Reduced Hilbert schemes for irreducible curve singularities

G. Pfister

Sektion Mathematik, Humboldt Universität, Unter den Linden 6, O-1080 Berlin, Germany

J.H.M. Steenbrink

Mathematisch Instituut, Katholieke Universiteit Nijmegen, Toernooiveld, 6525 ED Nijmegen, Netherlands

Communicated by F. Oort Received 9 July 1990 Revised 4 January 1991

Abstract

Pfister, G. and J.H.M. Steenbrink, Reduced Hilbert schemes for irreducible curve singularities, Journal of Pure and Applied Algebra 77 (1992) 103-116.

We study the Hilbert scheme of zero-dimensional subschemes of $\operatorname{Spec}(A)$ for a one-dimensional local noetherian k-algebra. Its connected components M_{τ} parametrize the ideals of colength τ in A. The M_{τ} are embedded in a linear subspace M of a certain Grassmanian. We study the structure of M by its intersection with the Schubert cells. The case of rings A with monomial semigroup is specially treated.

1. Introduction

Let k be a field and let A be a local integral noetherian k-algebra of dimension one, such that its normalization \bar{A} is a discrete valuation ring with residue field k. Let $v: \bar{A} \to \mathbb{N} \cup \{\infty\}$ be the corresponding discrete valuation. We let $\Gamma = v(A \setminus \{0\})$ denote the semigroup of A, $\bar{I}(n) = \{f \in \bar{A} \mid v(f) \ge n\}$ and $I(n) = \bar{I}(n) \cap A$ for $n \in \mathbb{N}$. Define $c := \min\{n \mid \bar{I}(n) \subseteq A\}$ and m = multiplicity of A. Then I(c) = c is the conductor ideal and $c = \dim_k(\bar{A}/c)$. We define $\delta = \dim_k(\bar{A}/A) = \#(\mathbb{N} \setminus \Gamma)$. Then $\delta + 1 \le c \le 2\delta$, and $c = 2\delta$ if and only if A is Gorenstein (cf. [6, p. 80, Proposition 7]).

In this paper we study the Hilbert scheme of zero-dimensional subschemes of $\operatorname{Spec}(A)$, in other words, the space $\operatorname{Hilb}(A)$ of nonzero ideals in A. Note that this is a *punctual Hilbert scheme* in the sense of Iarrobino [5], and not a Hilbert scheme in the usual sense [4, Exp. 221]. We will show that its connected components \mathcal{M}_{τ} parametrize the ideals in A of colength τ .

In Section 2 we will construct a space \mathcal{M} which is a special linear section of the Grassmannian of δ -dimensional subspaces of $\bar{A}/I(2\delta)$, and for each τ a closed embedding of \mathcal{M}_{τ} into \mathcal{M} , which is an isomorphism for $\tau \geq c$. We will also study the partition of \mathcal{M} by its intersection with the Schubert cells corresponding to the natural flag.

In Section 3 we will investigate the structure of \mathcal{M} in the case of certain semigroups, which we baptize *monomial semigroups* (see Definition 9). In that case the strata of the partition above appear to be isomorphic to affine spaces, and we determine their dimensions.

2. Construction of \mathcal{M}

Let A be the local ring of a reduced and irreducible curve singularity with semigroup Γ . We fix the following notation. Let I be a nonzero ideal in A. We let $\tau(I) = l(A/I)$, $\tau(I) = \min\{v(f) \mid f \in I\}$, $\Gamma(I) = \{v(f) \mid f \in I \setminus \{0\}\}$, $\Gamma_0(I) = \Gamma(I) - t(I)$ and $\delta(I) = \#(\mathbb{N} \setminus \Gamma_0(I))$. For I = A we get $0, 0, \Gamma$ and δ respectively. We let $[a, b] := \{x \in \mathbb{N} \mid a \le x \le b\}$, $[a, \infty) = \{x \in \mathbb{N} \mid x \ge a\}$ an let c(I) be the conductor of $\Gamma_0(I)$, i.e. $\max\{n \in \mathbb{N} \mid n-1 \not\subseteq \Gamma_0(I)\} = \min\{n \in \mathbb{N} \mid [n, \infty) \subseteq \Gamma_0(I)\}$. We have the following relations:

- (i) $\tau(I) = t(I) + \delta(I) \delta$,
- (ii) $c(I) \le \delta + \delta(I)$.

Indeed, let $f_1 \in I$ with $v(f_1) = t(I)$, then

$$\tau(I) + \delta = l(\bar{A}/I) = l(f_1^{-1}\bar{A}/f_1^{-1}I) = l(f_1^{-1}\bar{A}/\bar{A}) + l(\bar{A}/f_1^{-1}I)$$

= $t(I) + \delta(I)$.

Moreover, $\Gamma_0(I)$ is a Γ -module, so $\gamma \in \Gamma$ implies that $c(I) - 1 - \gamma \not\subset \Gamma_0(I)$. Hence

$$\#\{\gamma \in \Gamma \mid \gamma < c(I)\} \le \delta(I)$$
.

Definition 1. For A, Γ as above, we let \mathcal{M} be the subset of $Grass(\delta, \overline{A}/I(2\delta))$ consisting of the δ -dimensional linear subspaces which are A-submodules.

Observe that the group $1+\mathfrak{m}_A$ acts by multiplication on $\bar{A}/I(2\delta)$ and hence on $\operatorname{Grass}(\delta,\bar{A}/I(2\delta))$. The fixed points of this action are exactly the points of \mathcal{M} . If we embed $\operatorname{Grass}(\delta,\bar{A}/I(2\delta))$ by its Plücker embedding, we get $\mathcal{M}=\operatorname{Grass}(\delta,\bar{A}/I(2\delta))\cap \mathcal{P}(V)$, where $V\subseteq \Lambda_k^\delta(\bar{A}/I(2\delta))$ is the linear subspace of fixed points under the action of $1+\mathfrak{m}_A$ (this works because $1+\mathfrak{m}_A$ acts by unipotent linear transformations on $\Lambda_k^\delta(\bar{A}/I(2\delta))$). We endow \mathcal{M} with the reduced scheme structure. By construction, \mathcal{M} is a projective scheme.

Definition 2. For each $\tau > 0$ let \mathcal{M}_{τ} be the set of ideals of codimension τ in A.

