
THE USE OF BAD PRIMES IN RATIONAL

RECONSTRUCTION

JANKO BÖHM, WOLFRAM DECKER, CLAUS FIEKER, AND GERHARD PFISTER

Abstract. A standard method for finding a rational number from its
values modulo a collection of primes is to determine its value modulo
the product of the primes via Chinese remaindering, and then use Farey
sequences for rational reconstruction. Successively enlarging the set
of primes if needed, this method is guaranteed to work if we restrict
ourselves to “good” primes. Depending on the particular application,
however, there may be no efficient way of identifying good primes.

In the algebraic and geometric applications we have in mind, the
final result consists of an a priori unknown ideal (or module) which is
found via a construction yielding the (reduced) Gröbner basis of the
ideal. In this context, we discuss a general setup for modular and, thus,
potentially parallel algorithms which can handle “bad” primes. A key
new ingredient is an error tolerant algorithm for rational reconstruction
via Gaussian reduction.

1. Introduction

Rational reconstruction, in conjunction with Chinese remaindering, pro-
vides a standard way of obtaining results over the rational numbers from
results in characteristic p > 0. This is of particular use in the design of
parallel algorithms and in situations where the growth of intermediate re-
sults matters. Classical applications are the computation of polynomial
greatest common divisors (see [Wang 1981, Encarnación 1995]) and Gröbner
bases (see [Arnold 2003]). The goal of the modular Gröbner basis algo-
rithm presented in [Arnold 2003] is to compute the Gröbner basis of an
ideal already known. That is, the ideal is given by a finite set of gener-
ators. In contrast, there are constructions which yield a priori unknown
ideals by finding their (reduced) Gröbner bases. Prominent examples are
the computation of normalization and the computation of adjoint curves (see
[Böhm et al. 2013a, Böhm et al. 2013b]). Here, for the purpose of modu-
larization, we expect that the respective construction applies to a given set
of input data in characteristic zero as well as to the modular values of the
input data. In such a situation, problems may arise through the presence of
“bad” primes of different types.

Usually, a first step to resolve these problems is to show that the bad
primes are “rare”. Then the different types of bad primes are addressed. For
example, a prime for which it is a priori clear that the modular construction
does not work will simply be rejected. Depending on the application, how-
ever, there may be bad primes which can only be detected a posteriori, that

Date: September 25, 2013.
Key words and phrases. rational reconstruction, Farey map.

1

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 2

is, after the true characteristic zero result has been found. For such an ap-
plication, we must ensure that the reconstruction algorithm used will return
the correct rational number even in the presence of bad primes. In this note,
we derive such an algorithm. Based on this algorithm, we describe a general
scheme for computing ideals (or modules) in the algebraic and geometric
applications we have in mind, addressing in particular how various types of
bad primes are handled. This scheme has already been successfully used in
the aforementioned papers [Böhm et al. 2013a, Böhm et al. 2013b].

To begin, in Section 2, we recall the classical approach to rational re-
construction which is based on the lifting of modular to rational results by
computing Farey preimages via Euclidean division with remainder. Section
3 contains a short discussion of the different types of bad primes. In Section
4, we present the new lifting algorithm which is based on Gaussian reduction,
and discuss the resulting error tolerant reconstruction algorithm. Finally,
in Section 5, we present our general scheme for applications in commutative
algebra and algebraic geometry. We finish with an explicit example with a
bad prime, which can only be detected a posteriori.

To summarize, we focus on the presentation of a general setup for modular
computations based on error tolerant rational reconstruction. We do not
discuss implementation details or performance questions. In fact, for the
applications we have in mind, the time used for rational reconstruction can
be neglected in view of the more involved parts of the respective algorithms.

2. Reconstruction of a single rational number

We describe the reconstruction of a single unknown number x ∈ Q. In
practical applications, this number will be a coefficient of an object to be
computed in characteristic 0 (for example, a vector, polynomial, or Gröbner
basis). Here, we suppose that we are able to verify the correctness of the
computed object (in some applications by a comparably easy calculation, in
others by a bound on the size of the coefficients).

We use the following notation: Given an integer N ≥ 2 and a number
x = a

b ∈ Q with gcd(a, b) = 1 and gcd(b,N) = 1, the value of x modulo N is

xN :=
(a
b

)
N

:= (a+NZ)(b+NZ)−1 ∈ Z/NZ.

We also write x ≡ r mod N if r ∈ Z represents xN .
In what follows, we suppose that in the context of some application, we

are given an algorithm which computes the value of the unknown number
x ∈ Q modulo any prime p, possibly rejecting the prime. For reference
purposes, we formulate this in the black box type Algorithm 1.

Algorithm 1 Black Box Algorithm x mod p

Input: A prime number p.
Output: false or an integer 0 ≤ s ≤ p− 1 such that x ≡ s mod p.

Assumption: There are only finitely many primes p where the return value
is false.

