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Abstract

The aim of the CIMPA-ICTP-UNESCO-MESR-MICINN-PAKISTAN
Research School on Local Analytic Geometry at Abdus Salam School of
Mathematical Sciences, GC University Lahore, Pakistan (organized by A.
D. Choudary, Alexandru Dimca and Gerhard Pfister) was to introduce
the participants to local analytic geometry and related topics. A basis
of the course was the book entitled Local Analytic Geometry (cf. [JP00]).
An important part of the school was to establish computational methods
in local algebra and to provide an introduction to the computer algebra
system Singular (cf. [DGPS12]). This article includes the lecture notes
corresponding to the lectures held during the school and was edited by
Gerhard Pfister and Stefan Steidel.
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1 Singular and Applications (G. Pfister)

The introductory talk by G. Pfister about Singular and its applications is
online available at

http://www.sms.edu.pk/downloads/Cimpa/2012/vortragCimpa2012.1.pdf.

2 Basics of Analytic Geometry (O. A. Laudal)

This section contains a short reminder of the theory of complex analytic func-
tions, in one variable, and an introduction to the basics of local analytic ge-
ometry, with the purpose of setting the stage for the study of complex analytic
singularities. Most of the material is extracted from [JP00, Chapter 3].

2.1 Functions of a Complex Variable

Let C be the field of complex numbers. An element z ∈ C, may be written
z = x + ıy, where ı =

√
−1, and x, y ∈ R, are real numbers. C may be

considered as a real plane with coordinates (x, y), with topology induced from
the Euclidean metric, and the obvious differential structure. Consider the two
vector fields,

∂

∂z
:=

∂

∂x
+ ı

∂

∂y
,
∂

∂z
:=

∂

∂x
− ı

∂

∂y
.

Any differentiable function, defined in an open subset U ⊂ C,

f : U → C,

for which the following Cauchy-Riemann equation is satisfied,

∂f

∂z
:= 0,

is called a complex analytic function. It can, for every point o ∈ U , be written
as a formal power series,

f(z) =

∞
∑

0

an(z − o)n,

converging absolutely in some neighbourhood of o. Moreover we have,

∂f

∂z
=

∞
∑

0

nan(z − o)n−1,

as convergent power series. Conversely, any absolutely converging formal power
series in a neighbourhood of a point o ∈ C, satisfies the Cauchy-Riemann equa-
tion in the neighbourhood, and is therefore a complex analytic function in that
neighbourhood. Since the operator ∂

∂z is a derivation, it follows immediately
that the complex analytic functions, defined in an open subspace U ⊂ C, forms
a ring, Ω(U). Recall the following Identity Theorem,

Theorem 2.1. Given two analytic functions f, g ∈ Ω(U), U a connected open
subset of C, if f = g on some neighbourhood of a point in U , then f = g in
Ω(U).
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This implies quite easily the very importent maximum modulus principle,

Theorem 2.2. Let f ∈ Ω(U), U a connected open subset of C. Let o ∈ U , and
suppose

|f(o)| > |f(z)|,
for all z in some neighbourhood of the point o. Then f is constant in U .

Let, for o ∈ U , Oo be the ring of germs of analytic functions at the point o,
i.e. the quotient ring of equivalence classes of analytic functions defined in some
neighbourhood of o, under the equivalence relation given as,

f ∼ g,

if there exists a neighbourhood o ∈ V , such that f and g are both defined in V ,
and such that their restrictions to V , are equal. Clearly, the map,

π : Oo → C

defined by, π(f) = f(o), is a homomorphism of rings, and one easily shows that
Oo is a local ring, with maximal ideal, m = kerπ. It is clear that Oo may be
identified with the ring of converging power series, C{{z}} ⊂ C[[z]].

2.2 Analytic Functions of Several Variables

Now, let C[[z]] be the C-algebra of formal power series in n variables z :=
(z1, . . . , zn). Consider the topological space, Cn, with complex coordinates,
(z1, . . . , zn), and denote by o the point [0, ..., 0] ∈ Cn. Let r = (r1, . . . , rn) ∈ Rn

be positive real numbers, and consider the polycylindre,

Pr := {z ∈ Cn| |zi| < ri, i = 1, ..., n}

Lemma 2.3. Let p = (p1, . . . , pn) ∈ Cn, with pi 6= 0, i = 1, . . . , n, and assume
a formal power series f ∈ C[[z]], converges for z = p. Then there is polycylindre
Pr, such that f is absolutely and uniformly convergent on all compact subsets
of Pr.

Proof. Since f =
∑∞

l,|l|=0 alz
l, where we have put, l := (l1, . . . , ln), |l| :=

∑

i li, al := al1,...,ln , z
l := zl11 · · · zlnn , converges for z = p, the real numbers

|alpl| must be bounded by some positive numberM . Let 0 < ti < 1, i = 1, . . . , n
be real numbers, then we must have,

|alpltl| 6Mtl,

implying that, for any z ∈ Pr, with ri = |pi|ti, i = 0, . . . , n,

∞
∑

0

|alzl| 6
∞
∑

0

Mtl =M(
n
∏

1

1

1− ti
),

proving the contention.

Let U ⊂ Cn be an open subset, and consider a map,

ϕ : U → C.
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Definition 2.4. ϕ is called analytic if for all o ∈ U , there is a formal power
series f , in an appropriate coordinate system, converging in a neighbourhood,
V of o, such that, restricted to V, we have ϕ = f . The set of analytic functions
in the open subset, U , is denoted by O(U).

Since absolutely and uniformly convergent power series form a ring, we ob-
serve that O is a sheaf of rings defined on the (strong) topology of Cn. If the
coordinate system (z1, ..., zn), and its origin o is as above, we find that the germ
of analytic functions Oodefined at o may be identified with the subring,

C{{z}} ⊂ C[[z]],

of convergent power series at o. Clearly, this ring of germs of analytic func-
tions in n variables, is local with maximal ideal m ⊂ C{{z}} generated by the
coordinate functions, zi, i = 1, . . . , n.

2.3 Analytic Subsets, Analytic Geometry

Since 1637, when René Descartes wrote La Géométrie, we are used to call a
subset X of Cn, (or at least, of R2), an algebraic subset, if it can be can be cut
out by a set of algebraic equations. The analogous notion of analytic subset of
Cn, is defined in the same way.

Definition 2.5. A subset X ⊆ Cn is called locally analytic, if for any p ∈
X , there exists an open neighbourhood V of p in Cn, and analytic functions,
f1, . . . , fm ∈ O(V ), such that,

X ∩ V = {z ∈ V | fi(z) = 0, i = 1, . . . ,m}.

X is called an analytic subset of the open subset U ⊆ Cn if it is both locally
analytic, and closed in U .

We need several very important results, the proofs of which we shall omit,
referring to the text [JP00, Chapter 3]. First, a theorem saying that a non-trivial
analytic subset of Cn is nowhere dense,

Theorem 2.6. Let U ⊆ Cn be an open subset, and let X ⊂ U be analytic, then,

U −X = U.

Next, we need the following,

Theorem 2.7 (Riemann Extension Theorem). With the notations above, let

f : U −X → C

be an analytic function, locally bounded in X, then f is the restriction of an
analytic function defined in U .

2.4 Tools for studying Local Analytic Geometry

Let f ∈ C [[z]], be a formal power series. We shall say that f is of order b (at
o) if,

f =
∑

|l|>b

alz
l,
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and if,
∑

|l|=b

alz
l, 6= 0.

The formal power series is said to be regular of order b in the coordinate zn, if
∑

|l|=b

alz
l = zbn,

and we call it a Weierstrass polynomia in zn, if it has the form,

f = zbn + c1z
b−1
n + . . .+ cb, cj ∈ C [[z1, . . . , zn−1]] , ci(o) = 0, i = 1, . . . , b.

These definitions makes it possible to state a number of essential theorems
for the study of local analytic geometry. First, the Noether’s Normalisation
Theorem for Hypersurfaces,

Theorem 2.8. Assume the formal power series f is of order b, then there exists
a coordinate change with respect to which, f becomes regular of order b in zn.

Proof. Suppose,
∑

|l|=b al 6= 0, then, put,

zi = zn − z′i, i < n, z′n = zn,

and check that the coordinate system (z′1, . . . , z
′
n), does the job.

If
∑

|l|=b al = 0, we may pic βi, i = 1, . . . , n− 1, and put,

zi = βizn − z′i, i < n, z′n = zn,

such that, in the new coordinate system,
∑

|l|=b al 6= 0, completing the proof.

The next theorem, along these lines, is the weak Weierstrass Division The-
orem (WDT),

Theorem 2.9. Let f, g ∈ C{{z1, . . . , zn}}. Assume f is regular of order b in zn.
Then there are unique elements, q ∈ C{{z1, . . . , zn}}, r ∈ C{{z1, . . . , zn−1}} [zn]
with degree, as polynomial in zn, deg(r) < b, such that,

f = qg + r.

This result is a consequence of a more general theorem which we will prove
later. It is, however, useful here for the proof of the Weierstrass Preparation
Theorem.

Theorem 2.10. Let f ∈ C{{z1, . . . , zn}} be regular of order b in zn. Then
there exists a unique unit, u ∈ C{{z1, . . . , zn}}, and a Weierstrass polynomial
q in zn, such that,

f = uq

Proof. Use the Weierstrass Division Theorem, with f as given, and g = znn .
Then we find,

zbn = qf + r,

where r is a polynomial in zn of degree less than b. It follows that q is a unit,
and that,

f = q−1(zbn − r),

and because of the unicity of q, r it is clear that (zbn − r), is a Weierstrass
polynomial.
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From this we easily deduce the following,

Corollary 2.11. Let f ∈ C{{z1, . . . , zn}} be regular in zn, of order b, then the
C{{z1, . . . , zn−1}}-module, C{{z1, . . . , zn}}/(f) is finitely generated of rank b.

Now we are ready for the General Weierstrass Division Theorem (GWDT).
Recall that the maximal ideal of the local algebra, R := C{{y1, . . . , ym}}, de-
noted mR is generated by the coordinate functions, i.e. by (y1, . . . , ym).

Theorem 2.12. Let,

φ : R := C{{y1, . . . , ym}} → S := C{{z1, . . . , zn}},
be a homomorphism of algebras. Then the following two conditions are equiva-
lent,

1. S is a finitely generated R-module

2. dimCS/mS <∞
An elementary, but long proof is found in [JP00, Chapter 3]. Let us see how

to deduce the Weak Weierstrass Division Theorem, from this (GWDT). Put
m = n, and φ(yi) = zi, i = 1, . . . , n− 1, φ(yn) = f . If f is regular in zn, of order
b, then obviously dimCS/mS = b, and so S is finitely generated as R-module,
that is C{{z1, . . . , zn}}/(f) is a finitely generated C{{z1, . . . , zn−1}}-module.
By Nakayamas Lemma, is generated by, {1, zn, . . . , zbn}, which is exactly the
contention of the (WDT).

Now, one of the most essential emerging from these tools, is the Implicit
Function Theorem,

Theorem 2.13. Let f ∈ C{{z1, . . . , zn, y}}, and assume,

f(o) = 0,
∂f

∂y
6= 0,

then there exists a unique element, ϕ ∈ C{{z1, . . . , zn}} such that,

f(z1, . . . , zn, y) = 0

if and only if,
y = ϕ(z1, . . . , zn).

Proof. The conditions imply that f is regular of order 1 in y. WPT then tells
us that there are a unit u and a unique ϕ(z1, . . . , zn) ∈ C{{z1, . . . , zn}} such
that,

f = u(y − ϕ(z1, . . . , zn)),

which is what we want.

We end this introduction with the following.

Theorem 2.14. The local ring On := C{{z1, . . . , zn}} is Noetherian.

Proof. By induction on the dimension n. If On−1 is Noetherian, then by
Hilbert’s Basis Satz, On−1 [zn] is Noetherian. If α ⊂ On is an ideal, and g ∈ α,
then by WPT there exists a unit u and a Weierstrass polynomial, h, such that
g = uh, implying that h ∈ α. We know that the ideal α ∩On−1 [zn] is finitely
generated, by say, (g1, . . . , gr). This implies that α = ((g1, . . . , gr), g), since any
f ∈ α, by WDT can be written as f = qg + s, with s ∈ α ∩On−1 [zn].
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3 Basics of Local Algebra (B. Berceanu)

No contribution by the author. We refer to [JP00, Chapter 1].

4 Standard Bases (S. Steidel)

The aim of this section is to develop the algorithm to compute a standard
basis respectively Gröbner basis of a given ideal due to Buchberger (cf. [B65]).
Moreover, we illustrate in some examples how to use Singular (cf. [DGPS12])
for this demand.

4.1 Motivation

Consider the ideal I =
〈

xy + y, y2 + x
〉

⊆ Q[x, y]. At the the end of this section
we will answer the following questions:

1. f = x4 + x2y2 ∈ I ?

2. dimQ

(

Q[x, y]/I
)

= ?

3. I ∩Q[y] = ?

4.2 Notation

Let K be a field and X = {x1, . . . , xn} be a set of variables. We denote by
Mon(X) = {Xα | α ∈ Nn} = {xα1

1 · · ·xαn
n | αi ∈ N} the set of monomials, and

by K[X ] the polynomial ring over K in these n variables.

4.3 Monomial orderings & leading data

Definition 4.1. A monomial ordering is a total ordering > on Mon(X) such
that

Xα > Xβ =⇒ XγXα > XγXβ ∀α, β, γ ∈ Nn.

Definition 4.2. Let > be a fixed monomial ordering on Mon(X) and let f ∈
K[X ]r {0} be a polynomial. Then we obtain a unique representation of f as a
sum of non-zero terms

f = cαX
α + cβX

β + . . .+ cγX
γ

with Xα > Xβ > . . . > Xγ and cα, cβ , . . . , cγ ∈ K. Then we define

1. the leading monomial of f by LM(f) := Xα,

2. the leading coefficient of f by LC(f) := cα,

3. the leading term of f by LT(f) := LC(f) · LM(f) = cαX
α,

4. the tail of f by tail(f) := f − LT(f) = cβX
β + . . .+ cγX

γ .