Observe that each ideal of codimension τ in A satisfies $I(\tau + 2\delta) \subseteq I \subseteq I(\tau)$. Choose a uniformizing parameter t in \bar{A} . Then $I(2\delta) \subseteq t^{-\tau}I \subseteq \bar{A}$, and $I(\bar{A}/t^{-\tau}I) = I(\bar{A}/I) - \tau = \delta$. Define the map $\phi_{\tau} : \mathcal{M}_{\tau} \to \mathcal{M}$ by $\phi_{\tau}(I) = t^{-\tau}I/I(2\delta)$.

Theorem 3. For all τ , the map ϕ_{τ} is injective and its image is a Zariski-closed subset of \mathcal{M} . For $\tau \geq c$ the map ϕ_{τ} is bijective.

Proof. Let $x \in \mathcal{M}$ correspond to the A-submodule J of \bar{A} of colength δ . Then $t^{\tau}J$ is an A-submodule of \bar{A} of colength $\tau + \delta$, and $x \in \text{Im}(\phi_{\tau}) \Leftrightarrow t^{\tau}J \subseteq A$. This is clearly the case for $\tau \geq c$, hence ϕ_{τ} is bijective in that case. In general, the condition $t^{\tau}J \subseteq A$ defines a Zariski-closed subset of \mathcal{M} . The injectivity of ϕ_{τ} is also clear. \square

Examples. (1) Let $A = k[[t^2, t^3]]$. Then \mathcal{M}_1 is a point, whereas $\mathcal{M}_{\tau} \cong \mathcal{M} \cong \mathcal{P}^1(k)$ for $\tau \geq 2$.

- (2) Let $A = k[[t^2, t^5]]$. Then \mathcal{M} is defined inside $\mathscr{P}^5(k)$ by the Plücker relation $\pi_{12}\pi_{34} \pi_{13}\pi_{24} + \pi_{14}\pi_{23} = 0$ (which defines the Grassmannian) and the linear equations $\pi_{12} = \pi_{14} \pi_{23} = 0$. Thus \mathcal{M} is a quadratic cone. \mathcal{M}_1 is the vertex of this cone, and \mathcal{M}_2 and \mathcal{M}_3 are two different lines through this vertex.
- (3) Let $A = k[[t^3, t^4]]$. The image of \mathcal{M} under the Plücker embedding of Grass(3, 6) in $\mathcal{P}^{20}(k)$ is defined by the Plücker relations defining the Grassmannian and the linear relations

$$\begin{aligned} \pi_{123} &= \pi_{124} = \pi_{125} = \pi_{126} = \pi_{134} = \pi_{135} = \pi_{136} = \pi_{234} = \pi_{235} \\ &= \pi_{145} - \pi_{245} = \pi_{156} - \pi_{246} + \pi_{345} = 0 \ . \end{aligned}$$

We will consider this example later in more detail.

For the study of \mathcal{M} , a very useful observation is that $\bar{A}/I(2\delta)$ has the canonically defined flag

$$0 \subset V_1 \subset \cdots \subset V_{2\delta} = \tilde{A}/I(2\delta)$$
,

where $V_i = \bar{I}(2\delta - i)/I(2\delta)$. This induces a partition of Grass $(\delta, \bar{A}/I(2\delta))$ into Schubert cells

$$W_{a_1,a_2,\ldots,a_\delta}$$
 for $\delta \geq a_1 \geq \cdots \geq a_\delta \geq 0$,

defined by

$$W_{a_1,...,a_{\delta}}$$

$$= \{ \Lambda \in \operatorname{Grass}(\delta, \bar{A}/I(2\delta)) \mid \dim(\Lambda \cap V_{\delta+i-a_i}) = i \text{ for } i = 1, ..., \delta$$
and $\dim(\Lambda \cap V_i) < i \text{ for } j < \delta + i - a_i \}$

(see [3, p. 195]). We have

$$\dim W_{a_1,\ldots,a_\delta} = \delta^2 - \sum_{i=1}^\delta a_i \;,$$

$$W_{b_1,\ldots,b_\delta} \subseteq \overline{W_{a_1,\ldots,a_\delta}} \quad \Leftrightarrow \quad b_i \ge a_i \text{ for } i = 1,\ldots,\delta \;.$$

Definition 4. Let Δ be a subset of $[0, 2\delta - 1]$ such that $\#\Delta = \delta$ and $\Delta \cup [2\delta, \infty)$ is a Γ -module. Let $\Gamma_1(I) = \Gamma(I) - \tau(I)$. Then $\mathcal{M}(\Delta) :=$ the subset of \mathcal{M} parametrizing ideals I with $\Gamma_1(I) = \Delta \cup [2\delta, \infty)$.

Lemma 5. Let
$$\Delta = \{b_1, \ldots, b_{\delta}\}$$
 with $0 \le b_1 < \cdots < b_{\delta} < 2\delta$. Let $a_{\delta - i + 1} = b_i - i + 1$ for $i = 1, \ldots, \delta$. Then $\mathcal{M}(\Delta) = \mathcal{M} \cap W_{a_1, \ldots, a_{\delta}}$. \square

The proof is left to the reader. In the sequel we will let $W(\Delta)$ denote the Schubert cell containing $\mathcal{M}(\Delta)$, and by abuse of language write $W(\Gamma)$, $\mathcal{M}(\Gamma)$ instead of $W(\Gamma \cap [0, 2\delta - 1])$, etc.

Theorem 6. \mathcal{M} is connected.