Once the values of x modulo each prime in a sufficiently large set of primes
P have been computed, we may find x via a lifting procedure consisting of

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 3

two steps: First, use Chinese remaindering to obtain the value of x modulo
the product N :=

∏
p∈P p. Second, compute the preimage of this value

under the Farey rational map which is defined as follows.
For an integer B > 0, set

FB =
{a
b
∈ Q | gcd(a, b) = 1, 0 ≤ a ≤ B, 0 < |b| ≤ B

}
,

and for m ∈ Z/NZ, let

QN,m =
{a
b
∈ Q | gcd(a, b) = 1, gcd(b,N) = 1,

(a
b

)
N

= m
}

be the set of rational numbers whose value modulo N is m. Then QN =⋃N−1
m=0QN,m is a subring of Q with identity. If B is an integer with B ≤√
(N − 1)/2, then the Farey map

ϕB,N : FB ∩QN → Z/NZ,
a

b
7→
(a
b

)
N
,

is well–defined and injective (but typically not surjective). To obtain the
injective map with the largest possible image for a given N , we tacitly
suppose in what follows that B is chosen as large as possible for N .

Algorithm 2 below will return ϕ−1B,N (r) if r is in the image of the Farey

map, and false otherwise (see, for example, [Kornerup and Gregory 1983,
Wang 1981, Wang et al. 1982, Collins et al. 1994]).

Algorithm 2 Farey Preimage

Input: Integers N ≥ 2 and 0 ≤ r ≤ N − 1.
Output: false or a rational number a

b with gcd(a, b) = 1, gcd(b,N) = 1,
a
b ≡ r mod N , 0 ≤ a ≤

√
(N − 1)/2, 0 < |b| ≤

√
(N − 1)/2.

1: (a0, b0) := (N, 0), (a1, b1) := (r, 1), i := −1
2: while 2a2i+2 > N − 1 do
3: i := i+ 1
4: divide ai by ai+1 to find qi, ai+2, bi+2 such that

(ai, bi) = qi(ai+1, bi+1) + (ai+2, bi+2)

and 0 ≤ ai+2 < ai+1

5: if 2b2i+2 ≤ N − 1 and gcd(ai+2, bi+2) = 1 then

6: return ai+2

bi+2

7: return false

Combining Algorithm 2 with Chinese remaindering as indicated above,
we get the classical reconstruction Algorithm 3.

Note that Algorithm 3 works correctly since we suppose that our Black
Box Algorithm 1 either returns false or a correct answer. For most ap-
plications, however, there exist primes p which are bad in the sense that
the algorithm under consideration returns a wrong answer modulo p which
can only be detected a posteriori. In this note, we show that if there are
only finitely many such primes, they can just be ignored. More precisely,
we show that in Algorithm 3, we may call the black box type Algorithm 4
below instead of Algorithm 1, provided we then call the lifting Algorithm 5
from Section 4 instead of Algorithm 2.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 4

Algorithm 3 Reconstruction of a Rational Number

Input: Algorithm 1 and a way to verify that a computed number equals x.
Output: x.

1: N := 1, r := 0
2: p := 2
3: loop
4: let s be the return value of Algorithm 1 applied to p
5: if s = false then
6: continue with Step 13
7: find 1 = eN + fp and set r := rfp+ seN , N := Np
8: let y be the return value of Algorithm 2 applied to N and r
9: if y = false then

10: continue with step 13
11: if y = x then
12: return y
13: p :=NextPrime(p)

Algorithm 4 Black Box Algorithm x mod p With Errors

Input: A prime number p.
Output: false or an integer 0 ≤ s ≤ p− 1.

Assumption: There are only finitely many primes p where either the return
value is false or x 6≡ s mod p.

3. Types of bad primes for modular algorithms

In this section, we suppose that we are given an algorithm implementing
a construction which applies in any characteristic, together with a set of
input data over the rationals.

We call a prime p good for the given algorithm and input data if the
algorithm applied to the modulo p values of the input returns the reduction
of the characteristic zero result. Otherwise, the prime is called bad. In
what follows, to make the discussion in the subsequent sections more clear,
we specify various types of bad primes and describe their influence on the
design of algorithms.

A prime p is bad of type-1 if the modulo p reduction of the characteristic
zero input is either not defined or for obvious reasons not a valid input for
the algorithm. For example, if the input is a polynomial, type-1 primes
arise from prime factors of a denominator of a coefficient. Type-1 primes
are harmless with regard to rational reconstruction as they can be detected
and, thus, rejected from the beginning, at no additional cost.

For a bad prime p of type-2, it turns out only in the course of the con-
struction that the computation in characteristic p cannot be carried through.
For example, an algorithm for inverting a matrix will not work for a prime
dividing the determinant. Since, typically, the determinant is not known,
the failure will only turn out eventually. Type-2 primes waste computation
time, but with regard to rational reconstruction they are detected before
the Chinese remainder step and do, thus, not influence the final lifting.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 5

Consider an invariant whose characteristic zero value coincides with the
characteristic p value for all good primes p, and suppose that this value is
known a priori. Moreover assume that the algorithm computes this invariant
at some point of the construction. Then a prime p is bad of type-3 if the
value in characteristic p differs from the expected one. Like type-2 primes,
bad primes of type-3 waste computation time for computing modular results
which will then be discarded, but do not influence the final lifting. Examples
of possible invariants are the dimension or the degree or of a variety. Note
that the computation of an invariant for detecting a type-3 prime may be
expensive. Dropping the computation of the invariant in the design of the
algorithm, if possible, will turn a type-3 prime into a prime of different type.
This includes primes of type-5 below.