There is an important distinction between global and local monomial order-
ings which especially influences the uniqueness of a standard or Gröbner basis.

Definition 4.3. Let > be a monomial ordering on Mon(X).
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1. > is called global if Xα > 1 for all α ∈ Nn r {0}.
2. > is called local if Xα < 1 for all α ∈ Nn r {0}.
3. > is called mixed if it is neither global nor local.

Some of the most important monomial orderings are introduced in the fol-
lowing definition.

Definition 4.4. Let Xα, Xβ ∈ Mon(X). The following are monomial orderings
on Mon(X).

1. The lexicographical ordering >lp:

Xα >lp X
β :⇐⇒ ∃ 1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1,

αi > βi.

2. The degree reverse lexicographical ordering >dp:

Xα >dp X
β :⇐⇒ deg(Xα) > deg(Xβ) or

(

deg(Xα) = deg(Xβ) and ∃ 1 ≤ i ≤ n :

αn = βn, . . . , αi+1 = βi+1, αi < βi
)

.

3. The negative degree reverse lexicographical ordering >ds:

Xα >ds X
β :⇐⇒ deg(Xα) < deg(Xβ) or

(

deg(Xα) = deg(Xβ) and ∃ 1 ≤ i ≤ n :

αn = βn, . . . , αi+1 = βi+1, αi < βi
)

.

Note that >lp and >dp are global orderings, whereas >ds is a local ordering.

Example 4.5. Consider x3y2z, x2y4, z8 ∈ Mon(x, y, z).

1. x3y2z >lp x
2y4 >lp z

8.

2. z8 >dp x
2y4 >dp x

3y2z.

3. x2y4 >ds x
3y2z >ds z

8.

The localization ofK[X ] with respect to the maximal ideal 〈X〉 = 〈x1, . . . , xn〉
is defined by

K[X ]〈X〉 =

{

f

g

∣

∣

∣

∣

f, g ∈ K[X ], g(0, . . . , 0) 6= 0

}

.

Now, we define the localization of K[X ] with respect to any monomial ordering.
The set

S> := {u ∈ K[X ]r {0} | LM(u) = 1}
is a multiplicatively closed set for any monomial ordering >.

Definition 4.6. Let > be any monomial ordering on Mon(X). The ring

K[X ]> := S−1
> K[X ] =

{

f

u

∣

∣

∣

∣

f, u ∈ K[X ], u 6= 0, LM(u) = 1

}

is called the localization of K[X ] with respect to S>.
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Note that there are canonical inclusions K[X ] ⊆ K[X ]> ⊆ K[X ]〈X〉 and the
following properties are quite obvious.

1. K[X ]> = K[X ] ⇐⇒ S> = K r {0} ⇐⇒ > is global.

2. K[X ]> = K[X ]〈X〉 ⇐⇒ S> = K[X ]r 〈X〉 ⇐⇒ > is local.

We extend the leading data defined in Definition 4.2 to K[X ]>.

Definition 4.7. Let> be any monomial ordering on Mon(X). For f ∈ K[X ]>r
{0} choose u ∈ K[X ] r {0} such that LT(u) = 1 and uf ∈ K[X ]. Then we
define

1. the leading monomial of f by LM(f) := LM(uf),

2. the leading coefficient of f by LC(f) := LC(uf),

3. the leading term of f by LT(f) := LT(uf),

4. the tail of f by tail(f) := f − LT(f).

For a given set of polynomials we consider some special ideal, the so-called
leading ideal which is the central notion when defining a standard basis of an
ideal.

Definition 4.8. Let > be any monomial ordering on Mon(X) and G ⊆ K[X ]>
be a set of polynomials. Then we define the set of leading monomials of G
by LM(G) := {LM(g) | g ∈ G}, and the leading ideal of G by L(G) :=
〈LM(g) | g ∈ Gr {0}〉K[X].

4.4 Normal forms

Definition 4.9. Let f ∈ K[X ]> and G ∈ K[X ]>.

1. f is called reduced with respect to G if no monomial of f is contained in
L(G).

2. G is called reduced if

(a) 0 /∈ G,

(b) LM(g) ∤ LM(f) for all f, g ∈ G,

(c) LC(g) = 1 for all g ∈ G,

(d) tail(g) is reduced with respect to G for all g ∈ G.

Remark 4.10. If > is global then each finite set can be transformed into a
reduced one generating the same ideal.

If > is local this is general not achievable. For instance, consider >ds and
f = x− x2. Then f is not reduced with respect to {f}. But also the reduction
f + xf = x − x3 is not reduced with respect to {f}, and this process does not
end in finitely many steps.

Definition 4.11. Let G denote the set of all finite ordered sets G ⊆ K[X ]>. A
map

NF : K[X ]> × G −→ K[X ]>, (f,G) 7−→ NF(f,G)

is called a normal form on K[X ]> if, for all f ∈ K[X ]> and all G ∈ G, the
following hold.
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(a) NF(0, G) = 0.

(b) NF(f,G) 6= 0 implies LM(NF(f,G)) /∈ L(G).

(c) If G is finite, then either f−NF(f,G) = 0, or there exists a representation

f −NF(f,G) =
∑

g∈G

cgg, cg ∈ K[X ]>

such that
LM(f) ≥ max{LM(cgg) | g ∈ G, cgg 6= 0}.

This representation is called the standard representation of f −NF(f,G)
with respect to G.

Moreover, NF is called a reduced nornal form if NF(f,G) is reduced with respect
to G for all f ∈ K[X ]> and all G ∈ G.

Remark 4.12. Analogously to Remark 4.17, in the case of a global ordering there
exists a normal form, and even a reduced normal form, due to B. Buchberger.
In the case of an arbitrary ordering there exists a polynomial weak normal form
(cf. [GP07, Definition 1.6.5, Algorithm 1.7.6]), due to T. Mora.

Hence, for simplification, in the remaining considerations we mainly restrict
ourselves to the case that > is a global monomial ordering.

To provide an algorithm to compute a normal form, we make use of the
following definition.

Definition 4.13. Let f, g ∈ K[X ]> r {0} with LM(f) = Xα and LM(g) =
Xβ. Set γ = lcm(α, β) = (max(α1, β1), . . . ,max(αn, βn) ∈ Nn, and let Xγ :=
lcm(Xα, Xβ) be the least common multiple of Xα and Xβ. We define the s-
polynomial of f and g by

spoly(f, g) := Xγ−α · f − LC(f)

LC(g)
·Xγ−β · g.

Algorithm 1 Computing Normal Form (NF, reduce)

Assume that > is a global monomial ordering.

Input: f ∈ K[X ], G ∈ G.
Output: NF(f,G).

1: h = f ;
2: while h 6= 0 & Gh = {g ∈ G | LM(g) divides LM(h)} 6= ∅ do
3: choose g ∈ Gh;
4: h = spoly(h, g);
5: return h;

Example 4.14.

1. Consider >dp, f = x4+ y3+3z2+x+ y− 3 ∈ Q[x, y, z], and G = {x, y} ⊆
Q[x, y, z]. Then we compute the normal form of f with respect to G in
the following way:

11



h0 = f ;
LM(h0) = x4, Gh0

= {x};
h1 = spoly(h0, x) = h0 − x3 · x = y3 + 3z2 + x+ y − 3;
LM(h1) = y3, Gh1

= {y};
h2 = spoly(h1, y) = h1 − y2 · y = 3z2 + x+ y − 3;
LM(h2) = z2, Gh2

= ∅;
Hence, we obtain NF(f,G) = 3z2 + x+ y − 3.

Moreover, we compute a reduced normal form of f with respect to G in
the following way:

h0 = 0, g0 = f ;
g̃1 = NF(g0, G) = 3z2 + x+ y − 3;
h1 = h0 + LT(g̃1) = 3z2, g1 = tail(g̃1) = x+ y − 3; g̃2 = NF(g1, G) = −3;
h2 = h1 + LT(g̃2) = 3z2 − 3, g2 = tail(g̃2) = 0;

Hence, we obtain redNF(f,G) = z2 − 1.

The corresponding Singular code is as follows:

ring R = 0,(x,y,z),dp;

poly f = x4+y3+3z2+x+y-3;

ideal G = x,y;

reduce(f,G,1);

// ** G is no standard basis

//--> 3z2+x+y-3

interred(reduce(f,G));

// ** G is no standard basis

//--> _[1]=z2-1

2. Consider >lp, f = x2yz+z3 ∈ Q[x, y, z], and G = {xy, xy+z} ⊆ Q[x, y, z].
Then we may compute, due to Algorithm 1, on the one hand

NF(f,G) = spoly(f, xy) = f − xz · xy = z3,

and on the other hand

NF(f,G) = spoly(f, xy + z) = f − xz · (xy + z) = −xz2 + z3.

Consequently, in this case the normal form is not unique but we will later
on see under which condition this can be achieved.

4.5 Standard & Gröbner bases

Definition 4.15. Let > be any monomial ordering on Mon(X) and I ⊆ K[X ]>
be an ideal.

1. A finite set G ⊆ K[X ]> of polynomials is called a standard basis of the
ideal I if

G ⊆ I and L(G) = L(I).

2. If > is global, a standard basis is also called a Gröbner basis.
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3. By saying that G is a standard basis, we mean that G is a standard basis
of the ideal 〈G〉K[X]>

generated by G.

The following basic proposition deals with existence and uniqueness of stan-
dard respectively Gröbner bases.

Proposition 4.16. Let > be any monomial ordering on Mon(X), and I ⊆
K[X ]> be a non-zero ideal. Then the following hold.

1. There exists a standard basis G of I and I = 〈G〉K[X]>
, that is, the stan-

dard basis G generates I as K[X ]>-ideal.

2. A reduced standard basis G of I is unique.

Remark 4.17. Reduced Gröbner bases can always be computed but, in contrast,
reduced standard bases are, in general, not computable.

Lemma 4.18. Let > ba any monomial ordering on Mon(X), I ⊆ K[X ]> an
ideal, G ⊆ I a standard basis of I, f ∈ K[X ]>, and NF be a normal form on
K[X ]> with respect to G. Then the following hold:

1. f ∈ I if and only if NF(f,G) = 0.

2. If NF( , G) is a reduced normal form then it is unique.

Proof. Let f ∈ I and assume that NF(f, g) 6= 0. Due to Definition 4.11 and the
fact that G is a standard basis of I this implies LM(NF(f,G)) /∈ L(G) = L(I)
which contradicts f ∈ I. Hence, it follows NF(f,G) = 0. On the other hand, let
NF(f,G) = 0. Then, again due to Definition 4.11, f −NF(f,G) has a standard
representation, i.e. it follows f = f − NF(f,G) =

∑

g∈G cgg ∈ I for suitable
cg ∈ K[X ].

Now, assume that h1, h2 are two reduced normal forms of f with respect to
G. Then h1−h2 6= 0, and h1−h2 = (f −h2)− (f −h1) ∈ I due to the standard
representation of h1 and h2. Moreover, it follows LM(h1 − h2) ∈ L(I) = L(G),
i.e. there is a monomial of either h1 or h2 that is contained in L(G). This
contradicts the fact that NF( , G) is a reduced normal form.

The following criterion by Buchberger is essential for the computation of
Gröbner bases.

Theorem 4.19 (Buchberger’s Criterion). Let > be any monomial ordering on
Mon(X), I ⊆ K[X ]> be an ideal, and let G ⊆ I. Moreover, let NF( , G)
be a weak normal form on K[X ]> with respect to G. Then the following are
equivalent:

1. G is a standard basis of I.

2. NF(f,G) = 0 for all f ∈ I.

3. I = 〈G〉K[X]>
and NF(spoly(g, g′), G) = 0 for all g, g′ ∈ G.

Example 4.20. Consider >dp, F = {f1, f2} = {xy+y, y2+x}, and NF = redNF.
Then we compute a Gröbner basis of I = 〈F 〉 in the following way:

1. G = F , P = {(f1, f2};

13



Algorithm 2 Computing Gröbner Bases (std)

Assume that > is a global monomial ordering.

Input: F = {f1, . . . , fr} ⊆ K[X ] and NF, a normal form.
Output: G, a Gröbner basis of 〈F 〉.
1: G = F ;
2: P = {(f, g) | f, g ∈ G, f 6= g};
3: while P 6= ∅ do
4: choose (f, g) ∈ P ;
5: P = P r {(f, g)};
6: h = NF(spoly(f, g), G);
7: if h 6= 0 then
8: P = P ∪ {(h, f) | f ∈ G};
9: G = G ∪ {h};

10: return G;

2. P = ∅;
spoly(f1, f2) = yf1 − xf2 = y2 − x2 = −x2 + y2

−f2−−→ −x2 − x −→ x2 + x;
h = NF(spoly /f1, f2), G) 6= 0;
f3 = x2 + x;
P = {(f1, f3), (f2, f3)};
G = {f1, f2, f3};

3. P = {(f2, f3)};
spoly(f1, f3) = xf1 − yf3 = xy − xy = 0;
h = NF(spoly(f1, f3), G) = 0;

4. P = ∅;
spoly(f2, f3) = x2f2 − y2f3 = x3 − xy2

−xf3−−−→ −xy2 − x2
+yf1−−−→ −x2 +

y2
+f3−−→ y2 + x

−f2−−→ 0;
h = NF(spoly(f2, f3), G) = 0;

Hence, G = {f1, f2, f3} is a Gröbner basis of I = 〈F 〉.
The corresponding Singular code is as follows:

ring R = 0,(x,y),dp;

ideal I = xy+y, y2+x;

ideal G = std(I);

G;

//--> G[1]=y2+x

//--> G[2]=xy+y

//--> G[3]=x2+x

4.6 Answer to motivation questions

Remember that we consider the ideal I =
〈

xy + y, y2 + x
〉

⊆ Q[x, y]. Moreover,
we already computed a Gröbner basis G = {xy + y, y2 + x, x2 + x} of I with
respect to >dp in Example 4.20.
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4.6.1 Ideal membership

Let f = x4 + x2y2 ∈ Q[x, y]. We want to decide whether f is an element of the
ideal I. Due to Lemma 4.18 we just have to compute the normal form of f with
respect to G.

x4 + x2y2
−x2f3−−−−→ x2y2 − x3

−xyf1−−−−→ −x3 − xy2

+xf3−−−→ −xy2 + x2

+yf1−−−→ x2 + y2

−f3−−→ y2 − x

−f2−−→ −x− x = −2x

Consequently, we obtain NF(f,G) = −2x 6= 0 and conclude f /∈ I.