Proof. Let $G = 1 + m_{\tilde{A}}$. It acts on $\bar{A}/I(2\delta)$ by multiplication and leaves the standard flag invariant. Hence it also acts on $\operatorname{Grass}(\delta, \bar{A}/I(2\delta))$ preserving the partition into Schubert cells. G obviously also acts on \mathcal{M} , hence it preserves each stratum $\mathcal{M}(\Delta)$. As $1 + I(2\delta)$ acts trivially on $\operatorname{Grass}(\delta, \bar{A}/I(2\delta))$, G acts via a unipotent quotient on \mathcal{M} . As \mathcal{M} is projective, the only closed G-orbits on \mathcal{M} are points. However, G has a unique fixed point P on \mathcal{M} , corresponding to $\bar{I}(\delta)/I(2\delta)$. As the image of G in $\operatorname{Aut}(\bar{A}/I(2\delta))$ is connected, each orbit is connected and has P in its closure. Hence \mathcal{M} is connected. \square

Remark. The stratum $\mathcal{M}(\Gamma)$ corresponds to the cyclic A-modules in $\bar{A}/I(2\delta)$, which form one G-orbit (namely $G.A/I(2\delta)$), of dimension $\dim(G/1+\mathfrak{m}_A)=\dim(\mathfrak{m}_{\bar{A}}/\mathfrak{m}_A)=\delta$. Observe that $\mathcal{M}(\Gamma)=\mathcal{M}\setminus\{\Lambda\mid \Lambda\subseteq V_{2\delta-1}\}$, hence $\mathcal{M}(\Gamma)$ is open in \mathcal{M} . Below we will see examples of strata $\mathcal{M}(\Delta)$ with $\Delta\neq\Gamma$ of dimension $\geq\delta$. Hence \mathcal{M} is reducible in general.

As a consequence of the proof of Theorem 6, one obtains a fairly good picture of the adjacencies of strata in \mathcal{M} by looking at an affine neighborhood of P in $\operatorname{Grass}(\delta, \bar{A}/I(2\delta))$. Such an affine open neighborhood U_P is given by putting $\pi_{\delta+1,\ldots,2\delta}\neq 0$, and we have an isomorphism $\operatorname{Mat}_{\delta}(k)\cong U_P$ given by $Z\mapsto \operatorname{rowspace}(Z\mid I)$, mapping 0 to P. In the sequel we will use the matrix coefficients Z_{ii} $(i,j=1,\ldots,\delta)$ as affine coordinates on U_P .

The action of G on $\operatorname{Grass}(\delta, \bar{A}/I(2\delta))$ is induced by right multiplication with matrices as follows. Let $N \in \operatorname{Mat}_{\delta}(k)$ be given by $N_{i,i+1} = 1$, for $i = 1, \ldots, \delta - 1$

and $N_{ij}=0$ else. Then t^j acts by right multiplication with $\binom{N^{j-1}N^{\delta-j}}{0-N}$ if $j<\delta$ and with $\binom{0}{0}$ $\binom{N^{j-\delta}}{0}$ if $j\geq\delta$. Hence

$$g = 1 + \sum_{i=1}^{2\delta - 1} a_i t^i \text{ leaves rowspace}(Z \mid I) \text{ invariant}$$

$$\Leftrightarrow \operatorname{rank}\left(\sum_{j < \delta} Z \sum_{a_j < N^j} \sum_{j < \delta} a_j (Z^t N^{\delta - j} + N^j) + \sum_{j \ge \delta} a_j Z N^{j - \delta}\right) = \delta$$

$$\Leftrightarrow \left(\sum_{j < \delta} a_j (Z^t N^{\delta - j} + N^j) + \sum_{j \ge \delta} a_j Z N^{j - \delta}\right) Z - \sum_{j < \delta} a_j Z N^j = 0.$$

Hence we have the following proposition:

Proposition 7. Equations for $M \cap U_P$ can be obtained as follows. Let $\{g_i\}_{i=1}^e$ be a set of generators of $A/I(2\delta)$ as a k-algebra. Write $g_i = \sum_i a_{ii} t^i$. Then

$$(Z \mid I) \in \mathcal{M} \cap U_P \iff \sum_{j < \delta} a_{ij} (Z^t N^{\delta - j} Z + [N^j, Z])$$

$$+ \sum_{j \ge \delta} a_{ij} Z N^{j - \delta} Z = 0 \quad \text{for } i = 1, \dots, e. \qquad \Box$$

3. Monomial semigroups

From now on we assume that k is an algebraically closed field of characteristic zero. For simplicity we will restrict to the case that A is complete.

Definition 8. A monomial curve singularity over k is an irreducible curve singularity with local ring isomorphic to $A = k[[t^{a_1}, \ldots, t^{a_m}]]$ for certain $a_1, \ldots, a_m \in \mathbb{N}$. Without loss of generality we may assume that $\gcd(a_1, \ldots, a_m) = 1$. In that case the semigroup Γ of A has generators a_1, \ldots, a_m , and again we may assume that a_1, \ldots, a_m form a minimal set of generators for Γ .

Definition 9. A semigroup Γ in $\mathbb N$ is called *monomial* if $0 \in \Gamma$, $\#(\mathbb N \setminus \Gamma) < \infty$ and each reduced and irreducible curve singularity with semigroup Γ is a monomial curve singularity.

Theorem 10. For a semigroup $\Gamma \subseteq \mathbb{N}$ the following are equivalent:

- (1) Γ is a monomial semigroup.
- (2) Γ is a semigroup from the following list:
 - (i) $\Gamma_{m,s,b} := \{ im \mid i = 0, 1, \dots, s \} \cup [sm + b, \infty) \text{ with } 1 \le b < m, s \ge 1,$
 - (ii) $\Gamma_{m,r} := \{0\} \cup [m, m+r-1] \cup [m+r+1, \infty)$ with $2 \le r \le m-1$,
 - (iii) $\Gamma_m := \{0, m\} \cup [m+2, 2m] \cup [2m+2, \infty)$ with $m \ge 3$.

(3) $0 \in \Gamma$, $\delta := \#(\mathbb{N} \setminus \Gamma) < \infty$ and the following property holds: if $x \in \mathbb{N} \setminus \Gamma$ and $c(x) := \min\{n \in \mathbb{N} \mid [n, \infty) \subseteq \Gamma \cup (x + \Gamma)\}$, then $\Gamma \cap (x + \Gamma) \subseteq [c(x), \infty)$.

Proof. (2) \Rightarrow (3) This is an easy case-by-case check.

 $(3) \Rightarrow (2)$ Suppose that Γ satisfies (3). Let $m := \min(\Gamma \setminus \{0\})$ and s, b be given by $1 \le b < m$ and $sm + b = \min(\Gamma \setminus m\mathbb{N})$. If $[sm + b, \infty) \subseteq \Gamma$, then Γ is of type $\Gamma_{m,s,b}$. Else there exists r > b with $[sm + b, sm + r - 1] \subseteq \Gamma$ but $sm + r \not\in \Gamma$. We will prove that s = 1 and $b \le 2$.