Now suppose that some invariant associated to the modular output is
computed by the algorithm, and that the a priori unknown characteristic
zero value of this invariant coincides with the characteristic p value for all
good primes p. Then a prime is bad of type-4 if this invariant does not
have the correct value. Such a prime cannot be detected a priori. However,
if there are only finitely many such primes, they can be eliminated with
arbitrarily high probability by a majority vote over several primes. Type-4
bad primes may occur, for example, in modular Gröbner basis computations,
where we use the leading ideal as an invariant for voting. Handling type-
4 primes is expensive not only since we waste computation time, but also
since we have to store the modular results for the majority vote. Again,
these primes are eventually detected and, hence do not enter the Chinese
remainder step.

Bad primes other than those discussed so far are called bad primes of
type-5. This includes primes which cannot be discovered by any known
means without knowledge of the characteristic zero result. Example 5.12
below shows that type-5 bad primes indeed occur in algebraic geometry.
Type-5 bad primes enter the Chinese remainder step and are, thus, present
during the final lifting process. Considering Algorithm 3, calling black box
Algorithm 4 instead of Algorithm 1, we will be in a situation where always
either Algorithm 2 or the comparison x = y will return false. As a result,
the algorithm will not terminate.

Due to their nature, bad primes create hardly ever a practical problem.
Typically, there are only very few bad primes for a given instance, and these
will not be encountered if the primes used are chosen at random. On the
other hand, for some of the modern algorithms in commutative algebra, we
have no theoretical argument eliminating type-5 bad primes. Hence, we need
error tolerant reconstruction, which ensures termination provided there are
only finitely many bad primes.

4. Reconstruction with bad primes

To design our error tolerant reconstruction algorithm, we turn rational
reconstruction into a lattice problem.

To begin with, given an integer N ≥ 2, we define the subset CN ⊆ Z/NZ
of elements applied to which Algorithm 5 below will return a rational number
(and not false). Let CN be the set of all r ∈ Z/NZ such that there are

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 6

integers u, v ∈ Z with u ≥ 0, v 6= 0, and gcd(u, v) = 1 which satisfy the
following condition:

there is an integer q ≥ 1 with q|N and such that

u2 + v2 < N
q2

and u ≡ vr mod N
q .

(1)

In Lemma 4.2 below, we will prove that the rational number u
v = uq

vq ∈ Q
is uniquely determined by condition (1). Hence, we have a well–defined map

ψN : CN → Q.

Note that the image of the Farey map ϕB,N , with B =
⌊√

(N − 1)/2
⌋
, is

contained in CN : If r ∈ im(ϕB,N), then ϕ−1B,N (r) satisfies Condition (1) with

q = 1. Furthermore, ϕ−1B,N (r) = ψN (r).

Typically, the inclusion im(ϕB,N) ⊆ CN is strict:

Example 4.1. For N = 2 · 13, we have B = 3, hence

im(ϕB,N) =
{

0, 1, 2, 3, 8, 9, 17, 18, 23, 24, 25
}

,

and the rational numbers which can be reconstructed by Algorithm 2 are
the elements of

FB ∩QN =

{
0,±1,±2,±3,±1

3
,±2

3

}
.

On the other hand,

CN = {r | 0 ≤ r ≤ 25, r 6= 5, 21} ,
and Algorithm 5 will reconstruct the rational numbers in

ψN (CN) =

{
0,±1,±2,±3,±4,±1

2
,±1

3
,±2

3
,±4

3

}
.

Note that the denominator of 1
2 = ψN (7) = ψN (20) is not coprime to N . In

both cases, q = 2: We have 1 ≡ 2 · 7 mod 13 and 1 ≡ 2 · 20 mod 13.

Now, fix 0 ≤ r ≤ N − 1 such that r ∈ CN , and consider the lattice
Λ = ΛN,r := 〈(N, 0), (r, 1)〉 of discriminant N . Let u, v, q correspond to r as
in Condition (1). Then (uq, vq) ∈ ΛN,r.

Lemma 4.2. With notation as above, all (x, y) ∈ Λ with x2 + y2 < N are
collinear. That is, they define the same rational number x

y .