The corresponding Singular code is as follows:

ring R = 0,(x,y),dp;

ideal I = xy+y, y2+x;

poly f = x4+x2y2;

reduce(f,std(I));

//--> -2x

4.6.2 Vector space dimension of quotient ring

We want to detect the vector space dimension dimQ

(

Q[x, y]/I
)

. The following
lemma is helpful in this direction.

Lemma 4.21. Let > be a degree ordering on Mon(X), and I ⊆ K[X ] an ideal.
Then the following holds:

dimK

(

K[X ]/I
)

= dimK

(

K[X ]/L(I)
)

.

Since G is a Gröbner basis of I, we obtain L(I) = L(G) =
〈

xy, y2, x2
〉

so

that {1, x, y} is a Q-basis of Q[x, y]/L(I). Hence, it follows dimQ

(

Q[x, y]/I
)

=

dimQ

(

Q[x, y]/L(I)
)

= 3.

The corresponding Singular code is as follows:

ring R = 0,(x,y),dp;

ideal I = xy+y, y2+x;

vdim(std(I));

//--> 3

4.6.3 Elimination of variables

We want to determine the ideal I∩Q[y]. The following concept of an elimination
ordering is helpful in this direction.

Definition 4.22. A monomial ordering > on Mon(x, y) is called an elimination
ordering for y if for f ∈ K[x, y] the condition LM(f) ∈ K[y] implies f ∈ K[y].
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Lemma 4.23. Let > be an elimination ordering for y, I ⊆ K[x, y] be an ideal,
and G be a standard basis of I. Then G′ = {g ∈ G | LM(g) ∈ K[y]} is a
standard basis of I ′ = I ∩Q[y].

Since >lp on Mon(x, y) is an elimination for y we have to compute a Gröbner
basis of I =

〈

xy + y, x+ y2
〉

⊆ Q[x, y] via Algorithm 2. We compute G =
{x+ y2, y3 − y} so that G′ = {y3 − y} is a Gröbner basis of I ′ = I ∩Q[y].

The corresponding Singular code is as follows:

ring R1 = 0,(x,y),lp;

ideal I = xy+y, x+y2;

std(I);

//--> _[1]=y3-y

//--> _[2]=x+y2

or alternatively

ring R2 = 0,(x,y),dp;

ideal I = xy+y, y2+x;

eliminate(I,x);

//--> _[1]=y3-y

5 Local Cohomology (P. Schenzel)

5.1 What is local cohomology?

The aim of this section is to provide the basic notions of local cohomology. To
this end let R denote a commutative Noetherian ring. By (R,m) we denote a
local ring with ist unique maximal ideal m and its residue field k = R/m. Let
I ⊂ R denote an ideal of R.

5.1.1 Definitions

Definition 5.1. For an ideal I of R let ΓI denote the section functor with
respect to I. That is, ΓI is the subfunctor of the identity functor given by

ΓI(M) = {m ∈M | SuppRm ⊆ V (I)}.

The right derived functors of ΓI are denoted by Hi
I(−), i ∈ N. They are called

the local cohomology functors with respect to I.

5.1.2 The mapping cone

Let C denote a complex of R-modules. For an integer k ∈ Z let C[k] denote the
complex C shifted k places to the left and the sign of differentials changed to
(−1)k, i.e.

(C[k])n = Ck+n and dC[k] = (−1)kdC .

Moreover note that Hn(C[k]) = Hn+k(C).
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For a homomorphism f : C → D of two complexes of R-modules let us
consider the mapping cone M(f). This is the complex C ⊕ D[−1] with the
boundary map dM(f) given by the following matrix

(

dC 0
−f −dD

)

where dC resp. dD denote the boundary maps of C and D resp. Note that
(M(f), dM(f)) forms indeed a complex.

There is a natural short exact sequence of complexes

0 → D[−1]
i→M(f)

p→ C → 0,

where i(b) = (0,−b) and p(a, b) = a. Clearly these homomorphisms make i
and p into homomorphisms of complexes. Because Hn+1(D[−1]) = Hn(D)
the connecting homomorphism δ provides a map δ· : H ·(C) → H ·(D). By an
obvious observation it follows that δ· = H ·(f). Note that f : C → D induces an
isomorphism on cohomology if and only if M(f) is an exact complex.

5.1.3 Koszul complexes

For a complex C and x ∈ R let C
x→ C denote the multiplication map induced

by x, i.e. the map on Cn is given by multiplication with x. Furthermore let
C → C⊗RRx denote the natural map induced by the localization, i.e. the map

on Cn is given by Cn i−→ Cn ⊗R Rx, where for an R-module M the map i is
the natural map i :M →M ⊗R Rx.

Let us construct the Koszul and Čech complexes with respect to a system of
elements x = x1, . . . , xr of R. To this end we consider the ring R as a complex
concentrated in degree zero. Then define

K ·(x;R) =M(R
x→ R) and K ·

x(R) =M(R→ Rx).

Note that both of these complexes are bounded in degree 0 and 1. Inductively
put

K ·(x;R) = M(K ·(y;R)
x→ K ·(y;R)) and

K ·
x(R) = M(K ·

y(R) → K ·
y(R)⊗R Rx),

where y = x1, . . . , xr−1 and x = xr. For an R-module M finally define

K ·(x;M) = K ·(x;R)⊗R M and K ·
x(M) = K ·

x(R)⊗R M.

Call them (co-) Koszul complex resp. Čech complex of x with respect to M.
Obviously the Čech complex is bounded. It has the following structure

Kx(M) : 0 →M → ⊕iMxi
→ ⊕i<jMxixj

→ . . .→ Mx1···xr
→ 0

with the corresponding boundary maps. With the previous notation define
Dx(M) the following complex

Dx(M) : 0 → ⊕iMxi
→ ⊕i<jMxixj

→ . . .→Mx1···xr
→ 0,

where we start with Dx(M)0 = ⊕iMxi
in homological degree 0 and the sign of

the differentials is changed. That is, Dx(M) is the truncated and shifted Čech
complex of M with respect to x.
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Lemma 5.2. There is the following short exact sequence of complexes

0 → Dx(M)[−1] → Kx(M) →M → 0,

where M is considered as a complex concentrated in degree 0.

Proof. The proof follows easily since Dx(M)i−1 = Kx(M)i for all i ≥ 1 and the
natural morphism Kx(M) → M .

5.2 A sketch on sheaf cohomology

5.2.1 Global transforms

Let I ⊂ R denote an ideal. Let M be an R-module. The natural inclusions
In+1 ⊆ In define the direct system {HomR(I

n,M)}n∈N.

Definition 5.3. The direct limit of the system {HomR(I
n,M)}n∈N is called

the global (or ideal) transform of M with respect to I.

In the next we collect a few properties for of global transforms. For some of
the details we refer to [BS98] and [S98].

Theorem 5.4. With the previous notations and definitions there are the fol-
lowing results:

(a) There is a natural homomorphism iM : M → DI(M) and an exact se-
quence

0 → H0
I (M) →M

iM→ DI(M) → H1
I (M) → 0.

(b) The homomorphism iM is an isomorphisms if and only if grade(I,M) ≥ 2.
Moreover, iDI(M) is an isomorphism.

(c) There is an isomorphism DI(M) ∼= H0(Dx(M)), where x = x1, . . . , xr is
a system of elements such that (x)R = I.

(d) DI(R) is a commutative ring. In the case of R a domain it follows that

DI(R) = {q ∈ Q(R)|Inq ⊆ R for some n ∈ N},

where Q(R) denotes the field of fractions of R.

5.2.2 Čech cohomology and local cohomology

The following result was proved by Grothendieck (see [G67]). It allows to com-
pute the local cohomology by the aid of the Čech complexes.

Theorem 5.5. Let M denote an R-module. Let x = x1, . . . , xr be a system
of elements of R such that (x)R = I. Then there are functorial isomorphisms
Hi

I(M) ∼= Hi(Kx(M)) for all i ∈ N.

In particular, the Čech cohomology depends only on the radical of the ideal
I. This result has various applications for the local cohomology modules (see
e.g. [S98]).
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5.2.3 Sheaf cohomology

Let X = SpecR be the set of prime ideals of the commutative Noetherian ring
R. Let I ⊂ R be an ideal. Define U = X \ V (I), where V (I) = {p ∈ X |I ⊆ p}.
Then X becomes becomes a topological space with the U ’s as the set of open
subsets. This is called the Zariski topology.

Definition 5.6. Let U ⊂ X denote an open subset, that is U = X \ V (I) for
an ideal I ⊂ R. With the definition of

OX(U) = DI(R)

OX becomes a sheaf and the pair (X,OX) is an affine scheme (see [H77]).
Moreover for an R-module M define

FX(U) = DI(M).

Then F is a sheaf on (X,OX).

Remark 5.7. There is a one-to-one correspondance between R-modules M and
sheafs F on (X,OX) by M 7→ FX (as defined above) and F 7→M = F(X). For
the last map remember that X = X \V (I) with the unit ideal I = R. Therefore
DR(M) =M as easily seen. In particular we get OX(X) = R.

Definition 5.8. Let F denote a sheaf on (X,OX). For an open subset U ⊆ X
we define Hi(U,F) = Hi(Dx(M)), i ∈ N. Here (x)R = I is the ideal given by
U = X \ V (I) and M = F(X). There is an exact sequence

0 → H0
I (M) →M → H0(U,F) → H1

I (M) → 0

and isomorphisms Hi(U,F) ∼= Hi+1
I (M) for i ≥ 1. It is clear that Hi(Dx(M)

does not depend on the particular choice of the generators x of I.

Note that the exact sequence and the isomorphisms follow easily by the
definition of the complex Dx(M) and the results in Theorem 5.4.

5.2.4 Proj

Here we want to motify some of our investigations to the case of graded rings.
To let S = ⊕n≥0Sn denote an N-graded ring, where S0 is a commutative ring
and S = S0[S1]. Moreover we write m = ⊕n>0Sn for the irrelevant maximal
ideal.

Then we define X = ProjS = {p ∈ SpecS|p is homogeneous and m 6⊆ p}
and V+(I) = {p ∈ ProjS|I ⊆ p}. With U = X \ V+(I) for homogeneous ideals
ProjS becomes a topological space.

Definition 5.9. Let U ⊂ X denote an open subset, that is U = X \ V (I) for a
homogeneous ideal I ⊂ R. With the definition of

OX(U) = DI(S)0, the degree zero component of DI(S),

OX becomes a sheaf and the pair (X,OX) is a projective scheme (see [H77]).
Moreover for a graded S-module M define

FX(U) = DI(M)0.

Then F is a sheaf on (X,OX). We write also M̃ instead of F .
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The sheafification correspondance M 7→ M̃ is functorial, exact and com-
mutes with tensor products.

Definition 5.10. Let n ∈ N denote an integer. Then we define OX(n) = S̃(n)

and OX(−n) = ˜HomS(S(n), S). For a sheaf F on X we put F(n) = F ⊗O(n).
Let U ⊂ X = ProjX denote an open subset. We denote by Γ(U,F) = F(U)
the sections of F in U . Furthermore, put Γ⋆(F) = ⊕n∈ZΓ(X,F(n)).

Remark 5.11. (A) Γ⋆(F) admitts the structure of a graded S-module. For a
graded S-module M there is a natural homomorphism of graded S-modules
M → Γ⋆(M̃) which is in general neither injective nor surjective.
(B) For the polynomial ring S = k[x0, . . . , xr ] with its natural grading it follows
that S ∼= Γ⋆(OX) (see [H77, II 5.13]).
(C) Let S = k[x, y, z, w]/(xw − yz, y3 − x2z, y2w − xz2, yw2 − z3). Then S is a
domain. Let q = yw/z ∈ Q(S), where Q(S) denotes the quotient field. Then
xq = y2, yq = xz, zq = yw,wq = z2 and therefore q ∈ Γ(X,O(1) \ S1. That is
S 6= Γ⋆(OX).
(D) The sheafification functor M 7→ M̃ allows to consider the coherent sheaf F
on X as an equivalence class of finitely generated graded S-modules, where two
such modules M and N are called equivalent if the truncated modules M≥r and
N≥r are isomorphic for some r ∈ Z.
(E) It follows that M̃ = 0 if and only ifM is a graded S-module with SuppS M ⊆
V (m).

5.2.5 Sheaf cohomology on projective varieties

Let I ⊂ S denote a homogeneous ideal with generators I = (x) for some homo-
geneous elements x = x1, . . . , xr. Let M denote a graded S-module. Then the
complexes Kx(M) and Dx(M) are complexes of graded S-modules with homo-
geneous boundary maps of degree zero. Therefore their cohomology modules are
also graded S-modules. Now let us consider the particular situation of I = m,
the irrelevant ideal of the graded ring S, generated by x = x0, . . . , xr.

Definition 5.12. For an integer n ∈ Z and a coherent sheaf F on (X,OX) =
ProjS we define Hi(X,F(n)) = Hi(Dx(M))n, where M denotes a graded S-
module of the equivalence class defining F . In fact it follows easily that this
definition is independent on the choice of M . Moreover we put Hi

⋆(X,F) =
⊕n∈ZH

i(X,F(n)) for all i ≥ 0.

It follows by the definitions that Γ⋆(X,F) = H0
⋆ (X,F).

5.3 Computational aspects

5.3.1 Relation to local cohomology

As above let S denote a graded ring with m = ⊕n>0Sn. Let M denote a graded
S-module and F its accociated sheaf on (X,OX) = ProjS.

Theorem 5.13. There is an exact sequence of graded S-modules

0 → H0
m
(M) →M → H0

⋆ (X,F) → H1
m
(M) → 0

and isomorphisms Hi+1
m

(M) ∼= Hi
⋆(X,F) for all i > 0. Moreover all the homo-

morphisms are homgogeneous of degree 0.
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The proof follows by the definition of the sheaf cohomology as the cohomol-
ogy of the truncated complex Dx(M) and its relation to the Čech complex that
carries as cohomology modules the local cohomology Hi

m
(M), i ∈ Z. In fact, the

above exact sequence measures the deviation of the natural mapM → H0
⋆ (X,F)

from being an isomorphism. In the example (C) above we get H1
m
(S) ∼= k(−1).