Assume s > 1. Then $sm + b \in \Gamma \cap (b + \Gamma)$ so by (3) we have $c(b) \le sm + b$, i.e. $sm + b + i \in \Gamma \cup (b + \Gamma)$ for all $i \ge 0$. But $sm + b + i \not\in b + \Gamma$ for 0 < i < b, so $sm + b + i \in \Gamma$ for i = 1, ..., b - 1. This means that $r \ge 2b$. On the other hand, r < m + b and we get

$$(*) m > r - b \ge b.$$

If $r \equiv 1 \pmod{m}$, then r = m + 1. Now $2m - 1 \not\in \Gamma$ and $(s - 1)m + 2m - 1 = (s + 1)m - 1 \in \Gamma$. This implies by (3) that $sm + r = (s + 1)m + 1 \in \Gamma \cup (2m - 1 + \Gamma)$, i.e. $(s - 1)m + 2 \in \Gamma$. This implies m = 2, b = 1, r = 3 and $sm + r = 2s + 3 = (s + 1)m + b \in \Gamma$ and we get a contradiction.

If $r \not\equiv 1 \pmod m$, then $m+r-1 \not\equiv \Gamma$ because of (*) and s > 1. On the other hand, we have $(s-1)m+m+r-1 = sm+r-1 \in \Gamma$. This implies using (3) that $sm+r \in \Gamma \cup (m+r-1+\Gamma)$, i.e. $(s-1)m+1 \in \Gamma$. This is a contradiction and hence s=1.

Assume now that b > 2. First of all r < m + b - 1. For if r = m + b - 1, then $2m + 1 \in \Gamma$ and $m + 1 \not\in \Gamma$. This would imply that $m + r = 2m + b - 1 \in (m + 1 + \Gamma) \cup \Gamma$, i.e. $m + b - 2 \in \Gamma$. This is a contradiction again.

Now r < m+b-1 implies $r-b+1 \not\in \Gamma$. But $m+r>m+r-b+1 \ge m+b+1$ by (*), i.e. $m+r-b+1 \in \Gamma$ and $m+r\in \Gamma \cup (r-b+1+\Gamma)$. This implies $m+b-1 \in \Gamma$; a contradiction. Hence we have s=1 and $b \le 2$. Recall r < m+b. If b=2 and r=m+1, then $\Gamma = \Gamma_m$. If b=2 and r < m, then $r-1 \not\in \Gamma$. Because $m+r-1 \in \Gamma$ we get $m+r\in \Gamma \cup (r-1+\Gamma)$, i.e. $m+1 \in \Gamma$; contradiction. Remark that $r \ne m$ as $sm+r \not\in \Gamma$.

We are left with the case b=1. Now $2 \le r < m+1$. Assume there exists r' > r with $m+r' \not\in \Gamma$. Take r' minimal with this property. If r'=r+1, then $m+r'-r=m+1 \in \Gamma$. If r'>r+1, then $m+r-1+r'-r=m+r'-1 \in \Gamma$. This implies by (3) that $m+r' \in \Gamma \cup (r'-r+\Gamma)$, i.e. $m+r' \in r'-r+\Gamma$, so $m+r \in \Gamma$; contradiction. Hence $[m+r+1,\infty) \subseteq \Gamma$ so $\Gamma = \Gamma_{m,r}$.

 $(2) \Rightarrow (1)$ Let A be a local k-subalgebra of k[[t]] with semigroup Γ_m . We have $A = k[[g_m, g_{m+2}, \ldots, g_{2m-1}]]$, where $g_j \equiv t^j + b_j t^{2m+1} \pmod{t^{2m+2}}$. (It is clear that a coordinate change will eliminate the coefficient of t^{m+1} in g_m .) It is sufficient to find a substitution $t = \phi(s) = s(1 + \sum_{i \geq 2} a_i s^i)$ in such a way that the coefficient of s^{2m+1} in each $g_i(\phi(s))$ is 0. This coefficient is equal to

$$b_j$$
 + the coefficient of s^{2m+1-j} in $\left(1 + \sum_{i \ge 2} a_i s^i\right)^j$
= $b_j + j a_{2m+1-j} + F_{2m+1-j}(a_2, \dots, a_{2m+1-j-1})$.

So our equations for the a_j can be solved recursively. The cases of $\Gamma_{m,s,b}$ and $\Gamma_{m,r}$ can be treated in the same way.

(1) \Rightarrow (3) Suppose that Γ has not property (3). Then there exist $x \in \mathbb{N} \setminus \Gamma$, $\gamma = \gamma' + x \in \Gamma \cap (x + \Gamma)$ and $y \not\in \Gamma \cup (x + \Gamma)$ such that $y > \gamma$. Let $A_0 = k[[t^i \mid i \in \Gamma]]$ be the monomial singularity with semigroup Γ . Put

$$A = k[[t^{\gamma'} + \lambda t^{\gamma-x}, t^{\gamma} + \mu t^{\gamma}, t^{i} \mid i \in \Gamma \setminus \{\gamma, \gamma'\}]].$$

Then A has semigroup Γ , but for all changes of variables $t = \phi(s)$ either s^{y-x} or s^y will have a nonzero coefficient somewhere, if λ and μ are general enough. So A is not a monomial singularity. \square

Remark. For the monomial singularities we have the following invariants:

type	embedding dimension	c	δ	Gorenstein type
$\Gamma_{m,s,b}$	m	$sm ext{ if } b = 1$ $sm + b ext{ if } b > 1$	s(m-1)+b-1	m-1
$\Gamma_{m,r}$	m - 1	m + r + 1	m	m-r
Γ_m	m-1	2m + 2	m + 1	1

Here the Gorenstein type of a Cohen-Macaulay local ring is defined as the minimal number of generators of its dualizing module (cf. [6, Chapter IV, Section 3]).