Proof. Let λ = (x, y), µ = (c, d) ∈ Λ be vectors with x2 + y2, c2 + d2 < N .
Then yµ − dλ = (yc − xd, 0) ∈ Λ, so N |(yc − xd). Since |yc − xd| < N by
Cauchy–Schwarz, we get yc = xd, as claimed. �

Next, consider integers N ′,M ≥ 2, with gcd(M,N ′) = 1, and such that
N = N ′M . Let a ≥ 0, b 6= 0 be integers such that gcd(b,N ′) = 1, and let
a ≡ bs mod N ′, with 0 ≤ s ≤ N ′− 1. Let 0 ≤ t ≤M − 1 be another integer,
and let 0 ≤ r ≤ N −1 be the Chinese remainder lift satisfying r ≡ s mod N ′

and r ≡ t mod M . In practical applications, we think of N ′ and M as
the product of good and bad primes, respectively. By the following lemma,
Algorithm 5 below applied to N and r will return a/b independently of the
possibly “wrong result” t, provided that M � N ′.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 7

Lemma 4.3. With notation as above, suppose that (a2+b2)M < N ′. Then,
for all (x, y) ∈ Λ = 〈(N, 0), (r, 1)〉 with (x2 + y2) < N , we have x

y = a
b .

Furthermore, if gcd(a, b) = 1 and (x, y) is a shortest nonzero vector in Λ,
we also have gcd(x, y)|M .

Proof. From a ≡ bs mod N ′, we get a − bs = k1N
′ for some k1. Moreover,

s ≡ r mod N ′ gives r = s+k2N
′. Now (aM, bM)−bM(r, 1) = (aM−brM, 0)

and aM − brM = M(a− br) = M(a− b(s+ k2N
′)) = M(a− bs)− k2bN =

k1N − k2bN , thus (aM, bM) ∈ Λ. Since (a2 + b2)M < N ′, Lemma 4.2 gives
a
b = aM

bM = x
y for all (x, y) ∈ Λ such that (x2 + y2) < N .

For the second statement, write A := (aM, bM) and X := (x, y). By
Lemma 4.2, there is a λ = s

t ∈ Q, with gcd(s, t) = 1, and such that λX = A.
The Euclidean Algorithm gives integers e, f with et+ sf = 1, hence

X

t
= (et+ sf)

X

t
= eX + fA ∈ Λ.

Since X is a shortest vector in the lattice, it follows that t = ±1, hence
A = ±sX. Since gcd(a, b) = 1, we conclude that gcd(x, y)|M . �

The use of Lemma 4.3 is twofold. From a theoretical point of view, it
allows us to ignore type-5 bad primes in the design of modular algorithms
– as long as there are only finitely many of them. This makes the design of
modular algorithms much simpler. From a practical point of view, it allows
us to avoid expensive computations of invariants to eliminate bad primes
of any type. Moreover, factorizing the gcd of the components of a shortest
lattice element can help us to identify bad primes (see Example 4.5 below).

Lemma 4.3 yields the correctness of both the new lifting Algorithm 5
and the resulting reconstruction Algorithm 3, calling black box Algorithm
4 instead of Algorithm 1, and lifting Algorithm 5 instead of Algorithm 2.
In applications, the termination can be based either on the knowledge of
a priori bounds on the height of x

y or on an a posteriori verification of the

result. It should be mentioned that both methods are used: some problems
allow for easy verification, while others yield good bounds.

Remark 4.4. Algorithm 5, which is just a special case of Gaussian reduction,
will always find a shortest vector in the lattice generated by (N, 0) and (r, 1).
Moreover, bi 6= 0 for all i > 0 since in every step the vector (ai, bi) gets
shorter and, hence, cannot be equal to (N, 0).

Even though Algorithm 5 looks more complicated than Algorithm 2, the
bit–complexity of both algorithms is the same: O(log2N). See the discussion
in [Nguyen el al. 2009, Section 3.3].

Example 4.5. We reconstruct the rational number 13
12 using the modulus

N = 38885 = 5 · 7 · 11 · 101.

With notation as above, a = 13, b = 12, r = 22684, and the Farey bound is

B =
⌊√

(N − 1)/2
⌋

= 139.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 8

Algorithm 5 Error Tolerant Lifting

Input: Integers N ≥ 2 and 0 ≤ r ≤ N − 1.
Output: ψN (r) if r ∈ CN and false otherwise.

1: (a0, b0) := (N, 0), (a1, b1) := (r, 1), i := −1
2: repeat
3: i = i+ 1
4: set

qi =

⌊
〈(ai, bi), (ai+1, bi+1)〉
‖(ai+1, bi+1)‖2

⌉
5: set

(ai+2, bi+2) = (ai, bi)− qi(ai+1, bi+1)

6: until a2i+2 + b2i+2 ≥ a2i+1 + b2i+1

7: if a2i+1 + b2i+1 < N then

8: return ai+1

bi+1

9: else
10: return false

Algorithm 2 applied to this data will correctly return 13
12 . Similarly for

Algorithm 5 which generates the sequence

(38885, 0) = 2 · (22684, 1) + (−6483,−2),

(22684, 1) = −3 · (−6483,−2) + (3235,−5),

(−6483,−2) = 2 · (3235,−5) + (−13,−12),

(3235,−5) = −134 · (−13,−12) + (1493,−1613).

Now, bad primes will enter the picture. Consider the Chinese remainder
isomorphism

χ : Z/5Z× Z/7Z× Z/11Z× Z/101Z→ Z/38885Z.

The preimage of r =
(
13
12

)
N

is

χ−1(r) = (4, 4, 2, 60).