5.3.2 Local Duality

Now we assume that S = k[x0, . . . , xr] a polynomial ring over a field k with its
natural grading. Then (X,OX) for X = ProjS is called the projective r-space
(Pr

k,OPr
k
). We write also m = (x0, . . . , xr) for the irrelevant maximal ideal of S.

Remark 5.14. (A) Let M denote a finitely generated S-module. Then F = M̃
is a coherent sheaf and

dimkH
i(X,F(n)) <∞

for all i, n ∈ N. Let i > 0 be a positive integer. Then

Hi(X,F(n)) = 0 for all n≫ 0.

(B) It is known that Hi(X,F(n)) = 0 for i > dimX and all n ∈ Z.
(C) The Euler characteristic of F is defined by

χ(F , n) =
∑

i≥0

(−1)i dimkH
i(X,F(n)).

It is equal to the Hilbert polynomial.

For a graded S-module M we write M † for the graded k-vector space dual
⊕n∈ZHomk(M−n, k) equipped with the natural structure as an S-module. Note
thatM → (M †)† is an isomorphism forM a finitely generated graded S-module
M.

Theorem 5.15. (Local Duality) Let M denote a finitely generated S-module.
Then there are natural isomorphisms homogeneous of degree zero

Hi
m
(M) ∼= Extr+1−i

S (M,S(−r − 1))†

for all i ∈ N.

Proof. Since S is a polynomial ring the Čech complex Cx(S) provides a flat
resolution of (S(−r − 1))† = Homk(S(−r − 1), k), Macaulay’s inverse system.
Therefore

Hi
m
(M) ∼= Hi(Cx(S)⊗S M) ∼= Torr+1−i

S (M,Homk(S(−r − 1), k))

for all i ∈ N. Since M is a finitely generated R-module it follows that

Hi
m
(M) ∼= Homk(Ext

r+1−i
S (M,S(−r − 1)), k) = Extr+1−i

S (M,S(−r − 1))†

as required.

As a consequence for the sheaf cohomoogy on (Pr
k,OPr

k
) there is the following

result. We write hi(X,F) = dimkH
i(X,F) for all i ∈ Z.
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Corollary 5.16. Let M denote a finitely generated graded S-module and F =
M̃ . Let n ∈ Z denote an integer. Then there are an exact sequence of k-
vectorspaces

0 → Extr+1
S (M,S)∨−n−r−1 →Mn → H0(OPr

k
,F(n)) → ExtrS(M,S)∨−n−r−1 → 0

and isomorphisms of k-vectorspaces

Hi(OPr
k
,F(n)) ∼= Extr−i

S (M,S)∨−n−r−1, for i ≥ 1,

where Homk(−, k) = −∨ denotes the dual of k-vector spaces.

As an application we get the sheaf cohomology of the structure sheaf of the
projective r-space.

Corollary 5.17. For the sheaf cohomology of the the projective r-space it fol-
lows:

(a) Hi(Pr
k,OPr

k
(n)) = 0 for all i 6= 0, r and all n ∈ Z.

(b) h0(Pr
k,OPr

k
(n)) =

(

r+n
r

)

for n ≥ 0 and h0(Pr
k,OPr

k
(n)) = 0 for all n < 0.

(c) hr(Pr
k,OPr

k
(n)) = 0 for n ≥ −r and hr(Pr

k,OPr
k
(n)) =

(−n−1
r

)

for all
n ≤ −r − 1.

5.3.3 Computer algebra systems

Let X ⊂ Pr
k a projective variety. How to compute its sheaf cohomology

Hi(X,OX(n)) = Hi(Pr
k, i⋆OX(n))

or at least its dimensions hi(X,OX(n)) for various i, n ∈ Z?
The solution is related to the result in Corollary 5.16. For instance with

Singular it is possible to compute the modules ExtiS(M,S) for a finitely gen-
erated S-module M . Then one might use Corollary 5.16 in order to get the
expressions for hi(X,OX(n)). In fact, this is implemented in Singular in the
library sheafcoh.lib (see [DGPS12]). We refer to the Singular Manual for
the details and examples.

In the following we want to illustrate a direct approach to the calculation of
a certain sheaf cohomology.

Definition 5.18. For an irreducible, integral projective curve C ⊂ Pr
k let JC

denote the ideal sheaf of C. Then H1
⋆ (JC) = ⊕n∈ZH

1(Pr
k,JC(n)) is called the

Hartshorne-Rao module. It is a graded S-module of finite length. Note that the
vanishing of its n-th graded component characterizes n-normality of the curve C.
Note that H1

⋆ (JC) = 0 if and only if C ⊂ Pr
k is arithmetically Cohen-Macaulay.

Example 5.19. Let C ⊂ P6
k the rational curve given parametrically by

x0 = s13, x1 = s12t2, x2 = s11t3, x3 = s10t3, x4 = s9t4, x5 = st12, x6 = t13.

This is a projection of the rational normal curve C(13) ⊂ P13
k . It admitts

an (extremal) 9-secant. Note that all curves with an extremal secant line are
projections of rational normal curves. The Hartshorne-Rao module is

H1
⋆ (JC) ∼= Ext6S(S/I, S(−7))†,

where I ⊂ S = k[x0, . . . , x6] denotes the defining ideal of C.
The Singular code is as follows:
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ring R = 0,(s,t,x(0..6)),Dp;

ideal I = x(0)-s13,x(1)-s12t,x(2)-s11t2,x(3)-s10t3,x(4)-s9t4,

x(5)-st12,x(6)-t13;

ideal J = eliminate(I,s*t);

ring S = 0,x(0..6),Dp;

ideal I = imap(R,J);

resolution Ir = mres(I,0);

print(betti(Ir),"betti");

0 1 2 3 4 5 6

------------------------------------------------

0: 1 - - - - - -

1: - 10 20 15 4 - -

2: - 1 - - - - -

3: - - 10 20 15 4 -

4: - - - - - - -

5: - 1 5 10 10 5 1

6: - - - - - - -

7: - - - - - - -

8: - 1 5 10 10 5 1

------------------------------------------------

total: 1 13 40 55 39 14 2

module M = transpose(Ir[6]);

hilb(std(M));

// 1 t^0

// 2 t^1

// 3 t^2

// 5 t^3

// 7 t^4

// 9 t^5

// 7 t^6

// dimension (affine) = 0

// degree (affine) = 34

For the computation note that M = Ext6S(S/I, S)
∼= F/ Imψt, where F is the

free S-module that occurs at homological dimension r and ψt is the transpose
of the corresponding map.

We get – by reading off the Hilbert function of Ext6S(S/I, S) – the following
diagram

n ≤ 0 1 2 3 4 5 6 7 ≥ 8
h1(JC(n)) 0 7 9 7 5 3 2 1 0

Therefore for the Castelnuovo-Mumford regularity we have regJ = 9.

6 Approximation Theorems (D. Popescu)

The aim of this section is to present some results of Artin approximation and to
give some ideas of how these could be applied in different algebraic problems.
We start with some preliminaries.

A local ring (A,m) is called Henselian if the following property holds:
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”Let f be a polynomial in one variable Y over A. If ỹ ∈ A satisfies f(ỹ) ≡ 0
mod m and (∂f/∂Y )(ỹ) 6∈ m then there exists a solution y ∈ A of f in A such
that y ≡ ỹ mod m.”

One can show that this property is equivalent with the following somehow
stronger property:

”Let f = (f1, . . . , fn) be a system of polynomials in Y = (Y1, . . . , Yn) over
A, and D the determinant of the Jacobian matrix (∂fi/∂Yj). If ỹ ∈ An satisfies
f(ỹ) ≡ 0 mod m and D(ỹ) 6∈ m then there exists a solution y ∈ An of f in A
such that y ≡ ỹ mod m.”

Moreover, we may write the above property even in another stronger form:
”Let f = (f1, . . . , fr) be a system of polynomials in Y = (Y1, . . . , Yn) over

A, r ≤ n and M be an r× r-minor of the Jacobian matrix (∂fi/∂Yj). If ỹ ∈ An

satisfies f(ỹ) ≡ 0 mod m and M(ỹ) 6∈ m then there exists a solution y ∈ An of
f in A such that y ≡ ỹ mod m.”

Actually the above property follows easily from the previous one because
if for example M is the determinant of (∂fi/∂Yj)1≤i,j≤r then we may add the
polynomials fi = Yi − ỹi for r < i ≤ n obtaining a system of n polynomials.
Now the determinant of the Jacobian matrix of the new bigger system isM and
we may apply the second property.

These are properties which you studied in a previous lecture here, I will
remind you the Implicit Function Theorem from Differential or Analytic Geom-
etry.

Theorem 6.1. Let fi(x1, . . . , xn, Y1, . . . , Yn) = 0, 1 ≤ i ≤ n be some analytic
equations, where fi : C

2n → C are analytic maps in a neighborhood of (0, 0) ∈
C2n with the property that fi(0, 0) = 0, 1 ≤ i ≤ n , and det(∂fi/∂Yj)(0, 0) 6= 0.
Then there exist some unique maps yj : Cn → C, 1 ≤ i ≤ n, which are
analytic in a neighborhood of 0 ∈ Cn such that yj(0) = 0 and f(x, y) = 0 in a
neighborhood of 0.

The above theorem says in particular that the local ring of all analytic germs
of maps defined in a neighborhood of 0 ∈ Cn in other words the local ring C{x}
of convergent power series in some variables x over C, x = (x1, . . . , xn) is
Henselian. Other important Henselian rings are the formal power series ring
K[[x]], x = (x1, . . . , xn) over a field K, or its subring the algebraic power series
ring K < x >, whose elements are those formal power series, which satisfy
polynomial equations in one variable over K[x].

The Henselian property is very important. For example with its help we
may find in C[[x]] a root of the polynomial f = Y s − u for all s and all formal
power series u with a free term, that is u 6∈ (x), of C[[x]]. Indeed, let a ∈ C be
such that as = u(0), (C is algebraically closed field). Then we have f(a) ∈ (x)
and (∂f/∂Y )(a) = sas−1 6∈ (x) and so f must have a solution in C[[x]]. In
particular you may see that the polynomial g = y2 − x2 − x3 is irreducible in
C[x, y] but reducible in C[[x, y]] since there g = (y−xρ)(y+xρ), where ρ is the
square root of 1 + x.

A very important property of Henselian rings is the following lemma.

Lemma 6.2 (Newton Lemma). Let (A,m) be a Henselian ring, c a positive
integer, f = (f1, . . . , fr) be a system of polynomials in Y = (Y1, . . . , Yn) over A,
r ≤ n, and M an r× r-minor of the Jacobian matrix J = (∂fi/∂Yj). If ỹ ∈ An
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satisfies f(ỹ) ≡ 0 mod M(ỹ)2mc then there exists a solution y ∈ An of f in A
such that y ≡ ỹ mod M(ỹ)mc.

Proof. As above we may reduce our problem to the case r = n adding some
new polynomials of the form Yi − ỹi. Just to get the idea we consider the case
r = n = 1, M = ∂f/∂Y . We try to find z ∈ A such that f(ỹ+M(ỹ)z) = 0. We
may suppose M(ỹ) 6= 0, because otherwise ỹ is already a solution of f . Using
Taylor’s formula we have

f(ỹ+M(ỹ)Z) = f(ỹ)+ (∂f/∂Y )(ỹ)(M(ỹ)Z)+
∑

j>1

(∂jf/∂Y j)(ỹ)(M(ỹ)Z)j = 0.

By hypothesis we have f(ỹ) = M(ỹ)2a for some a ∈ mc. Dividing the above
equations by M(ỹ)2 we get

a+ Z +
∑

j>1

(∂jf/∂Y j)(ỹ)(M(ỹ)j−2Zj) = 0,

where we may apply the Henselian property. Thus there exists z ∈ m such that

a+ z +
∑

j>1

(∂jf/∂Y j)(ỹ)(M(ỹ)j−2zj) = 0,

and so y = ỹ +M(ỹ)z is a solution of f . Remains to show that z is in fact in
mc. Suppose that z ∈ mj for some j ≥ 1. Then from the above equation we get

z = −a−
∑

j>1

(∂jf/∂Y j)(ỹ)(M(ỹ)j−2zj) ∈ mmin{c,2j}

and it follows by recurrence z ∈ mc.
Next we give an idea about the case r = n > 1. In this case by Taylor’s

formula we get for z ∈ An as above the system of equations

fk(ỹ +M(ỹ)Z) = fk(ỹ) +

n
∑

i=1

(∂fk/∂Yi(ỹ)(M(ỹ)Zi)+

∑

j>1

(
∑

j1,...,jn≥0,j=j1+...+jn

(∂jfk/∂Yj1 · · ·∂Yjn)(ỹ)(M(ỹ)jZj1
1 · · ·Zjn

n ) = 0,

k = 1, . . . n. By hypothesis we have f(ỹ) = M(ỹ)2a for some a ∈ mcAn. Using
linear algebra there exists a n×n matrix C over A[Y ] such that JC =MIn, In
being the n× n unit matrix. Then the above system of equations becomes

M(ỹ)J(ỹ)[C(ỹ)a+ Z + (terms in Z of degree ≥ 2)] = 0.

Then it is enough to find z satisfying

C(ỹ)a+ Z + (terms in Z of degree ≥ 2) = 0,

which follows from the Henselian property.

Lemma 6.3. Let A = K < x >, x = (x1, . . . , xn), f = (f1, . . . , fr) be a system
of polynomials in Y = (Y1, . . . , Yn) over A, r ≤ n, and M an r × r-minor of
the Jacobian matrix (∂fi/∂Yj). Let ŷ be a solution of f in Â = K[[x]] such that
M(ŷ) 6≡ 0 mod (x). Then for any c ∈ N there exists a solution y(c) in A such
that y(c) ≡ ŷ mod (x)c.
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Proof. Choose c and an element ỹ in An such that ỹ ≡ ŷ mod (x)c. Then
f(ỹ ≡ f(ŷ) = 0 mod (x)c, M(ỹ) ≡ M(ŷ) 6= 0 mod (x). It follows M(ỹ)
invertible and so f(ỹ) ≡ 0 mod M2(ỹ)(x)c. Now it is enough to apply Newton
Lemma.