Remark. Notice that the simple irreducible complete intersection curve singularities all have monomial semigroups:

type
$$A_{2s}$$
: $k[[x, y]]/(x^2 - y^{2s+1})$ has semigroup $\Gamma_{2,s,1}$, type E_6 : $k[[x, y]]/(x^3 - y^4)$ has semigroup $\Gamma_{3,2}$, type E_8 : $k[[x, y]]/(x^3 - y^5)$ has semigroup Γ_3 , type W_8 : $k[[x, y, z]]/(x^2 - z^3, y^2 - xz)$ has semigroup $\Gamma_{4,3}$, type Z_{10} : $k[[x, y, z]]/(x^2 - yz^2, y^2 - z^3)$ has semigroup Γ_4 .

In the case of type W_8 , the parametrization is given by $(x, y, z) = (t^6, t^5, t^4)$; in the case Z_{10} it is given by $(x, y, z) = (t^7, t^6, t^4)$.

Remark. Here is another view on the class of monomial semigroups. Between the

invariants c, m and δ we have the following inequalities. Write c = sm + r with $0 \le r \le m - 1$. Then

$$m-1 \le \delta \le s(m-1) + \begin{cases} r-1 & \text{if } r \ge 2, \\ 0 & \text{else.} \end{cases}$$

Observe that $\Gamma = \Gamma_{m,s,b} \Leftrightarrow \delta$ takes the maximal possible value. All semigroups with $\delta = m$ are of type $\Gamma_{m,r}$ and the only semigroup with $\delta = m+1$ and which is Gorenstein (i.e. with $\gamma \in \Gamma \Leftrightarrow c-1-\gamma \not\in \Gamma$) is Γ_m .

We fix the following notation. Suppose A is as before and that the semigroup Γ of A is monomial. Let $\Delta \subseteq [0, 2\delta - 1]$ such that $\Delta \cup [2\delta, \infty)$ is a Γ -module and $\#\Delta = \delta$. Let S be the set of minimal generators for $\Delta \cup [2\delta, \infty)$ as a Γ -module, and let $\Delta' := S \cap \Delta = \{ \gamma \in \Delta \mid \forall \gamma' \in \Gamma : \gamma - \gamma' \not\in \Delta \}$. For each $\gamma \in \Delta$ let $J_{\gamma} := [\gamma + 1, 2\delta - 1] \setminus \Delta$. We fix a parameter t in \bar{A} such that $A = k[[t^{\gamma} \mid \gamma \in \Gamma]]$.

Theorem 11. With these notations, for each A-submodule I of length δ in $\bar{A}/I(2\delta)$ corresponding to a point in $\mathcal{M}(\Delta)$ there exist uniquely determined $u_{\gamma_j} \in k$ (for $\gamma \in \Delta'$ and $j \in J_{\gamma}$) such that I is generated by the elements g_{γ_j} ($\gamma \in \Delta'$), where

$$g_{\gamma} := t^{\gamma} + \sum_{j \in J_{\gamma}} u_{\gamma_j} t^j$$
.

Proof. For each $\gamma \in \Delta'$ choose $h_{\gamma} \in I$ such that $h_{\gamma} \equiv t^{\gamma} \mod I(\gamma+1)$. If $a_{\gamma j}t^{j}$ is the first term in h_{γ} with $j \not\in J_{\gamma}$ and $a_{\gamma_{j}} \neq 0$, replace h_{γ} by $h_{\gamma} - a_{\gamma_{j}}t^{\gamma''}h_{\gamma}$, where $\gamma = \gamma' + \gamma''$ with $\gamma' \in \Delta'$, $\gamma'' \in \Gamma \setminus \{0\}$. In this way we arrive at generators g_{γ} for I as above. Conversely, given such generators, for each $\gamma \in \Delta$ there exist uniquely determined $\gamma' \in \Delta'$ and $\gamma'' \in \Gamma$ with $\gamma = \gamma' + \gamma''$ (here we use property (3) of Theorem 10), and we get a k-basis of I by taking all $t^{\gamma''}g_{\gamma}$ for $\gamma \in \Delta$. Because Γ is monomial, in the process of reducing this basis to reduced row echelon form, the elements g_{γ} with $\gamma' \in \Delta'$ are not affected. Hence these are uniquely determined by I, and I has indeed semigroup Δ . \square

Corollary. If Γ is a monomial semigroup, then each $\mathcal{M}(\Delta)$ is an affine space of dimension $\sum_{\gamma \in \Delta'} \# J_{\gamma}$, and the codimension $c(\Delta)$ of $\mathcal{M}(\Delta)$ inside $W(\Delta)$ is equal to $\sum_{\gamma \in \Delta \setminus \Delta'} \# J_{\gamma}$. \square

We now proceed to the analysis of \mathcal{M} in the monomial cases. We first observe that there is a hierarchy between these, which goes as follows. Let Γ be a monomial semigroup with conductor c. Put $\Gamma^* = \Gamma \cup \{c-1\}$. Then Γ^* appears to be a monomial semigroup again. In fact, $\Gamma^*_{m,s,b} = \Gamma_{m,s,b-1}$ if $b \ge 2$, $\Gamma^*_{m,s,1} = \Gamma_{m,s-1,m-1}$ if $s \ge 2$, $\Gamma^*_{m,1,1} = \Gamma_{m-1,1,1}$, $\Gamma^*_m = \Gamma_{m,1,2}$ and $\Gamma^*_{m,r} = \Gamma_{m,1,1}$.

Let us write \mathcal{M}_{Γ} for \mathcal{M} , when we want to specify which semigroup is under consideration. We have a natural map $j: \mathcal{M}_{\Gamma} \to \mathcal{M}_{\Gamma}$ defined by j(I) =

 $tI + (t^{2\delta-1}) \subseteq k[[t]]/(t^{2\delta})$ for $I \subseteq k[[t]]/(t^{2\delta-2})$. It is clear that j is injective and that Im(j) is the union of all strata $\mathcal{M}(\Delta)$ in \mathcal{M}_{Γ} such that $\Delta = \{b_1, \ldots, b_{\delta}\}$, with $0 < b_1 < \cdots < b_{\delta} = 2\delta - 1$ and $b_1 + c - 1 \in \Delta \cup [2\delta, \infty)$.

Remarks. (1) If Γ is Gorenstein, then $\mathcal{M}(\Delta) \subseteq \text{Im}(j) \Leftrightarrow b_1 > 0 \Leftrightarrow \Delta \neq \Gamma$. So in this case we have $\mathcal{M} = \mathcal{M}(\Gamma) \cup \text{Im}(j)$.