That is, r is the solution to the simultaneous congruences

x ≡ 4 mod 5

x ≡ 4 mod 7

x ≡ 2 mod 11

x ≡ 60 mod 101.

If we make 101 a bad prime by changing the congruence x ≡ 60 mod 101 to
x ≡ 61 mod 101, we obtain

χ(4, 4, 2, 61) = 16524.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 9

Algorithm 5 then computes

(38885, 0) = 2 · (16524, 1) + (5837,−2),

(16524, 1) = 3 · (5837,−2) + (−987, 7),

(5837,−2) = 6 · (−987, 7) + (−85, 40),

(−987, 7) = 10 · (−85, 40) + (−137, 393).

Hence the output 85
−40 = 17

8 6=
13
12 is not the desired lift. The reason for this

is that 101 is not small enough compared to its cofactor in N . Algorithm
2, on the other hand, returns false since the reduction process will also
terminate with (85,−40) and these numbers are not coprime. Note that
Algorithm 6 in Section 5 below will detect an incorrect lift either by the
procedure pTest (with a very high probability) or the subsequent verifica-
tion step over the rationals (carried through only if pTest returns true).
As a consequence, in both cases, the set of primes will be enlarged (without
discarding previous results). Eventually, the good primes will outweigh the
bad ones and Algorithm 5, when called from Algorithm 6, will return the
correct lift.

For example, replace the congruence x ≡ 4 mod 7 by x ≡ 2 mod 7, so that

χ(4, 2, 2, 60) = 464.

Then Algorithm 5 yields

(38885, 0) = 84 · (464, 1) + (−91,−84),

(464, 1) = −3 · (−91,−84) + (191,−251),

and terminates with the correct lift
91

84
=

13

12
.

Algorithm 2, on the other hand, will again return false since the reduction
also terminates with the numbers (91, 84) which are not coprime.

Since

(132 + 122) · 7 < 5 · 11 · 101,

Lemma 4.3 shows that 7 is small enough compared to its cofactor in N .
Hence, the wrong result 2 modulo the bad prime 7 does not influence the
result of the lift. In fact, all other possible congruences modulo 7 will
lead to the same output. Note that the bad prime can be detected as
gcd(91, 84, N) = 7. Furthermore, note that in the example the lifting pro-
cess involving the bad prime requires fewer steps than the process relying
on good primes only.

5. A setup for applications in algebra and geometry

In this section, we discuss a general computational setup for applica-
tions in commutative algebra and algebraic geometry which requires er-
ror tolerance. A setup of this type occurs, for example, when computing
normalization or when computing adjoint curves. See [Böhm et al. 2013a,
Böhm et al. 2013b] and Example 5.11 below.

To begin, fix a global monomial ordering > on the monoid of monomials in
the variables X = {X1, . . . , Xn}. Consider the polynomial rings W = Q[X]

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 10

and, given an integer N ≥ 2, WN = (Z/NZ)[X]. If T ⊆ W or T ⊆ WN

is a set of polynomials, then denote by LM(T) := {LM(f) | f ∈ T} its set
of leading monomials. If f ∈ W is a polynomial such that N is coprime to
any denominator of a coefficient of f , then its reduction modulo N is the
polynomial fN ∈WN obtained by mapping each coefficient x of f to xN as
described in Section 2. If H = {h1, . . . , hs} ⊂W is a Gröbner basis such that
N is coprime to any denominator in any hi, set HN = {(h1)N , . . . , (hs)N}.
If J ⊆W is any ideal, its reduction modulo N is the ideal

JN = 〈fN | f ∈ J ∩ Z[X]〉 ⊆WN .

Notation: From now on, let I ⊂W be a fixed ideal.

Remark 5.1. For practical purposes, I is given by a set of generators. Fix
one such set f1, . . . , fr. Then we realize the reduction of I modulo a prime
p via the following equality which holds for all but finitely many primes p:

Ip = 〈(f1)p, ..., (fr)p〉 ⊆Wp.

More precisely, when running the modular Algorithm 6 described below, we
incorporate the following: if one of the (fi)p is not defined (that is, p is
bad of type-1 for the given set of generators), we reject the prime1. If all
(fi)p are defined, we work with the ideal on the right hand side instead of
Ip. Note that is possible to detect primes with Ip 6= 〈(f1)p, ..., (fr)p〉 (which
are hence of type-3). Indeed, Ip can be found using Gröbner bases (see
[Adams and Loustaunau 1994, Cor. 4.4.5] and [Arnold 2003, Lem. 6.1]).
However, we suggest to skip this computation: finitely many bad primes
will not influence the result if we use error tolerant rational reconstruction
as in Algorithm 5.

To simplify our presentation in what follows, we will systematically ig-
nore the primes discussed in Remark 5.1. We suppose that we are given a
construction which associates to I a uniquely determined ideal U(0) ⊆ W ,
and to each reduction Ip, with p a prime number, a uniquely determined
ideal U(p) ⊆Wp, where we make the following assumption:

Assumption: We ask that U(0)p = U(p) for all but finitely many p.