The above lemma says in fact that a special solution ŷ of a special system
of polynomial equations f can be approximated as well we want in the (x)-adic
topology of Â by solutions in A, that is the algebraic ones. This is a preliminary
form of Artin approximation.

The following lemma is a consequence of the so called Jacobian criterion.

Lemma 6.4. If A is a domain, q ⊂ A[Y ] a prime ideal, and the field exten-
sion Q(A) ⊂ Q(A[Y ]/q) is separable then there exist some polynomials f =
(f1, . . . , fr) of q such that qA[Y ]q = (f1, . . . , fr)A[Y ]q and the Jacobian matrix
(∂fi/∂Yj) has an r × r-minor which is not in q.

Since Q(A) ⊂ Q(A[Y ]/q) is separable of finite type one can find u1, . . . , us ∈
A[Y ] algebraically independent over Q(A) and v ∈ A[Y ] such that Q(A[Y ]/q) =
Q(A)(u1, . . . , us, v) and v is algebraic separable over Q(A)(u1, . . . , us). The
irreducible polynomial associated to v over Q(A)(u1, . . . , us) should have the
derivation non-zero in Q(A[Y ]/q). This is the idea behind the above lemma.

A Noetherian local ring (A,m) has the property of approximation if every
finite system of polynomial equations f over A in Y = (Y1, . . . , YN ) has its
solutions in A dense with respect to them-adic topology in the set of its solutions
in the completion Â of A; that is, for every solution ŷ of f in Â and every positive
integer c there exists a solution y of f in A such that y ≡ ŷ mod mcÂ.

Example 6.5. Let k := Fp(T
p
1 , . . . , T

p
s , . . .), where Fp is the field with p elements,

and K := k(T1, . . . , Ts, . . .), p being a prime number and (T )i a countable set
of variables. Then [K : k] = ∞ and the discrete valuation ring R := k[[x]][K]
is Henselian but not complete because for example the formal power series f :=
∑∞

i=1 Tix
i in the variable x over K is not in R. In fact one can show that a

formal power series g =
∑

i gix
i in x over K is in R if and only if [k((gi)i) :

k] < ∞. Since the polynomial Y p − fp has no solutions in R it follows that R
has not the property of approximation.

Next lemma shows how one can apply the property of approximation in an
easy algebraic problem.

Lemma 6.6. Suppose that A is a domain and it has the property of approxi-
mation. Then Â is a domain too.

Proof. Suppose that Â is not a domain, that is there exist two nonzero elements
ŷ, ẑ ∈ Â such that ŷẑ = 0. Choose a positive integer c such that ŷ, ẑ 6∈ mcÂ.
Take f = Y Z. Then there exists y, z ∈ A a solution of f such that y ≡
ŷ mod mcÂ, z ≡ ẑ mod mcÂ. It follows yz = 0 and y, z 6∈ mc. Contradiction!

As in a lemma above we can see that if A has the property of approximation
then it share with its completion Â many algebraic properties. The following
example is an exception.
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Example 6.7. Let R̂ = C[[x]] and h = e(e
x−1), where ex =

∑∞
i=0 x

i/(i!). Let

R be the algebraic closure of C[x, h] in R̂. Then R is an excellent Henselian
discrete valuation ring. Moreover, by Artin’s Theorem it has the property of
approximation. One can show that the identity is the only C-automorphism of
R by G. Pfister, which is not the case of R̂.

Example 6.8. Let K be a field of characteristic p > 0 and g0, . . . , gp−1 ∈ R̂ =
K[[x]] be some formal power series which are algebraically independent over

K[x]. Set g =
∑p−1

i=0 g
p
i x

i and let R be the algebraic closure of K[x, g] in R̂.
Then R is a Henselian discrete valuation ring but it has not the property of
approximation because the polynomial g −∑p−1

i=0 Y
p
i x

i has a solution in R̂ but
none in R since the transcendental degree of R over K[x] is 1.

Let K be a field and S = K[[x]], x = (x1, . . . , xn). A formal power series
f ∈ S is called regular in xn of order t if f(0, . . . , 0, xn) 6= 0 has the order t.

Theorem 6.9 (Weierstrass Preparation Theorem). If f is regular in xn of order

t then there exist a unique polynomial g = xtn +
∑t−1

i=0 aix
i
n, with

ai ∈ (x1, . . . , xn−1)K[[x1, . . . , xn−1]] and a unique unit u ∈ S such that f = ug
(g is called the Weierstrass polynomial of f) .

Theorem 6.10 (Weierstrass Division Theorem). Let f, h ∈ S be two formal
power series. If f is regular of order t then there exist unique formal power
series q ∈ S, w0, . . . , wt−1 ∈ K[[x1, . . . , xn−1]] such that h = qf +

∑t−1
i=1 wix

i
n.

Lemma 6.11. If K is infinite and f ∈ S is non-zero then there exists a K-
automorphism τ of S of the form xi → xi + cixn, for i < n, xn → xn, ci ∈ K
such that τ(f) is regular in xn of a certain order t.

Example 6.12. Let h be a polynomial of degree >> 0 in Y1 over C and w =
ex =

∑∞
i=o x

i/(i!). Let f = h − h(x) + (Y1 − x)Y2 be a polynomial equation
in Y = (Y1, Y2) over R := C < x >. Set y1 = x + w. By Taylor’s formula
h(y1) − h(x) ∈ (y1 − x) = (w) and so there exists y2 ∈ R̂ = C[[x]] such that
(y1, y2) is a solution of f in R̂. Let c ∈ N and set wc =

∑c
i=o x

i/(i!). Then for
ỹ1 = x + wc there exists ỹ2 ∈ R using Taylor’s formula such that (ỹ1, ỹ2) is a
solution of f with ỹ1 ≡ y1 mod xc. It follows that wcy2 ≡ wy2 = h(y1)−h(x) ≡
h(ỹ1)− h(x) = wcỹ2 mod xc. Thus ỹ2 ≡ y2 mod xc and so the solution (ỹ1, ỹ2)
of f in R coincides modulo xc with the previous one. This is in fact what our
next theorem states.

Let R = K < x >, x = (x1, . . . , xn) be the ring of algebraic power series in
x over K, that is the algebraic closure of the polynomial ring K[x] in the formal
power series ring R̂ = K[[x]]. Let f = (f1, . . . , fq) in Y = (Y1, . . . , YN ) over R

and ŷ a solution of f in R̂.

Theorem 6.13 (M. Artin [A69]). For any c ∈ N there exists a solution y(c) in
R such that y(c) ≡ ŷ mod (x)c.

Proof. We restrict to the case when the characteristic of K is zero, because we
do not want to have separability problems and we believe it is enough for the
purpose of our lectures. Apply induction on n, the case n = 0 being trivial. Let
h : R[Y ] → R̂ be the morphism of R-algebras given by Y → ŷ. Since R̂ is a
domain we see that Ker h is a prime ideal. It is enough to consider the case
when f generates Ker h. There is an argument to reduce the problem to the
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case when f generates P :=Ker h ∩K[x, Y ] but we prefer to skip it. However
we will suppose that f generates P .

Set r =height(P ). As the fraction field extension Q(R) ⊂ Q(R̂) is separa-
ble it follows that Q(R) ⊂ Q(R[Y ]/P ) is separable and we may suppose after
renumbering of (fi) that there exists an r × r-minor M of the Jacobian matrix
(∂fi/∂Yj)i∈[r],j∈[N ] which is not in P , that is M(ŷ) 6= 0.

Applying an automorphism of R of type xi → xi + aixn for i < n and
xn → xn for some ai ∈ K we may suppose that M(ŷ)(0, . . . , 0, xn) 6= 0, and so
M2(ŷ) is regular in xn of order a certain u ∈ N. Set R′ = K < x1, . . . , xn−1 >,
R̂′ = K[[x1, . . . , xn−1]] and m′ = (x1, . . . , xn−1). By Weierstrass Preparation
Theorem (see [JP00, Section 3.2]) there exist âi, 0 ≤ i < u in m′R̂′ such that
M2(ŷ) is associated in divisibility with the polynomial

â = xun + âu−1x
u−1
n + . . .+ â0

from R̂′[xn].
Let Ysj , Ak, 1 ≤ s ≤ N , 0 ≤ j, k < u be some new variables. Substitute in

f , M2 the variable Ys by

Y +
s =

u−1
∑

j=0

Ysjx
j
n

and divide the result by the monic polynomial

A = xun +

u−1
∑

j=0

Ajx
j
n.

We obtain

M2(Y +) = AH((Ysj), (Ak)) +
u−1
∑

j=0

Gj((Ysj), (Ak))x
j
n,

fi(Y
+) = AHi((Ysj), (Ak)) +

u−1
∑

j=0

Fij((Ysj), (Ak))x
j
n,

for some polynomials H,Hi, Gj , Fij ∈ K[x1, . . . , xn−1][(Ysj), Ak], 1 ≤ i ≤ r,
0 ≤ j, k < u. Using Weierstrass Division Theorem we get

ŷs =

u−1
∑

j=0

ŷsjx
j
n + âb̂s,

where ŷsj ∈ R̂′, b̂s ∈ R̂. Set ŷ+s =
∑u−1

j=0 ŷsjx
j
n. Substituting Y

+ by ŷ+ above
we obtain

M2(ŷ+) = âH((ŷsj), (âk)) +
u−1
∑

j=0

Gj((ŷsj), (âk))x
j
n,

fi(ŷ
+) = âHi((ŷsj), (âk)) +

u−1
∑

j=0

Fij((ŷsj), (âk))x
j
n,
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1 ≤ i ≤ r. But

M2(ŷ+) ≡M2(ŷ) ≡ 0, fi(ŷ
+) ≡ fi(ŷ) = 0 mod â

and using the unicity from Weierstrass Division Theorem, it follows from the
above system of equations that

Gj((ŷsj), (âk)) = 0, Fij((ŷsj), (âk)) = 0,

1 ≤ i ≤ r, 0 ≤ j < u, that is (ŷsj), (âk) is a solution of the system of polynomials

G = (Gj), F = (Fij) in R̂′. Then by induction hypothesis for c′ = c + u + 1

there exists a solution (y
(c′)
sj , a

(c′)
k ) of F,G in R′ such that

y
(c′)
sj ≡ ŷsj , a

(c′)
k ≡ âk mod m′c′R̂′.

Choose bs ∈ K[x] such that bs ≡ b̂s mod (x)c
′

and set ã(c
′) = xun +

∑u−1
k=0 a

(c′)
k xkn, ỹ

(c′)
s = ã(c

′)bs +
∑u−1

j=0 y
(c′)
sj xjn. Clearly ỹ

(c′)
s ≡ ŷs mod (x)c

′

and
M2(ỹ(c

′)) ≡ 0, fi(ỹ
(c′)) ≡ 0 mod (ã(c

′)).

On the other hand M2(ỹ(c
′)) ≡ M2(ŷ) mod (x)(c

′). As c′ > u it follows

that M2(ỹ
(c′)
s ) is regular in xn of order u and so M2(ỹ

(c′)
s ) is associated in

divisibility with ã(c
′) by Weierstrass Preparation Theorem. Thus fi(ỹ

(c′)) ≡
0 mod M2(ỹ

(c′)
s ), 1 ≤ i ≤ r.

Now note that M2(ỹ
(c′)
s ) does not belong to (x)u+1 because it is regu-

lar of order u, but fi(ỹ
(c′)) ≡ fi(ŷ) = 0 mod (x)c

′

and we get fi(ỹ
(c′)) ≡

0 mod M2(ỹ
(c′)
s )(x)c. By Newton Lemma there exists a solution y(c) in R of

fi, 1 ≤ i ≤ r such that y(c) ≡ ỹ(c
′) ≡ ŷ mod (x)c.

It remains to show that the solution y(c) is a solution also of fi with r < i ≤ q
if c is big enough. In other words, a solution of fi, 1 ≤ i ≤ r which is closed
to ŷ is a solution of fi for all i > r. Let I :=

√

(f1, . . . , fr) = ∩e
i=1pi be the

irreducible primary decomposition of I, pi being prime ideals of K[x, Y ] and
hc : K[x, Y ] → R̂ be the morphism given by Y → y(c). Clearly Kerhc ⊃ I.
Since P ⊃ (f1, . . . , fr) we see that P ⊃ pi for some i, let us say P ⊃ p1. But
height p1 ≥ r since the jacobian matrix (∂fi/∂Yj)i∈[r],j∈[N ] has a r × r-minor
M which is not in P and so not in p1. Thus P = p1, which ends the problem
when e = 1.

Suppose that e > 1. Choose a polynomial g ∈ (∩e
i=2pi) \ p1. Then g(ŷ) 6= 0

and for c big enough we get g(y(c)) 6= 0, that is ∩e
i=2pi 6⊂Ker hc. As (∩e

i=2pi)p1 ⊂
I ⊂Ker hc we get P = p1 ⊂Ker hc, which is enough.

Let (A,m) be a Noetherian local ring. A has the property of strong approxi-
mation if for every finite system of polynomial equations f in Y = (Y1, . . . , YN )
over A there exist a map ν : N → N with the following property: If ỹ ∈ AN

satisfies f(ỹ) ≡ 0 mod mν(c), c ∈ N then there exists a solution y ∈ AN of f
in A with y ≡ ỹ mod mc. The function ν is called the Artin function of A. By
Artin the Henselization of a local ring, which is essentially of finite type over a
field, has the property of strong approximation. If A is complete then it has the
property of strong approximation by G. Pfister and myself.

Next lemma shows how one can apply the property of strong approximation
in an easy algebraic problem.
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Lemma 6.14. Suppose that A is a domain and it has the property of strong
approximation. Let (an)n∈N be a sequence of elements of A, which converges in
the m-adic topology to an element a ∈ A. If a is irreducible then there exists a
positive integer t such that an is irreducible for all n ≥ t.