- (2) If $b_1 + c 1 \in \Delta$, then $b_{\delta} = 2\delta 1$.
- (3) In general, $\operatorname{Im}(j)$ is closed in \mathcal{M} and $\mathcal{M} = \operatorname{Im}(j) \cup \bigcup \mathcal{M}(\Delta)$, where we take the union over all Δ such that $b_1 = 0$, $b_1 + c 1 \not\in \Delta \cup [2\delta, \infty)$ or $b_{\delta} < 2\delta 1$.

We start with the study of \mathcal{M} for the semigroups which are lowest in this hierarchy.

- (I) $\Gamma = \Gamma_{m,1,1}$. We have $\delta = m-1$. From the Corollary above we see that $\mathcal{M}(\Delta) = W(\Delta)$ for each Δ . Hence the adjacencies are determined by the remark before Definition 4. We have m-1 irreducible components $\mathcal{M}_1, \ldots, \mathcal{M}_{m-1}$. The intersection of \mathcal{M}_r with the open patch U_P consists of row spaces of matrices $(Z \mid I)$ such that $Z_{ij} = 0$ if i > r or j < r. In particular, $\dim(\mathcal{M}_r) = r(m-r)$ and $\dim(\mathcal{M}) = \max\{r(m-r) \mid r=1,\ldots,m-1\} = [m^2/4]$.
- (II) $\Gamma = \Gamma_{m,1,2} = \{0, m\} \cup [m+2, \infty)$. We have $\delta = m$. Claim: if Δ has the minimal element b_1 , then $c(\Delta) = 1$ if $b_1 + m + 1 \not\in \Delta$ and else $c(\Delta) = 0$. Moreover, in the former case, $\mathcal{M}(\Delta) \cap U_P$ is defined inside $W(\Delta) \cap U_P$ by the single equation $\operatorname{tr}(Z) = 0$. Again the adjacencies are as for the corresponding Schubert cells. This follows from Proposition 7; the equations for $\mathcal{M} \cap U_P$ are: $ZN^jZ = 0$ for $j = 0, 2, \ldots, m-1$.

Let

$$\Delta_b = \{b, b+2, \dots, 2b+1, b+m, b+m+2, \dots, 2m-1\},$$

$$\Delta_b' = \{b, b+2, \dots, 2b, b+m, \dots, 2m-1\},$$

for $b=0,\ldots,m-2$ (notice that $\Delta_0=\Gamma$). Remark that $\Gamma^*=\Gamma_{m,1,1}$. Then

$$\mathcal{M} = \operatorname{Im}(j) \cup \bigcup_{b=0}^{m-2} \overline{\mathcal{M}(\Delta_b)}, \quad \text{with } \operatorname{Im}(j) \cap \overline{\mathcal{M}(\Delta_b)} = \overline{\mathcal{M}(\Delta_b')},$$
$$\dim \mathcal{M}(\Delta_b) = (b+1)(m-b) - b + 1.$$

Especially

dim
$$\mathcal{M}(\Delta_{\lfloor m/2 \rfloor - 1}) = \lfloor m^2/4 \rfloor + 1$$

implies

dim
$$\mathcal{M} = \dim \operatorname{Im}(j) + 1 = [m^2/4] + 1$$
.

Using Remark 3 above, we have to prove that if $W(\Delta) \subseteq \overline{W(\Delta_b)}$ for some Δ with $b = \min(\Delta)$, then $\mathcal{M}(\Delta) \subseteq \overline{\mathcal{M}(\Delta_b)}$. But this is clear, because in U_P , $\mathcal{M}(\Delta)$ and $\mathcal{M}(\Delta_b)$ are defined by the single equation $\operatorname{tr}(Z) = 0$ inside $W(\Delta)$ and $W(\Delta_b)$.

(III)
$$\Gamma = \Gamma_{m,r}$$
. Recall that $\Gamma^* = \Gamma_{m,1,1}$. Let
$$\Delta_b = \{b\} \cup [b+r+1,2b+r] \cup [b+m,b+m+r-1]$$

$$\cup [b+m+r+1,2m-1],$$

$$\Delta_b' = \{b\} \cup [b+r+1,2b+r-1] \cup [b+m,2m-1],$$

for $b = 0, \ldots, m - r - 1$. Then

$$\mathcal{M} = \operatorname{Im}(j) \cup \bigcup_{b=0}^{m-r-1} \overline{\mathcal{M}(\Delta_b)} \quad \text{with } \operatorname{Im}(j) \cap \overline{\mathcal{M}(\Delta_b)} = \overline{\mathcal{M}(\Delta_b')},$$
$$\dim \mathcal{M}(\Delta_b) = (b+1)(m-b-r) + r,$$

i.e.

$$\dim \mathcal{M} = \begin{cases} 3 & \text{if } m = 3, \\ [m^2/4] & \text{if } m \ge 4. \end{cases}$$

Again it is enough to prove that if $W(\Delta) \subseteq \overline{W(\Delta_b)}$ for some Δ with $b = \min(\Delta)$, then $\mathcal{M}(\Delta) \subseteq \overline{\mathcal{M}(\Delta_b)}$. We may assume that $b + m + r \not\in \Delta$ (otherwise $\mathcal{M}(\Delta) = W(\Delta)$). In this case $\mathcal{M}(\Delta) \cap U_P$ is defined in $W(\Delta) \cap U_P$ by the equations $\operatorname{tr}(ZN^j) = 0, \ j = 0, \ldots, r-1$. As in the case $\Gamma_{m,1,2}$ we conclude that $\mathcal{M}(\Delta) \subseteq \overline{\mathcal{M}(\Delta_b)}$.