We write G(0) for the uniquely determined reduced Gröbner basis of U(0),
and G(p) for that of U(p). In the applications we have in mind, we wish
to construct the unknown ideal U(0) from a collection of its characteristic
p counterparts U(p). Technically, given a finite set of primes P, we wish to
construct G(0) by computing the G(p), p ∈ P, and lifting the G(p) coef-
ficientwise to characteristic zero. Here, to identify Gröbner basis elements
corresponding to each other, we require that LM(G(p)) = LM(G(q)) for all
p, q ∈ P. This leads to condition (1b) below:

Definition 5.2. With notation as above, we define:

(1) A prime number p is called lucky if the following hold:
(a) U(0)p = U(p) and
(b) LM(G(0)) = LM(G(p)).

1Note that rescaling to integer coefficients is not helpful: reducing the rescaled gener-
ators may yield the wrong leading ideal. See Remark 5.3.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 11

Otherwise p is called unlucky.
(2) If P is a finite set of primes, set

N ′ =
∏

p∈P lucky

p and M =
∏

p∈P unlucky

p.

Then P is called sufficiently large if

N ′ > (a2 + b2) ·M
for all coefficients a

b of polynomials in G(0) (assume gcd(a, b) = 1).

Note that a prime p violating condition (1a) is of type-5, while (1b) is a
type-4 condition.

Remark 5.3. A modular algorithm for the fundamental task of computing
Gröbner bases is presented in [Arnold 2003] and [Idrees et al. 2011]. In
contrast to our situation here, where we wish to find the ideal U(0) by
computing its reduced Gröbner basisG(0), Arnold’s algorithm starts from an
ideal which is already given. If p is a prime number, J ⊆W is an ideal, H(0)
is the reduced Gröbner basis of J , and H(p) is the reduced Gröbner basis of
Jp, then p is lucky for J in the sense of Arnold if LM(H(0)) = LM(H(p)).
It is shown in [Arnold 2003, Thm. 5.12 and 6.2] that if J is homogeneous
and p is lucky for J in this sense, then H(0)p is well–defined and equal
to H(p). Furthermore, by [Arnold 2003, Cor. 5.4 and Thm. 5.13], all but
finitely many primes are Arnold–lucky for a homogeneous J . Using weighted
homogenization as in the proof of [Idrees et al. 2011, Thm. 2.4], one shows
that these results also hold true in the non–homogeneous setup.

Example 5.4. Consider the ideal J = 〈∂f∂x ,
∂f
∂y 〉, where f = x5 + y11 + xy9 +

x3y9. The leading terms of the lexicographical Gröbner basis with integral
coprime coefficients are as follows:

264627y39 + . . . ,

12103947791971846719838321886393392913750065060875xy8 − . . . ,
40754032969602177507873137664624218564815033875x4 +

Hence, the Arnold unlucky primes for J are

3, 5, 11, 809, 65179, 531264751, 431051934846786628615463393.

With respect to our notion of lucky as introduced in Definition 5.2.(1),
we first observe:

Lemma 5.5. The set of unlucky primes is finite.

Proof. By our general assumption, U(0)p = U(p) for all but finitely many
primes p. Given a prime p such that U(0)p = U(p), we have LM(G(0)) =
LM(G(p)) if p does not divide the denominator of any coefficient of any
polynomial occurring when testing whether G(0) is a Gröbner basis using
Buchberger’s criterion. The result follows. �

The type-5 condition (1a) cannot be checked a priori: We compute G(p)
and, thus, U(p) on our way, but U(0)p is only known to us after G(0) and,
thus, U(0) have been found. However, this is not a problem if we apply

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 12

error tolerant rational reconstruction: the finitely many bad primes leading
to an ideal U(p) different from U(0)p will not influence the final result:

Lemma 5.6. If P is a sufficiently large set of primes satisfying condition
(1b), then the reduced Gröbner bases G(p), p ∈ P, lift via Algorithm 5 to
the reduced Gröbner basis G(0).

Proof. If a prime p satisfies (1b), then p is Arnold–lucky for U(0). Hence,
as remarked above, G(0)p = G(p). Since P is sufficiently large, by Lemma
4.3, the coefficients of the Chinese remainder lift G(N), N =

∏
p∈P , have a

lift to characteristic zero. By the uniqueness statement of Lemma 4.3, this
lift coincides with G(0).

�

Lemma 5.5 guarantees, in particular, that a sufficiently large set P of
primes satisfying condition (1b) exists. So from a theoretical point of view,
the idea of finding G(0) is now as follows: Consider such a set P, compute
the reduced Gröbner bases G(p), p ∈ P, and lift the results to G(0) as
described above.

From a practical point of view, we face the problem that we cannot test a
priori whether P is sufficiently large and satisfies condition (1b). However,
to remedy the situation, we can proceed in the following randomized way:

First, fix an integer t ≥ 1 and choose a set of t primes P at random.
Second, compute GP = {G(p) | p ∈ P}, and use a majority vote with
respect to the type-4 condition (1b):

deleteByMajorityVote: Define an equivalence relation on P by setting
p ∼ q :⇐⇒ LM(G(p)) = LM(G(q)). Then replace P by an equivalence class
of largest cardinality2, and change GP accordingly.