Proof. Let ν be the Artin function associated to the polynomial f = Y Z−a over
A. Let t > ν(1) be such that an ≡ a mod mν(1) for all n ≥ t. If an is reducible
for some n ≥ t then there exist ỹ, z̃ in m such that ỹz̃ = an ≡ a mod mν(1).
In particular, f(ỹ, z̃) ≡ 0 mod mν(1) and so there exists y, z ∈ A such that
f(y, z) = 0 and y ≡ ỹ, z ≡ z̃ mod m. Thus a = yz and y, z ∈ m which is
impossible.

Proposition 6.15. A Noetherian local ring has the property of approximation
if and only if it has the property of strong approximation.

Proof. Suppose that (A,m) has the property of strong approximation. Let f
be a finite system of polynomial equations in Y = (Y1, . . . , YN ) over A and ŷ a
solution of f in the completion Â. Let ν be the Artin function associated to f ,
c be a positive integer and choose y ∈ AN such that y ≡ ŷ mod mν(c)Â. Then
f(y) ≡ f(ŷ) = 0 mod mν(c)Â and so there exists a solution ỹ of f in A such
that ỹ ≡ y mod mc. Clearly, ỹ ≡ ŷ mod mcÂ.

Conversely, suppose that A has the property of approximation. Let f , c be
as above. Since the completion Â has the strong approximation, let ν be the
Artin function of f over Â. We claim that this function works for f over A
too. Indeed, let ỹ be in AN such that f(ỹ) ≡ 0 mod mν(c). Then there exists
a solution ŷ of f in Â such that ŷ ≡ ỹ mod mcÂ. Since A has the property
of approximation there exists a solution y of f in A such that y ≡ ŷ ≡ ỹ mod
mcÂ.

7 Algorithms and Computations in Local Alge-

bra (M. Vladoiu)

The aim of this section is to develop the algorithm to compute the Hilbert
function, Hilbert series, Hilbert polynomial and Krull dimension respectively
for a graded module over the positively graded polynomial ring in n inde-
terminates over a field K. Moreover, we illustrate in the case of graded K–
algebra K[x1, . . . , xr ]/I, where I is homogeneous ideal how to use Singular
(cf. [DGPS12]) for this demand.

First we recall the definitions of a graded ring and graded module together
with some basic constructions and elementary properties.

Definition 7.1. A graded ring A is a ring together with a direct sum decompo-
sition A =

⊕

ν≥0Aν , where the Aν are abelian groups satisfying AνAµ ⊂ Aν+µ

for all ν, µ ≥ 0.
A graded K-algebra, K a field, is a K-algebra which is a graded ring such

that Aν is a K-vector space for all ν ≥ 0, and A0 = K.
The Aν are called homogeneous components and the elements of Aν are called

homogeneous elements of degree ν.

Example 7.2. Let A := K[x1, . . . , xr ] be the polynomial ring over the field K in
r indeterminates. Then S is a graded K–algebra with the following direct sum
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decomposition A =
⊕

ν≥0Aν , where Aν is the K–vector space generated by all

monomials of degree ν (the degree of the monomial xi11 · · ·xirr is i1 + · · ·+ ir).

Definition 7.3. Let A =
⊕

ν≥0Aν be a graded ring. An A–moduleM , together
with a direct sum decomposition M =

⊕

ν∈ZMν into abelian groups is called a
graded A–module if AνMµ ⊂Mν+µ for all ν ≥ 0, µ ∈ Z.

The elements from Mν are called homogeneous of degree ν.

Definition 7.4. LetM =
⊕

ν∈ZMν be a graded A–module and defineM(d) :=
⊕

ν∈ZM(d)ν with M(d)ν := Mν+d. Then M(d) is a graded A–module and, in
particular A(d) is a graded A–module. M(d) is called the d–th shift of M .

Lemma 7.5. Let M =
⊕

ν∈ZMν be a graded A–module and ⊂M a submodule.
The following conditions are equivalent:

(1) N is graded with the induced grading, that is, N =
⊕

ν∈Z(Mν ∩N).

(2) N is generated by homogeneous elements.

(3) Let m =
∑

mν , mν ∈Mν . Then m ∈ N if and only if mν ∈ N for all ν.

Definition 7.6. Let A =
⊕

ν≥0Aν be a graded ring and M =
⊕

ν∈ZMν ,
N =

⊕

ν∈ZNν be graded A-modules. A homomorphism ϕ :M → N is called
homogeneous of degree d if ϕ(Mν) ⊂ Nν+d for all ν. If ϕ is homogeneous of
degree zero we call ϕ just homogeneous.

Example 7.7. Let M be a graded A-module and f ∈ Ad then the multiplication
with f defines a homogeneous homomorphism M → M of degree d. It also
defines a homogeneous homomorphism M →M(d) of degree 0.

Lemma 7.8. Let A be a graded ring and M,N be graded A-modules. Let
ϕ : M → N be a homogeneous A-module homomorphism, then Ker(ϕ), Coker(ϕ)
and Im(ϕ) are graded A-modules with the induced grading.

Lemma 7.9. Let A =
⊕

ν≥0Aν be a Noetherian graded K-algebra and M =
⊕

ν∈ZMν be a finitely generated A-module. Then

(1) there exists m ∈ Z such that Mν = 〈0〉 for ν < m;

(2) dimKMν <∞ for all ν.

Proof. (1) is obvious because M is finitely generated and a graded A-module.
To prove (2) it is enough to prove thatMν is a finitely generated A0-module for
all ν.

By assumption M is finitely generated and we may choose finitely many
homogeneous elements m1, . . . ,mk to generate M . Assume that mi ∈ Mei for
i = 1, . . . , k, then

∑

iAn−ei ·mi =Mn (with the convention Aν = 0 for ν < 0).
This implies that Mn is a finitely generated A0-module because the Aν are
finitely generated A0-modules.

As a consequence of Lemma 7.9 we may introduce the following definition.
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Definition 7.10. Let A =
⊕

ν≥0Aν be a Noetherian graded K–algebra, K a
field, and let M =

⊕

ν∈ZMν be a finitely generated graded A–module. The
Hilbert function HM : Z → Z of M is defined by

HM (n) := dimK(Mn) ,

and the Hilbert–Poincaré series HPM of M is defined by

HPM (t) :=
∑

ν∈Z

HM (ν) · tν ∈ Z[[t]][t−1] .

The following results are elementary properties of HM and HPM .

Lemma 7.11. Let A =
⊕

ν≥0Aν be a Noetherian graded K–algebra, and let M
be a finitely generated graded A–module.

(1) Let N ⊂M be a graded submodule, then

HM (n) = HN (n) +HM/N (n)

for all n, in particular, HPM (t) = HPN (t) + HPM/N (t).

(2) Let d be an integer, then

HM(d)(n) = HM (n+ d)

for all n, in particular, HPM(d)(t) = t−d HPM (t).

(3) Let d be a non–negative integer, let f ∈ Ad, and let ϕ : M(−d) →M be
defined by ϕ(m) := f ·m, then Ker(ϕ) and Coker(ϕ) are graded A/〈f〉–
modules with the induced gradings and

HM (n)−HM (n− d) = HCoker(ϕ)(n)−HKer(ϕ)(n− d) ,

in particular, HPM (t)− td HPM (t) = HPCoker(ϕ)(t)− tdHPKer(ϕ)(t).

Proof. (1) holds, because Nν = N ∩Mν and (M/N)ν =Mν/Nν . (2) is an im-
mediate consequence of the definition of M(d), and (3) is a consequence of (1)
and (2).

Theorem 7.12. Let A =
⊕

ν≥0Aν be a graded K–algebra, and assume that A
is generated, as K–algebra, by x1, . . . , xr ∈ A1. Then, for any finitely generated
(positively) graded A–module M =

⊕

ν≥0Mν ,

HPM (t) =
Q(t)

(1− t)r
for some Q(t) ∈ Z[t] .

Proof. We prove the theorem using induction on r. In the case r = 0, M is a
finite dimensional K–vector space, and, therefore, there exists an integer n such
that Mν = 〈0〉 for ν ≥ n. This implies HPM (t) ∈ Z[t].

Assume that r > 0, and consider the map ϕ :M(−1) →M defined by mul-
tiplication with x1. Using Lemma 7.11 (3), we obtain

(1− t) ·HPM (t) = HPCoker(ϕ)(t)− tHPKer(ϕ)(t).

Now both Ker(ϕ) and Coker(ϕ) are graded A/〈x1〉 ∼= A0[x2, . . . , xr]–modules,
where xi := xi mod 〈x1〉, i = 2, . . . , r. Using the induction hypothesis we obtain
HPCoker(ϕ)(t) = Q1(t)

/

(1− t)r−1 and HPKer(ϕ)(t) = Q2(t)
/

(1− t)r−1 for some

Q1, Q2 ∈ Z[t]. This implies HPM (t) =
(

Q1(t)− tQ2(t)
)/

(1− t)r.
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With the notations of Theorem 7.12, we cancel all common factors in the
numerator and denominator of HPM (t) = Q(t)

/

(1 − t)r, and we obtain

HPM (t) =
G(t)

(1− t)s
, 0 ≤ s ≤ r , G(t) =

d
∑

ν=0

gνt
ν ∈ Z[t] ,

such that gd 6= 0 and G(1) 6= 0, that is, s is the pole order of HPM (t) at t = 1.1

Definition 7.13. Let A =
⊕

ν≥0Aν be a Noetherian graded K–algebra, and
let M =

⊕

ν≥0Mν be a finitely generated (positively) graded A–module.

1. The polynomial Q(t), respectively G(t), defined above, is called the first
Hilbert series, respectively the second Hilbert series, of M .

2. Let d be the degree of the second Hilbert series G(t), and let s be the pole
order of the Hilbert–Poincaré series HPM (t) at t = 1, then

PM :=

d
∑

ν=0

gν ·
(

s− 1 + n− ν

s− 1

)

∈ Q[n]

is called the Hilbert polynomial of M (with
(

n
k

)

= 0 for k < 0).

Corollary 7.14. With the above assumptions, PM is a polynomial in n with
rational coefficients, of degree s− 1, and satisfies PM (n) = HM (n) for n ≥ d.
Moreover, there exist aν ∈ Z such that

PM =
s−1
∑

ν=0

aν ·
(

n

ν

)

=
as−1

(s− 1)!
· ns−1 + lower terms in n ,

where as−1 = G(1) > 0.

Proof. The equality 1
/

(1− t)s =
∑∞

ν=0

(

s−1+ν
s−1

)

· tν (see Example 7.18) implies

∞
∑

ν=0

HM (ν)tν = HPM (t) =

(

d
∑

ν=0

gνt
ν

)

·
∞
∑

µ=0

(

s− 1 + µ

s− 1

)

tµ .

Therefore, for n ≥ d, we obtain

HM (n) =
d
∑

ν=0

gν ·
(

s− 1 + n− ν

s− 1

)

= PM (n) .

It is easy to see that the leading term of PM ∈ Q[n] is
∑d

ν=0 gνn
s−1/(s− 1)!

which equals G(1) · ns−1/(s− 1)!. In particular, we obtain degPM = s− 1.

Finally, we have to prove that PM =
∑s−1

ν=0 aν
(

n
ν

)

for suitable aν ∈ Z and
as−1 > 0. Suppose that we can find such aν ∈ Z. Then

PM =
as−1

(s− 1)!
· ns−1 + lower terms in n .

Now, PM (n) = HM (n) > 0 for n sufficiently large implies as−1 > 0. Finally,
the existence of suitable integer coefficients aν is a consequence of the following
general lemma.

1We set G(t) := 0, s := 0, if M = 0. Throughout this lecture the zero–polynomial has

degree −1, and we set
(

n

−1

)

:= 0 if n ≥ 0 and
(

−1

−1

)

:= 1.
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Lemma 7.15. Let f ∈ Q[t] be a polynomial of degree m and n0 ∈ N such that
f(n) ∈ Z for all n ≥ n0. Then f(n) =

∑m
ν=0 aν

(

n
ν

)

for suitable aν ∈ Z.

Proof. Let g(n) := f(n+ 1)− f(n). Then g is a polynomial of degree m− 1
and g(n) ∈ Z for n ≥ n0. By induction on m we may assume that there exist

bν ∈ Z such that g(n) =
∑m−1

ν=0 bν
(

n
ν

)

. Now consider the function

h(n) := f(n)−
m
∑

ν=1

bν−1

(

n

ν

)

.

Then

h(n+ 1)− h(n) = g(n)−
m
∑

ν=1

bν−1

((

n+ 1

ν

)

−
(

n

ν

))

= g(n)−
m
∑

ν=1

bν−1

(

n

ν − 1

)

= 0 .

It follows that h(n) = h(0) for all n ∈ N, hence f(n) = h(0) +
∑m

ν=1 bν−1

(

n
ν

)

.

This implies f(n) =
∑m

ν=0 aν
(

n
ν

)

with a0 = h(0) and aν = bν−1 for ν ≥ 1.

Definition 7.16. Let R be an arbitrary ring. The supremum of the lengths
r, taken over all strictly decreasing chains P0 ) P1 ) · · · ) Pr of prime ideals
of R, is called the Krull dimension of R and denoted by dim(R). If M is an
R–module, then the Krull dimension of M , dim(M), is defined by dim(M) =
dim

(

R/Ann(M)
)

.

Remark 7.17. It is a consequence of Hilbert–Serre’s Theorem (see [GP07, Ex-
ercise 5.3.5]) that the degree s (from Corollary 7.14) of the Hilbert polynomial
PM is just dim(M)− 1.

In the following we want to answer to the following question:

How do we compute the Hilbert–Poincaré series, Hilbert function, Hilbert
polynomial and Krull dimension for K[x1, . . . , xr]/I, where I is a homogeneous
ideal?

Example 7.18. Let K[x] := K[x1, . . . , xr ] be the polynomial ring in r indetermi-
nates, considered as graded K–algebra. Then HK[x](n) = PK[x](n) =

(

n+r−1
r−1

)

and, therefore,

HPK[x](t) =

∞
∑

ν=0

(

r − 1 + ν

r − 1

)

tν =
1

(1− t)r
.