Using Proposition 7 we see that $\mathcal{M} \cap U_P$ is defined by the equations $ZN^jZ = 0$, $j = 0, \ldots, m-1, j \neq r$. We conclude the following facts:

$$(1) \qquad \{(Z \mid I) \in \mathcal{M} \cap U_P \mid \operatorname{rk}(Z) \leq 1\} = \overline{(\mathcal{M}(\Gamma) \cup \overline{\mathcal{M}(\Delta_{m-r-1})})} \cap U_P$$

(notice that for r = m - 1 we have just one component);

(2) $\overline{\mathcal{M}(\Gamma)} \cap U_P$ is defined by the equations

$$\operatorname{rk}(Z) \le 1$$
,
 $\operatorname{tr}(ZN^{j}) = 0$ $j = 0, ..., m - 1$, $j \ne r$,
 $Z_{ij} = 0$ for $i = r + 2, ..., m$, all j ,

whereas $\overline{\mathcal{M}(\Delta_{m-r-1})} \cap U_P$ is defined by

$$\operatorname{rk}(Z) \le 1$$
,
 $\operatorname{tr}(ZN^{j}) = 0$ $j = 0, ..., m-1, j \ne r$,
 $Z_{ij} = 0$ for $j = 1, ..., m-r-1$, all i ;

(3) if
$$m = 3$$
, then $\mathcal{M} = \overline{\mathcal{M}(\Gamma)} \cup \overline{\mathcal{M}(\Delta_{2-r})}$.

It is enough to prove (1) and (2), because of the fact that in the case m = 3, $rk(Z) \le 1$ follows from $Z^2 = 0$, hence (3) holds. It suffices to prove that

$$\{Z \in \text{Mat}_m(k) \mid \text{rk}(Z) \le 1, ZN^j Z = 0 \text{ for } j = 0, \dots, m-1, j \ne r\}$$

is the union of the two irreducible components

$$\{Z \in \operatorname{Mat}_{m}(k) \mid \operatorname{rk}(Z) \le 1, ZN^{j}Z = 0 \text{ for } j = 0, \dots, m-1, j \ne r,$$

 $Z_{ij} = 0 \text{ for } i = r+2, \dots, m, \text{ all } j\}$

and

$$\{Z \in \operatorname{Mat}_{m}(k) \mid \operatorname{rk}(Z) \le 1, ZN^{j}Z = 0 \text{ for } j = 0, \dots, m-1, j \ne r,$$

 $Z_{ij} = 0 \text{ for } j = 1, \dots, m-r-1, \text{ all } i\}$

because obviously $\mathcal{M}(\Delta_{m-r-1})$ is contained in the first of these components and $\mathcal{M}(\Gamma)$ in the other one, and moreover $ZN^{j}Z = 0 \Leftrightarrow \operatorname{tr}(ZN^{j}) = 0$ (as $\operatorname{rk}(Z) \leq 1$).

Now consider the Segre embedding $\mathcal{P}^{m-1} \times \mathcal{P}^{m-1} \to \mathcal{P}^{m^2-1}$, $(x, y) \mapsto x.^t y$. The image corresponds to all $m \times m$ matrices Z of rank 1. Writing $Z = x.^t y$ we find that $ZN^jZ = 0 \Leftrightarrow {}^t yN^j x = 0$. We will prove that

$$\{(x, y) \in \mathcal{P}^{m-1} \times \mathcal{P}^{m-1} \mid {}^{\mathrm{t}}yN^{j}x = 0 \text{ for } j = 0, \dots, m-1, j \neq r\}$$

is irreducible if r = m - 1 and the union of two components defined as the closure of $y_1 \neq 0$ resp. $x_m \neq 0$ (where $x = (x_1, \dots, x_m), y = (y_1, \dots, y_m)$).

If r = m - 1, we have the following system of equations:

$$\begin{cases} x_1 y_1 + \dots + x_m y_m = 0 \\ x_2 y_1 + \dots + x_m y_{m-1} = 0 \\ \dots \\ x_{m-1} y_1 + x_m y_2 = 0 \end{cases}$$

If r < m - 1, we have

$${}^{\mathrm{t}}yN^{m-1}x = \cdots = {}^{\mathrm{t}}yN^{r+1}x = 0$$
,

so

$$\begin{cases} y_1 x_m = 0 \\ y_1 x_{m-1} + y_2 x_m = 0 \\ \cdots \\ y_1 x_{r+2} + \cdots + y_{m-r-1} x_m = 0 \end{cases}.$$

If $y_1 \neq 0$, then $x_{r+2} = \cdots = x_m = 0$, i.e. $Z_{ij} = 0$ for $i \geq r+2$. If $x_m \neq 0$, then $y_1 = \cdots = y_{m-r-1} = 0$, i.e. $Z_{ij} = 0$ for $j \leq m-r-1$. We finish with the remark that

$$S = \left\{ (x, y) \in \mathcal{P}^r \times \mathcal{P}^{m-1} \mid \sum_{i-j=\nu} x_i y_i = 0 \text{ for } \nu = 0, \dots, r-1 \right\}$$

is irreducible of dimension m-1. Indeed, it is clear that each irreducible component of S has dimension $\geq m-1$. Looking at these equations for fixed y, we see that there is a unique component of S of dimension m-1 projecting birationally onto \mathcal{P}^{m-1} and that the set of points in \mathcal{P}^{m-1} for which the fibre has dimension at least i has codimension i+1. This implies that S has no other component of dimension $\geq m-1$.

If one takes r = 1 in the above description, the results remain valid, and apply to the case of Γ_{m+1} .

Let us consider the special case of $\Gamma_{3,2}$ (the E_6 singularity). Then for Δ we have the possibilities

$$\{0,3,4\}$$
 $\{2,3,5\}$ $\{3,4,5\}$ $\{1,4,5\}$ $\{2,4,5\}$.

 $\mathcal{M} \cap U_P$ is defined by $\operatorname{rk}(Z) \leq 1$, $\operatorname{tr}(Z) = 0 = \operatorname{tr}(ZN)$, i.e. by

$$\operatorname{rank}\begin{pmatrix} Z_{11} & Z_{12} & Z_{13} \\ Z_{21} & Z_{22} & Z_{23} \\ Z_{31} & -Z_{21} & -Z_{11} - Z_{22} \end{pmatrix} \leq 1.$$

One can prove that this defines a threefold with a singular line with transverse singularity of type A_2 . For the different Δ we get for $\mathcal{M}(\Delta) \cap U_P$ the following:

$$\begin{array}{ll} \Delta & \mathcal{M}(\Delta) \cap U_P \;, \\ \{3,4,5\} & \{(0 \mid I)\} \;, \\ \{2,3,5\} & \left\{\begin{pmatrix} 0 & 0 & u \\ 0 & 0 & v \\ 0 & 0 & 0 \end{pmatrix} : v \neq 0 \right\}, \\ \{1,4,5\} & \left\{\begin{pmatrix} 0 & v & u \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : v \neq 0 \right\}, \\ \{2,4,5\} & \left\{\begin{pmatrix} 0 & 0 & u \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : u \neq 0 \right\}. \end{array}$$