Now all Gröbner bases in GP have the same leading ideal. Hence, we can
lift the Gröbner bases in GP to a set of polynomials G ⊆ W . Furthermore,
if P is suffciently large, all primes in P satisfy (1b). However, since we do
not know whether P is sufficiently large, a final verification in characteristic
zero is needed. As this may be expensive, especially if G 6= G(0), we first
perform a test in positive characteristic:

pTest: Randomly choose a prime number p /∈ P such that p does not divide
the numerator or denominator of any coefficient occurring in a polynomial
in G or {f1, . . . , fr}. Return true if Gp = G(p), and false otherwise.

If pTest returns false, then P is not sufficiently large or the extra prime
chosen in pTest is bad. In this case, we enlarge the set P by t primes not
used so far, and repeat the whole process. If pTest returns true, however,
then most likely G = G(0). Hence, it makes sense to verify the result over
the rationals. If the verification fails, we enlarge P and repeat the process.

We summarize this approach in Algorithm 6 (recall that we ignore the
primes from Remark 5.1 in our presentation).

Remark 5.7. If Algorithm 6 requires more than one round of the loop, we
have to use a weighted cardinality count in deleteByMajorityVote:

2When computing the cardinality, take Remark 5.7 into account.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 13

Algorithm 6 Reconstruction of an Ideal

Input: An algorithm to compute G(p) from Ip, for each prime p, and a way
of verifying that a computed Gröbner basis equals G(0).

Output: The Gröbner basis G(0).
1: choose a list P of random primes
2: GP = ∅
3: loop
4: for p ∈ P do
5: compute G(p) ⊆Wp

6: GP = GP ∪ {G(p)}
7: (P,GP) = deleteByMajorityVote(P,GP)
8: lift GP to G ⊆W via Chinese remaindering and Algorithm 5
9: if the lifting succeeds and pTest(I,G,P) then

10: if G = G(0) then
11: return G
12: enlarge P with primes not used so far

when enlarging P, the total weight of the elements already present must
be strictly smaller than the total weight of the new elements. Otherwise,
though highly unlikely in practical terms, it may happen that only unlucky
primes are accumulated.

Remark 5.8. Our lifting process works since reduced Gröbner bases are
uniquely determined. In practical terms, however, there is often no need
to reduce the Gröbner bases involved: it is only required that the construc-
tion associating the Gröbner bases to I and its reductions yields uniquely
determined results.

Remark 5.9. We may allow that the given construction does not work for
finitely many primes p (which are then bad of type-2). In this case, the
respective primes will be rejected.

Remark 5.10. Depending on the particular implementation of the construc-
tion, type-3 primes (in addition to those considered in Remark 5.1) may
occur. In such a situation, it is often cheaper to rely on error tolerance
rather than spending computation time to detect these primes.

Example 5.11. If K is any field, and I ⊆ K[X] is a prime ideal, the nor-
malization A of the domain A = K[X]/I is the integral closure of A in its
field of fractions Q(A). If K is perfect, the normalization algorithm given
in [Greuel et al. 2010] will find a “valid denominator” d ∈ A and an ideal
U ⊆ A such that 1

dU = A ⊆ Q(A). In fact, U is uniquely determined
if we fix d. In practical terms, d and U are a polynomial and an ideal in
K[X], respectively. If K = Q, we can apply the modular version of the algo-
rithm (see [Böhm et al. 2013a]). This version relies on choosing a “universal
denominator” d which is used over the rationals as well as in finite charac-
teristic. Given a prime number p, it may then happen that Ip is not a prime
ideal (a type-2 condition), that the leading ideal of Ip does not coincide with
that of I (a type-3 condition), that dp is not defined (a type-1 condition),
or that dp is not a valid denominator (a type-2 condition). In accordance

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 14

with the general setup, the numerator ideal U(p) is obtained by computing
the Gröbner basis G(p), and LM(G(0)) = LM(G(p)) and U(0)p = U(p) are
type-4 and type-5 conditions, respectively.

The normalization algorithm mentioned in the previous Example 5.11
finds A by successively enlarging A in form of an endomorphism ring of a so
called test ideal J ⊆ A. For practical purposes, the radical of the Jacobian
ideal is used for J . The following example shows that, for the algorithm
computing the radical of the Jacobian, bad primes p exist which satisfy the
type-4 condition (1b) but violate the type-5 condition (1a) in Definition 5.2.
In particular, these primes cannot be eliminated by a majority vote on the
lead ideal.

Example 5.12. We construct a sextic curve C = V (I) ⊂ P2
C, given by an

ideal I = 〈f〉 ⊂ Q[x, y, z], such that 5 is a bad prime of type-5 for computing
the radical of the singular locus of C. The basic idea is to construct a
curve which has two double points in characteristic 0, which coincide when
reducing modulo 5, while one additional double point appears.

For

L = 〈y, x− 4z〉2 ∩ 〈y, x+ 6z〉2 ⊆ Q[x, y, z]

the reduced Gröbner basis with respect to the degree reverse lexicographical
ordering is

G =
(
y2, (x− 4z)(x+ 6z)y, (x− 4z)2(x+ 6z)2

)
.