It follows from Definition 7.13 that the Hilbert polynomial and the Hilbert–
Poincaré series determine each other. Hence, it suffices to study and compute the
Hilbert–Poincaré series. The following theorem is fundamental for the computa-
tion of the Hilbert–Poincaré series for arbitrary Noetherian graded K–algebras
and is based on the standard bases theory developed in Section 4.

Theorem 7.19. Let > be any monomial ordering on K[x] := K[x1, . . . , xr],
and let I ⊂ K[x] be a homogeneous ideal. Then

HPK[x]/I(t) = HPK[x]/L(I)(t) ,

where L(I) is the leading ideal of I with respect to >.
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Proof. We have to show that HK[x]/I(n) = HK[x]/L(I)(n), or, equivalently,
dimK K[x]n/In = dimK K[x]n/L(I)n for all n.

Let S := {xα /∈ L(I) | deg(xα) = n}. We shall prove that S represents a K–
basis in K[x]n/In and K[x]n/L(I)n. To do so, choose a standard basis G of I
and let f ∈ K[x]n. Then we obtain that both, NF(f,G) and NF

(

f, L(G)
)

, are
elements of K[x]n. Iterating this process by computing the Mora normal form
of the tail of NF(f,G), respectively NF

(

f, L(G)
)

, we can assume that NF(f,G),

NF
(

f, L(G)
)

∈∑xα∈SK · xα.
Since NF(f,G) = 0 (respectively NF

(

f, L(G)
)

= 0) if and only if f ∈ I (re-
spectively f ∈ L(I)), the latter implies that S represents a K–basis of K[x]n/In
and K[x]n/L(I)n. This proves the theorem.

Remark 7.20. In particular it follows from the theorem and Remark 7.17 that

dim(K[x1, . . . , xr]/I) = dim(K[x1, . . . , xr]/L(I)),

for every homogeneous ideal I and every monomial ordering on K[x1, . . . , xr].
However, this is true for an arbitrary ideal I of K[x1, . . . , xr], see [GP07, Corol-
lary 7.5.5].

Note that this theorem implies that the computation of the Hilbert–Poincaré
series for K[x1, . . . , xr]/I reduces to the computation of K[x1, . . . , xr]/L(I) for
an arbitrary monomial ordering. The following lemma is the key step for writing
down an algorithm to compute the Hilbert–Poincaré series for a monomial ideal.

Lemma 7.21. Let I ⊂ K[x] := K[x1, . . . , xr] be a homogeneous ideal, and let
f ∈ K[x] be a homogeneous polynomial of degree d then

HPK[x]/I(t) = HPK[x]/〈I,f〉(t) + td HPK[x]/(I:〈f〉)(t) .

Proof. We consider the following exact sequence

0 −→
(

K[x]
/

(I : 〈f〉)
)

(−d) ·f−→ K[x]/I −→ K[x]/〈I, f〉 −→ 0

and use Lemma 7.11.

Example 7.22. Let I := 〈xz, yz〉 ⊂ K[x, y, z]. Using Lemma 7.21 for f := z we
obtain

HPK[x,y,z]/〈xz,yz〉(t) = HPK[x,y](t) + t ·HPK[z](t) =
−t2 + t+ 1

(1− t)2
,

and, therefore,

PK[x,y,z]/〈xz,yz〉(n) =

(

n+ 1

1

)

+

(

n

1

)

−
(

n− 1

1

)

= n+ 2 .

Example 7.23. Let f1, . . . , fs be a homogeneous regular sequence in the poly-
nomial ring S := K[x1, . . . , xr]. If ai = deg(fi), then

HPS/〈f1,...,fs〉(t) =

∏s
i=1(1− tai)

(1 − t)r
.
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Indeed, the assertion follows by induction on s. The case s = 1 is an easy con-
sequence of Lemma 7.11(2) and Lemma 7.21. For the induction step, we obtain
from the definition of a regular sequence that the homogeneous homomorphism

S/〈f1, . . . , fi−1〉(−ai) ·fi−→ S/〈f1, . . . , fi−1〉

is injective for all i = 1, . . . , r. Since Coker(
·fi−→) is S/〈f1, . . . , fi〉 we obtain the

desired formula from the induction hypothesis.

Using Lemma 7.21 we obtain the following algorithm for computing the
Hilbert–Poincaré series for a monomial ideal.

Algorithm 3 MonomialHilbertPoincare (I), the Hilbert–Poincaré series
for K[x]/I, where I is a monomial ideal

Input: I := 〈m1, . . . ,mk〉 ⊂ K[x], mi monomials in x = (x1, . . . , xr).
Output: A polynomial Q(t) ∈ Z[t] such that Q(t)/(1− t)r is the Hilbert–

Poincaré series of K[x]/I.

• choose S =
{

xα1 , . . . , xαs
}

⊂ {m1, . . . ,mk} to be the minimal set of
monomial generators of I;

• if S = {0} then return 1;

• if S = {1} then return 0;

• if all elements of S have degree 1 then return (1− t)s;

• choose 1 ≤ i ≤ s such that deg(xαi ) > 1 and 1 ≤ k ≤ r such that xk |
xαi ;

• return
(

MonomialHilbertPoincare (〈I, xk〉)

+ t ·MonomialHilbertPoincare (I : 〈xk〉)
)

.

This algorithm together with Theorem 7.19 imply the following algorithm
for the computation of the Hilbert–Poincaré series of K[x]/I.

Algorithm 4 HilbertPoincare(I), the Hilbert–Poincaré series of K[x]/I.

Input: I := 〈f1, . . . , fk〉 ⊂ K[x] a homogeneous ideal, x = (x1, . . . , xr).
Output: A polynomial Q(t) ∈ Z[t] such that Q(t)/(1− t)r is the Hilbert–
Poincaré series of K[x]/I.

• compute a standard basis {g1, . . . , gs} of I w.r.t. any monomial ordering;

• return MonomialHilbertPoincare(〈LM(g1), . . . ,LM(gs)〉).

Example 7.24. We want to compute the Hilbert–Poincaré series, Hilbert poly-
nomial, Hilbert function and Krull dimension for the ring S := K[x1, . . . , x5]/I,
where I = 〈f, g〉 = 〈x1x2 − x23, x3x4x5 − 3x4x

2
5〉.

Since I is a homogeneous ideal, we apply Theorem 7.19 for the monomial
ordering >dp (see the definition in Section 4). First we compute a standard
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basis for I with respect to >dp by Theorem 4.19. Since LM(f) = x1x2 and
LM(g) = x3x4x5 are relatively prime then NF(spoly(f, g), {f, g}) = 0 (see
[GP07, Exercise 1.7.1]). Therefore, {f, g} is a standard basis of I with re-
spect to >dp, L(I) = (x1x2, x3x4x5) and HPS/I(t) = HPS/L(I)(t). Note that
x1x2, x3x4x5 is a regular sequence, hence by Example 7.23 one has

HPS/I(t) =
(1− t2)(1− t3)

(1 − t)5
=

1 + 2t+ 2t2 + t3

(1− t)3
.

Following the notations of Definition 7.13 we have G(t) = 1 + 2t + 2t2 + t3 =
∑3

ν=0 gνt
ν , d = deg(G(t)) = 3, s = 3 and consequently the Hilbert polynomial

PS/I(n) =
3
∑

ν=0

gν ·
(

3− 1 + n− ν

3− 1

)

=
3
∑

ν=0

gν
(n− ν + 2)(n− ν + 1)

2
= 3n2 + 2.

Moreover, PS/I(n) = HS/I(n) for n ≥ 3, according to Corollary 7.14. Moreover,
we obtain

HPS/I(t) =
1 + 2t+ 2t2 + t3

(1− t)3

= −1 +
5t2 − t+ 2

(1− t)3
= −1 +

6

(1− t)3
+

−9

(1− t)2
+

5

1− t
,

and by Example 7.18

∞
∑

ν=1

HS/I(ν)t
ν = HPS/I(t)

= −1 +
∞
∑

ν=0

6

(

ν + 2

2

)

tν −
∞
∑

ν=0

9

(

ν + 1

1

)

tν +
∞
∑

ν=0

5

(

ν

0

)

tν ,

that is HS/I(n) = PS/I(n) for all n ≥ 1 and HS/I(0) = 1. Finally, by the
Remark 7.17 we also have that dim(S/I) = s = 3.

The corresponding Singular code for the above computations is as follows:

ring S=0,(x(1..5)),dp;

ideal I=x(1)*x(2),x(3)*x(4)*x(5);

hilb(I);

//--> 1 t^0

//--> -1 t^2

//--> -1 t^3

//--> 1 t^5

//-->

//--> 1 t^0

//--> 2 t^1

//--> 2 t^2

//--> 1 t^3

We obtain that Q(t) = t5 − t3 − t2 + 1 (first Hilbert series) and G(t) = t3 +
2t2+2t+1 (second Hilbert series). The same results can be obtained using the
Singular commands hilb(I,1),hilb(I,1) and dim(I).
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hilb(I,1);

//--> 1,0,-1,-1,0,1,0

hilb(I,2);

//--> 1,2,2,1,0

dim(I);

//--> 3

The output of the commands hilb(I,1) and hilb(I,2) are integer vectors
corresponding to the coefficients of the first Hilbert series, respectively second
Hilbert series. More precisely, the vector

v = (v0, . . . , vk, 0) = (1, 0,−1,−1, 0, 1, 0)

has to be interpreted as follows: Q(t) =
∑k

i=0 vit
i. The last output is the Krull

dimension of S/I. Finally, we compute the Hilbert polynomial of S/I.

LIB"poly.lib";

hilbPoly(I);

//-> 4,0,6

The output is read as follows: the integer vector v = [v0, . . . , vr] gives the
formula of the Hilbert polynomial

PS/I =

∑r
i=0 vit

i

r!
.

Therefore, in our concrete case the Hilbert polynomial of S/I is PS/I = (6t2 +
4)/2! = 3t2 + 2.

8 Regularity and Smoothness (J. Herzog)

This is a short introduction to regularity and smoothness. The reader who
wants to study more details is referred to the book “Commutative Algebra” by
Matsumura [M70]. An exhaustive treatment of the module of differential can be
found in the book “Kähler differentials” by Kunz [K86]. The geometric aspects
of the theory are described in Hartshorne’s book “Algebraic Geometry”, [H77].

8.1 A motivating example

Let k be an algebraically closed field, H = Z(f) ⊂ Ån an affine hypersurface
with f = fm + fm+1 + · · · + fd, m ≤ d, where the fi are the homogeneous
components of f and fm 6= 0 6= fd.

Assume the point P = (0, . . . , 0) belongs to H and let g = {tξ t ∈ k} with
ξ = (ξ1, · · · , ξn) ∈ kn \ {0} be a line through P . Then g ∩ H is the set of
solutions of

0 = f(tξ) = fm(ξ)tm + . . .+ fd(ξ)t
d

= tm(fm(ξ) + . . .+ fd(ξ)t
d−m)
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For t = 0 we have the intersection point P . The order of root t = 0 of the
polynomial f(ξT ) = fm(ξ)Tm + . . .+ fd(ξ)T

d ∈ K[T ] is called the intersection
multiplicity of H and g in P . It is equal to m if and only if fm(ξ) 6= 0. One
says that g is a tangent of H at P , if the intersection multiplicity > m. This is
equivalent to say that fm(ξ) = 0. The union of all tangents is the cone Z(fm),
called the tangent cone.

Example 8.1.

1. The tangent cone of the curve y − x2 = 0 at (0, 0) is the x-axis y = 0.

2. The tangent cone of the curve x2 − y2 + x4 is the union of the two lines
x = y and x = −y.

Definition 8.2. H is nonsingular (regular) at P if m = 1.

If H is nonsingular at P , then the tangent cone at P is given by the linear
equation

n
∑

i=1

aixi = 0, where ai =
∂f

∂xi
(P ).

If H is singular at P , then ∂f/∂xi(P ) = 0 for i = 1, . . . , n.

8.2 The singular locus of a variety

Let Y ⊂ Ån be an affine variety. In other words, Y is an irreducible closed
subset of Ån, i.e. there exists a prime ideal ℘ ⊂ S = k[x1, . . . , xn] such that

Y = {P ∈ Ån f(P ) = 0 for all f ∈ ℘}.

The prime ideal ℘ is the vanishing ideal I(Y ) = {f ∈ S f(P ) = 0 for all P ∈
Y } of the affine variety Y .

The ring A(Y ) = S/℘ is called the affine coordinate ring, and the quotient
fieldK(Y ) of A(Y ) is called the function field of Y . Its elements can be identified
with the rational functions on Y . The dimension of Y , dimY , is the Krull
dimension of A(Y ). The dimension of Y coincides with the transcendence degree
of K(Y )/k.

Let P = (a1, . . . , an) ∈ Y a point. Then mP = (x1 − a1, . . . , xn − an)/℘ ∈
A(Y ) is a maximal of A(Y ) and OP,Y = A(Y )mP

is the local ring of Y at P .
It can be identified with the ring of germs of regular functions near P . The
embedding dimension of Y at P is defined to be the number embdimOP,Y =
dimk mP /m

2
P . Note that the Krull dimension of OP,Y coincides with the dimen-

sion of the variety Y .

Before we give the definition of the singular locus of a variety we first show

Theorem 8.3. Let Y ⊂ Ån be an affine variety, P ∈ Y a point, f1, . . . , fm a
system of generators of the vanishing ideal I(Y ) of Y . Then

rank(
∂fi
∂xj

(P )) i=1,...,m
j=1,...,n

= n− embdimOP,Y ≤ n− dimOP,Y ,

where OP,Y is the ring of germs regular functions of Y near P .
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Proof. Let P = (a1, . . . , an) and S = k[x1, . . . , xn]. Then OP,Y is the local ring
(S/I(Y ))n where n = (x1 − a1, . . . , xn − an).

We define a k-linear map

Θ S → kn, f 7→ (
∂f

∂x1
(P ), . . . ,

∂f

∂xn
(P )).

Then for all i ≤ j one has

(i) Θ(xi − ai) = ei = (0, . . . , 1, . . . , 0);

(ii) Θ((xi − ai)(xj − aj)) = 0.