(IV) Let $\Gamma = \Gamma_m$. Here $\Gamma^* = \Gamma_{m,1,2}$. As Γ is Gorenstein, $\mathcal{M} = \operatorname{Im}(j) \cup \mathcal{M}(\Gamma)$ and

$$\dim \mathcal{M} = \begin{cases} 4 & \text{if } m = 3, \\ [m^2/4] + 1 & \text{if } m \ge 4. \end{cases}$$

Using Proposition 7 we see that $\mathcal{M} \cap U_P$ is defined by the equations

$$Z^{t}NZ = [Z, N^{m}]$$
 and $ZN^{j}Z = 0$ for $j = 1, ..., m-1$.

As before, we are interested in characterizing $\overline{\mathcal{M}(\Gamma)}$. The situation is not as easy as before. It is no longer true that $\overline{\mathcal{M}(\Gamma)}$ is a union of $\mathcal{M}(\Delta)$'s (as is the case for the corresponding Schubert cells): if m = 4, then $(t^2, t^4) \in \overline{\mathcal{M}(\Gamma)} \cap \mathcal{M}(\Delta)$ with $\Delta = \{2, 4, 6, 8, 9\}$. Obviously $W(\Delta) \subseteq \overline{W(\Gamma)}$. On the other hand, dim $\mathcal{M}(\Delta) = \dim W(\Delta) - 1 = 5 = \dim \mathcal{M}(\Gamma)$, hence $\mathcal{M}(\Delta)$ is not contained in $\overline{\mathcal{M}(\Gamma)}$.

For m=3 (the singularity E_8) one can check by explicit computation that $\mathcal{M} = \overline{\mathcal{M}(\Gamma)}$. We omit the details. We just mention that $\operatorname{Sing}(\mathcal{M})$ is the union of the closures of $\mathcal{M}(\{2, 5, 6, 7\})$ and $\mathcal{M}(\{3, 4, 6, 7\})$ with transverse types A_3 resp. D_4 .

(V) $\Gamma = \Gamma_{2,s,1}$ (the singularity of type A_{2s}). Then Γ is Gorenstein and $\Gamma^* = \Gamma_{2,s-1,1}$ (if $s \ge 2$). Hence again $\mathcal{M} = \operatorname{Im}(j) \cup \mathcal{M}(\Gamma)$ and dim $\mathcal{M} = s$ by induction on s. Furthermore, $\mathcal{M}(\Gamma)$ is dense in \mathcal{M} and $\operatorname{Im}(j) = \bigcup_{x=1}^{s} \mathcal{M}(\langle x, 2s+1-x \rangle)$ (here $\langle x, y \rangle$ denotes the semigroup generated by x and y). With Proposition 7 we see that $\mathcal{M} \cap U_P$ has equations $Z({}^tN)^{s-2}Z = [Z, N^2]$. For small s we get:

$$s=1: \mathcal{M} \cong \mathcal{P}^{1}(k)$$

s = 2: M is a quadratic cone in $\mathcal{P}^3(k)$,

s = 3: \mathcal{M} is a threefold with a singular line with transverse singularity of type A_2 . At the point P, \mathcal{M} has embedding dimension 5.

Remark. Consider a ring A and A-modules E with a resolution of the form

$$0 \rightarrow A \rightarrow A^n \rightarrow E \rightarrow 0$$
.

Let us call such modules 1-n A-modules. The isomorphism classes of 1-n A-modules are in 1-1 correspondence with their Fitting ideals, i.e. with ideals in A which are generated by at most n elements (see [1, p. 146]). Hence for A the local ring of a reduced and irreducible curve singularity, the isomorphism classes of such modules are parametrized by open subsets of \mathcal{M} (and by the whole of \mathcal{M} if n is large enough).

Remark. There is some more structure on \mathcal{M} which we have not exploited yet. First, we have the residue pairing R on $k[[t]]/(t^{2\delta})$. If I is an A-submodule of $k[[t]]/(t^{2\delta})$ of length δ , then also $I^{\perp} = \{x \in k[[t]]/(t^{2\delta}) \mid R(x,I) = 0\}$ is such an A-submodule. This defines an involution on \mathcal{M} . In the neighborhood U_p it is given by $Z \mapsto -J^t Z J$, where $J_{ij} = 1$ if $i + j = \delta - 1$ and 0 else. The stratum $\mathcal{M}(\Delta)$ is mapped to $\mathcal{M}(\Delta')$, where $\Delta' = [0, 2\delta - 1] \setminus (2\delta - 1 - \Delta)$. In particular, $\mathcal{M}(\Gamma)$ is

stable under this involution $\Leftrightarrow \Gamma$ is Gorenstein. Hence, in the non-Gorenstein case, $\mathcal{M}(\Gamma)$ cannot be dense in \mathcal{M} , as there exists another stratum with the same dimension.

In the monomial case, we have an action of k^* on \mathcal{M} , induced by the k^* -action on A, $(\lambda f)(t) = f(\lambda t)$ for $\lambda \in k^*$. There is a unique fixed point in each stratum, the zero point in the corresponding Schubert cell. In particular, the equations for $\mathcal{M} \cap U_P$ are quasi-homogeneous with weight $(Z_{ii}) = \delta + i - j$.

References

- [1] C. Gibson, Singular Points of Smooth Mappings (Pitman, London, 1979).
- [2] M. Giusti, Classification des singularités isolées simples d'intersections complètes, Proc. Sympos. Pure Math. 40 (1983) Part 1, 457-494.
- [3] Ph. Griffiths and J. Harris. Principles of Algebraic Geometry (Wiley, New York, 1978).
- [4] A. Grothendieck, Fondements de la Géométrie Algébrique, Séminaire Bourbaki 1957-1962, Secrétariat Math. Paris 1962.
- [5] A. Iarrobino, Punctual Hilbert schemes, Mem. Amer. Math. Soc. 188 (1977).
- [6] J.-P. Serre, Groupes Algébriques et Corps de Classes (Hermann, Paris, 1959).