Note, that both L and

L5 =
〈
y2, (x+ z)2y, (x+ z)4

〉
⊆ F5[x, y, z]

have the same leading monoid
〈
y2, x2y, x4

〉
.

Writing generators of

M = L5 ∩ 〈y, x− z〉2 ⊂ L5

in terms of the Gröbner basis of L5 yields the representation

M =
〈
y2, (x− z) · (x+ z)2y, (x2 + 3xz + z2) · (x+ z)4

〉
.

Now consider a generic homogeneous element of degree 6 in〈
G1, (x− z) ·G2, (x2 + 3xz + z2) ·G3

〉
⊆ Q[x, y, z].

For practical puposes, a random element will do, for example,

f = x6 +y6 +7x5z+x3y2z−31x4z2−224x3z3 +244x2z4 +1632xz5 +576z6.

For the ideal I = 〈f〉 the prime 5 is bad of type-5 with respect to the
algorithm

I 7→
√
I + Jac(I),

where Jac(I) denotes the Jacobian ideal of I: First note, that no coefficient
of f is divisble by 5. In particular, LM(I) =

〈
x6
〉

= LM(I5), so 5 is Arnold–
lucky for I. We compute

U(0) =
√
I + Jac(I) = 〈y, x− 4z〉 ∩ 〈y, x+ 6z〉

U(5) =
√
I5 + Jac(I5) =

〈
y, x2 − z2

〉
= 〈y, x− z〉 ∩ 〈y, x+ z〉

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 15

and
U(0)5 =

〈
y, (x+ z)2

〉
.

Hence
LM(U(0)) =

〈
y, x2

〉
= LM(U(5)),

but
U(0)5 6= U(5).

Acknowledgements. We would like to thank the referees who made valuable
suggestions to improve the presentation of this paper.

References

[Adams and Loustaunau 1994] Adams, W. W.; Loustaunau, P.: An introduction to
Gröbner bases, Graduate Studies in Mathematics, 3, AMS (1994).

[Arnold 2003] Arnold, E. A.: Modular algorithms for computing Gröbner bases, J. Symb.
Comput. 35, 403–419 (2003).

[Böhm et al. 2013a] Böhm, J.; Decker, W.; Laplagne, S.; Pfister, G.; Steenpaß, A.; Steidel,
S.: Parallel Algorithms for Normalization. J. Symb. Comp. 51, 99–114 (2013).

[Böhm et al. 2013b] Böhm, J.; Decker, W.; Laplagne, S.; Seelisch, F.: Local to global
algorithms for the Gorenstein adjoint ideal of a curve. In preparation.

[Collins et al. 1994] Collins, George E., Encarnación, Mark J.: Efficient Rational Number
Reconstruction. J. Symb. Comput. 20, 287–297 (1995).

[Encarnación 1995] Encarnación, Mark J.: Computing GCDs of polynomials over alge-
braic number fields. J. Symb. Comput. 20, 299–313 (1995).

[Greuel et al. 2010] Greuel, G.–M.; Laplagne, S.; Seelisch. F.: Normalization of rings. J.
Symb. Comput. 45, 887–901 (2010).

[Idrees et al. 2011] Idrees, N.; Pfister, G.; Steidel, S.: Parallelization of Modular Algo-
rithms. J. Symb. Comput. 46, 672–684 (2011).

[Nguyen el al. 2009] Nguyen, P.Q.; Stehlé, D.: Low–dimensional lattice basis reduction
revisited. ACM Transactions on Algorithms, Paper 46 (2009).

[Kornerup and Gregory 1983] Kornerup, P.; Gregory, R. T.: Mapping Integers and Hensel
Codes onto Farey Fractions. BIT Numerical Mathematics 23(1), 9–20 (1983).

[Wang 1981] Wang, P. S.: A p–adic algorithm for univariate partial fractions. Proceedings
SYMSAC ’81, 212–217 (1981).

[Wang et al. 1982] Wang, P. S.; Guy, M. J. T.; Davenport, J. H.: P–adic reconstruction
of rational numbers. SIGSAM Bull, 2–3 (1982).

Fachbereich Mathematik, Technical University Kaiserslautern, Postfach
3049, 67653 Kaiserslautern, Germany

E-mail address: boehm@mathematik.uni-kl.de

Fachbereich Mathematik, Technical University Kaiserslautern, Postfach
3049, 67653 Kaiserslautern, Germany

E-mail address: decker@mathematik.uni-kl.de

Fachbereich Mathematik, Technical University Kaiserslautern, Postfach
3049, 67653 Kaiserslautern, Germany

E-mail address: fieker@mathematik.uni-kl.de

Fachbereich Mathematik, Technical University Kaiserslautern, Postfach
3049, 67653 Kaiserslautern, Germany

E-mail address: pfister@mathematik.uni-kl.de

	1. Introduction
	2. Reconstruction of a single rational number
	3. Types of bad primes for modular algorithms
	4. Reconstruction with bad primes
	5. A setup for applications in algebra and geometry
	References

