\{\begin{array}{cc}
4 & \text { if } m=3, \\
{\left[m^{2} / 4\right]+1} & \text { if } m \geq 4 .
\end{array}\right.
$$

Using Proposition 7 we see that $\mathcal{M} \cap U_{P}$ is defined by the equations

$$
Z^{\prime} N Z=\left[Z, N^{m}\right] \quad \text { and } \quad Z N^{j} Z=0 \text { for } j=1, \ldots, m-1 .
$$

As before, we are interested in characterizing $\overline{\mathcal{M}}(\bar{\Gamma})$. The situation is not as easy as before. It is no longer true that $\overline{\mathcal{M}(\Gamma)}$ is a union of $\mathcal{M}(\Delta)$'s (as is the case for the corresponding Schubert cells): if $m=4$, then $\left(t^{2}, t^{4}\right) \in \overline{\mathcal{M}(\Gamma)} \cap \mathcal{M}(\Delta)$ with $\Delta=\{2,4,6,8,9\}$. Obviously $W(\Delta) \subseteq \overline{W(\bar{\Gamma})}$. On the other hand, $\operatorname{dim} \mathcal{M}(\Delta)=$ $\operatorname{dim} W(\Delta)-1=5=\operatorname{dim} \mathcal{M}(\Gamma)$, hence $\mathcal{M}(\Delta)$ is not contained in $\overline{\mathcal{M}(\Gamma)}$.

For $m=3$ (the singularity E_{8}) one can check by explicit computation that $\mathcal{M}=\bar{M}(\bar{\Gamma})$. We omit the details. We just mention that $\operatorname{Sing}(\mathcal{M})$ is the union of the closures of $\mathcal{M}(\{2,5,6,7\})$ and $\mathscr{M}(\{3,4,6,7\})$ with transverse types A_{3} resp. D_{4}.
(V) $\Gamma=\Gamma_{2, s, 1}$ (the singularity of type $\mathrm{A}_{2 s}$). Then Γ is Gorenstein and $\Gamma^{*}=$ $\Gamma_{2 . s-1.1}$ (if $s \geq 2$). Hence again $\mathcal{M}=\operatorname{Im}(j) \cup \mathcal{M}(\Gamma)$ and $\operatorname{dim} \mathcal{M}=s$ by induction on s. Furthermore, $\mathcal{M}(\Gamma)$ is dense in \mathcal{M} and $\operatorname{Im}(j)=\bigcup_{x=1}^{s} \mathcal{M}(\langle x, 2 s+1-x\rangle)$ (here $\langle x, y\rangle$ denotes the semigroup generated by x and y). With Proposition 7 we see that $\mathcal{M} \cap U_{P}$ has equations $Z\left({ }^{\prime} N\right)^{s-2} Z=\left[Z, N^{2}\right]$. For small s we get:
$s=1: \mathcal{M} \cong \mathscr{P}^{\prime}(k)$,
$s=2: \mathcal{M}$ is a quadratic cone in $\mathscr{P}^{3}(k)$,
$s=3: \mathcal{M}$ is a threefold with a singular line with transverse singularity of type A_{2}. At the point P, \mathcal{M} has embedding dimension 5.

Remark. Consider a ring A and A-modules E with a resolution of the form

$$
0 \rightarrow A \rightarrow A^{n} \rightarrow E \rightarrow 0 .
$$

Let us call such modules $1-n A$-modules. The isomorphism classes of $1-n$ A-modules are in $1-1$ correspondence with their Fitting ideals, i.e. with ideals in A which are generated by at most n elements (see [1, p. 146]). Hence for A the local ring of a reduced and irreducible curve singularity, the isomorphism classes of such modules are parametrized by open subsets of \mathcal{M} (and by the whole of \mathscr{M} if n is large enough).

Remark. There is some more structure on \mathcal{M} which we have not exploited yet. First, we have the residue pairing R on $k[[t]] /\left(t^{2 \delta}\right)$. If I is an A-submodule of $k[[t]] /\left(t^{2 \delta}\right)$ of length δ, then also $I^{\perp}-\left\{x \in k[[t]] /\left(t^{2 \delta}\right) \mid R(x, I)=0\right\}$ is such ant A-submodule. This defines an involution on \mathcal{M}. In the neighborhood U_{p} it is given by $Z \mapsto-J^{i} Z J$, where $J_{i j}=1$ if $i+j=\delta-1$ and 0 else. The stratum $\mathcal{M}(\Delta)$ is mapped to $\mathcal{M}\left(\Delta^{\prime}\right)$, where $\Delta^{\prime}=[0,2 \delta-1] \backslash(2 \delta-1-\Delta)$. In particular, $\mathcal{M}(\Gamma)$ is
stable under this involution $\Leftrightarrow \Gamma$ is Gorenstein. Hence, in the non-Gorenstein case, $\mathcal{M}(\Gamma)$ cannot be dense in \mathcal{M}, as there exists another stratum with the same dimension.

In the monomial case, we have an action of k^{*} on \mathcal{M}, induced by the k^{*}-action on $A,(\lambda f)(t)=f(\lambda t)$ for $\lambda \in k^{*}$. There is a unique fixed point in each stratum, the zero point in the corresponding Schubert cell. In particular, the equations for $\mathcal{M} \cap U_{P}$ are quasi-homogeneous with weight $\left(Z_{i j}\right)=\delta+i-j$.

References

[1] C. Gibson, Singular Points of Smooth Mappings (Pitman, London, 1979).
[2] M. Giusti, Classification des singularités isolées simples d'intersections complètes, Proc. Sympos. Pure Math. 40 (1983) Part 1, 457-494.
[3] Ph. Griffiths and J. Harris. Principles of Algebraic Geometry (Wiley, New York, 1978).
[4] A. Grothendieck, Fondements de la Géométrie Algébrique, Séminaire Bourbaki 1957-1962, Secrétariat Math. Paris 1962.
[5] A. Iarrobino, Punctual Hilbert schemes, Mem. Amer. Math. Soc. 188 (1977).
[6] J.-P. Serre, Groupes Algébriques et Corps de Classes (Hermann, Paris, 1959).