This implies that Θ(n) = kn and Θ(n2) = 0. Hence Θ induces a k-linear map

Θ̄ n/n2 −→ kn

which is an isomorphism, since dimk n/n
2 = n.

Let f ∈ I(Y ) = ℘; then f =
∑

i gifi with gi ∈ S. The jth component of
Θ(f) is

∑

i

∂gi
∂xj

(P )fi(P ) +
∑

i

gi(P )
∂fi
∂xj

(P ).

Hence Θ(℘) ⊂ kn is spanned by the vectors (( ∂fi
∂x1

(P ), . . . , ∂fi
∂xn

(P )), i = 1, . . . ,m.
It follows that

dimk Θ(℘) = rank(
∂fi
∂xj

(P )). (1)

On the other hand, the isomorphism Θ̄ n/n2 → kn induces the isomorphism

Θ(℘) ∼= (℘+ n
2)/n2. (2)

Indeed, for a generator fi ∈ ℘ we have fi+n2 =
∑n

j=1(∂fi/∂xj)(P )(xj−aj)+n2,

so that Θ̄(fi + n2) = ( ∂fi
∂x1

(P ), . . . , ∂f
∂xn

(P )).

We have embdimOP,Y = dimk mP /m
2
P
∼= n/℘+ n2. Therefore, the following

exact sequence of k-vector spaces

0 −→ ℘+ n
2/n2 −→ n/n2 −→ n/(℘+ n

2) −→ 0

together with (1) and (2) yield

rank(
∂fi
∂xj

(P )) = dimk ℘+ n
2/n2 = dimk n/n

2 − n/(℘+ n
2)

= n− embdimOP,Y .

The inequality n − embdimOP,Y ≤ n − dimOP,Y , follows from the fact that
embdimR ≥ dimR for any Noetherian local ring.

Definition 8.4. Y is nonsingular at P , if

rank(
∂fi
∂xj

(P )) i=1,...,m

j=1,...,n
= n− dimOP,Y .
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Note that Y is nonsingular at P if and only if embdimOP,Y = dimOP,Y :
Note also that Definition 8.4 coincides with our definition in the hypersurface
case.

Definition 8.5. A Noetherian local ring (R,m) is called regular, if embdimR =
dimR.

Thus Y nonsingular at P ⇔ OP,Y is regular. We list a few algebraic prop-
erties of regular local rings.

Theorem 8.6. Let (R,m, k) be a Noetherian local ring of dimension d. The
following conditions are equivalent:

(a) R is regular.

(b) Gm(R) =
⊕

n≥0 m
n/mn+1 = K[x1, . . . , xd] is the polynomial ring.

(c) Each minimal system of generators of m is a regular sequence.

(d) projdimk <∞. (The Koszul complex provides a resolution.)

(e) projdimM <∞ for any finitely generated R-module.

Furthermore, regular local rings localize (i.e. RP is again regular for all
P ∈ Spec(R)), see [BH93, Corollary 2.2.9]), they are factorial domains ([BH93,
Theorem 2.2.19]) and in particular they are normal.

For the proof Theorem 8.6 we refer to [BH93, Proposition 2.2.5] and to
[BH93, Theorem 2.2.7].

Let Y be an affine variety. We denote by Sing(Y ) the set of singular points
of Y .

Theorem 8.7. Sing(Y ) is a proper closed subset of Y .

Proof. Let I(Y ) = (f1, . . . . , fm). Then P ∈ Sing(Y ) ⇔ rank( ∂fi
∂xj

(P )) < n −
dimY and fi(P ) = 0 for i = 1, . . . ,m ⇔ all (n − dimY )-minors of ( ∂fi

∂xj
(P ))

vanish at P and fi(P ) = 0 for i = 1, . . . ,m. Therefore Sing(Y ) is a closed subset
of Y .

Let K = K(Y ) be the function field of Y . Then there exists a transcendence
basis ξ1, . . . , ξd ∈ K over k such that K/k(ξ1, . . . , ξd) is a separable algebraic
extension, see Matsumura Chapter 10. Hence there exists ξd+1 ∈ K which
is algebraic over k(ξ1, . . . , ξd) with K = k(ξ1, . . . , ξd, ξd+1). The element ξd+1

satisfies an algebraic equation over k(ξ1, . . . , ξd). Clearing denominators, we
find an irreducible polynomial f ∈ k[x1, . . . , xd+1] with f(ξ1, . . . , xid, ξd+1) = 0.
Let H be the hypersurface defined by f . Then K(H) = K(Y ). ThereforeH and
Y are birationally equivalent. Hence H and Y have isomorphic open subsets,
and we may therefore assume that Y is a hypersurface. Then

Sing(Y ) = {P ∈ Y
∂f

∂xi
(P ) = 0 for i = 1, . . . , n}.

Suppose Sing(Y ) = Y . Then, by Hilbert’s Nullstellensatz, ∂f
∂xi

∈ I(Y ) = (f) for

i = 1, . . . , n. Since deg ∂f
∂xi

≤ deg f − 1, it follows that ∂f
∂xi

= 0 for i = 1, . . . , n.
If charak = 0, then f is constant, a contradiction. If charak = p > 0, then

∂f
∂xi

= 0 implies that f is a polynomial in xpi for each i. Therefore f = gp for
some polynomial g, a contradiction, since f is irreducible.
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8.3 The module of differentials

Let R be a k-algebra. Here k is not necessarily a field. Let M be an R-module.

Definition 8.8. A k-derivation is a map d R −→M such that for all a, b ∈ R
and x, y ∈ k one has

(a) d(ab) = adb+ bda,

(b) d(xa+ yb) = xda+ ydb.

The set of k-derivations Derk(R,M) can be given an obvious R-module
structure. This module is then call the module of k-derivations from R to
M .

The module of differentials ΩR/k is the R-module generated by the set
{da a ∈ R}, subject to the relations (a) and (b).

The module of differentials ΩR/k can be characterized by the following uni-
versal property: let δ R → M be a k-derivation. Then there exists a unique
R-linear map φΩR/k →M such that δ = φ◦d where dR → ΩR is the canonical
derivation with a 7→ da.

It follows that Derk(R,M) ∼= HomR(ΩR/k,M).

Proposition 8.9. Let A = S/I an affine k-algebra, where S = k[x1, . . . , xn]
and I = (f1, . . . , fm). For f ∈ S we denote by f̄ ∈ A the residue class of f
modulo I. Then

ΩA/k
∼= (

⊕

i=1,...,n

Adxi)/U,

where U is generated by the elements
∑n

i=1 ∂fj/∂xidxi, j = 1, . . . ,m.

Proof. We denote by D the module (
⊕

i=1,...,nAdxi)/U and define the map by

d(f̄) =
∑n

i=1 ∂f/∂xidxi + U . We claim

(1) d is well defined.

(2) d is a derivation.

(3) If δ A → M is a derivation, then there exists an A-linear map ϕ D → M
such that δ = ϕ ◦ d.

It follows from (1), (2) and (3) that D ∼= ΩA/k.
Proof of (1): Suppose that f̄ = ḡ. Then f = g + h with h ∈ I. It fol-

lows that ∂f/∂xi = ∂g/∂xi + ∂h/∂xi, and this implies that d(f̄) − d(ḡ) =
∑n

i=1 ∂h/∂xidxi + U .
Since h ∈ I, there exist gj ∈ S such that h =

∑m
j=1 gjfj . It follows that

∂h/∂xi =

m
∑

j=1

(∂gj/∂xi)f̄j + ḡj∂fj/∂xi

=

m
∑

j=1

ḡj∂fj/∂xi.

Therefore,
∑n

i=1 ∂h/∂xidxi =
∑m

j=1 ḡj(
∑n

i=1 ∂fj/∂xi)dxi ∈ U , and this implies

that d(f̄) = d(ḡ), as desired.
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Proof of (2): The rules (a and (b) for derivations follow for d immediately
because they are valid for partial derivatives.

Proof of (3): We define the A-linear map ψ
⊕

i=1,...,nAdxi →M by setting

ψ(dxi) = δ(xi) for all i. Since δ(f̄) =
∑n

i=1 ∂f/∂xiδ(xi) for all f̄ ∈ A it follows
that ψ(U) = 0. This implies that ψ induces the linear map φ : D → M with
φ(m+ U) = ψ(m) for all m ∈⊕i=1,...,nAdxi. Obviously, ϕ ◦ d = δ.

Theorem 8.10. Let Y ⊂ Ån be an affine variety, P ∈ Y and R = OP,Y . Then

(a) rankΩR/k = dimR.

(b) dimk(ΩR/k ⊗R k) = embdimR.

In particular, Y is nonsingular at P ⇔ ΩR/k is free (of rank = dimR).

Proof. Let A = k[x1, . . . , xn]/I(Y ). We use that ΩR/k localizes. Therefore

(i) ΩR/k
∼= (ΩA/k)P .

(ii) If K = K(Y ), then ΩR/k ⊗R K ∼= ΩK/k.

We also need that

rankKΩK/k = trdegK/k = dimR.

Therefore, rankΩR/k = dimR.

Let I(Y ) = (f1, . . . , fm). Then ΩA/k =
(
⊕n

i=1 Adxi
)

/U , where

U =
(

n
∑

j=1

∂f i
∂xj

dxi
)

i=1,...,m
.

Here ḡ denotes the residues class of g modulo I.
We obtain an exact sequence

UmP
⊗R k

φ−−−−→ ⊕n
i=1 Rdxi ⊗R k −−−−→ ΩR ⊗R k −−−−→ 0,

with k = R/mPR.
Identifying

⊕n
i=1Rdxi ⊗R k with

⊕n
i=1 kdxi, the image of φ is equal to

(

∑

j

∂fi/∂xj(P )dxi
)

i=1,...,m
.

Hence we see that

dimk(ΩR/k ⊗R k) = n− rank
( ∂fi
∂xj

(P )
)

= embdimR.

If we only require that k is perfect instead of algebraically closed one obtains
a similar result.
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Example 8.11. Let k = K0(t) where k0 is of characteristic p > 0 and t is
transcendental over k0. In particular, k is not algebraically closed.

Let R = k[x, y]/(y2 − (xp − t)). Then RP is regular for all P ∈ Spec(R).
However RP is not free of rank 1 for P = (y). Indeed R/(y) ∼= k[x]/(xp − t) is
field, and hence (y) is a maximal ideal in R and RP is regular. However

ΩRP /k =
RPdx⊕Rpdy

2ydy
.

If p = 2, then ΩRP /k is free of rank 2, and if p 6= 2, then ΩRP /k is not free.

Definition 8.12. Let R be an affine k-algebra. R is called smooth, if for all
P ∈ Spec(R) one has that ΩRP /k is a free RP -module of rank equals dimP R(=
dimRP + dimR/P ).

One has (see [K86, Theorem 7.14])

Theorem 8.13. The following conditions are equivalent:

(a) ΩRP /k is free of rank equal to dimP R.

(b) RP is geometrically regular over k, i.e. for any finite field extension ℓ/k,
all local rings of ℓ⊗k RP are regular.

In the above example, if we choose ℓ = k( p
√
t), then for P = (y, x− p

√
t) we

have that ℓ⊗k RP is not regular.

More generally, let R be a Noetherian ring, S an R-algebra which is essen-
tially of finite type over R. Then one defines smoothness as follows:

Definition 8.14. S is smooth over R, if

(a) S/R is flat.

(b) ΩSP /RQ
is a free SP -module of rank equal to dimP SQ/QSQ for all P ∈

SpecS. Here Q = P ∩R.

Condition (b) is equivalent to saying that SP /QSP is geometrically regular
over k(Q) = RQ/QRQ.

One can show that if R contains a field of characteristic 0, then S/R is
smooth if and only if S/R is flat and ΩS/R is a projective S-module.

9 Classification of Singularities (G. Pfister)

This talk is devoted to the study of hypersurface singularities. Two func-
tions f and g are called right equivalent if there exists an automorphism ϕ of
C{x1, . . . , xn} such that ϕ(f) = g. They are called contact equivalent if there
exists an automorphism ϕ and a unit u in C{x1, . . . , xn} such that ϕ(f) = u · g.
The aim of this talk is to give a beginning of the classification of functions up to
right equivalence. The first thing is to consider Finite Determinacy Theorems.
Let m be the maximal ideal of C{x1, . . . , xn}. A function f is called (right)
k–determined if for all elements g with f − g ∈ mk+1 the functions f and g
are right equivalent. In particular, a k–determined f is right equivalent to a
polynomial of degree at most k. A function is called finitely determined, if there
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exists a k ∈ N such that f is k–determined. We prove that, if mk+1 ⊂ m2J(f),
then f is k–determined. (Here J(f) is the Jacobian ideal, that is, the ideal
generated by the partial derivatives of f .) This is what is usually called the
Finite Determinacy Theorem. The idea of the proof is to connect f and g via
the path f + a(g − f). So for a = 0 we get f , and for a = 1 we get g. For
all a, we want to prove that there exists a small neighborhood of a in C such
that for all b ∈ U the functions f + b(g − f) and f + a(g − f) are right equiv-
alent. In order to reach this goal, we need a criterion of local triviality. So,
consider an element F ∈ C{x1, . . . , xn, t} which we view as a family of func-
tions with parameter t. Then we prove that this family is trivial if and only if
∂F
∂t ∈ (x1, . . . , xn)

(

∂F
∂x1

, . . . , ∂F
∂xn

)

.

As an application of the local triviality one can prove the Mather-Yau The-
orem. It says that f and g are contact equivalent, if and only if their Tjurina
algebras are isomorphic. We will also give a corresponding statement for right
equivalence.

Next, we consider the classification of functions up to right equivalence. We
first define what a simple function is. This is done by putting a topology on
C{x1, . . . , xn}. A function f is then called simple, if there are only finitely
many equivalence classes in a sufficiently small neighborhood of f . The goal is
to prove that the simple singularities are given by the A-D-E–singularities. We
first state the Splitting Lemma. This allows us to study functions which lie in
m3. Then, via a sequence of arguments, it is shown that the A-D-E–singularities
are simple, and that for nonsimple singularities f we may assume that either
n ≥ 3 and f ∈ m3, or n = 2 and f ∈ m4, or n = 2 and f ∈ (x, y2)3 or f is
nonisolated.

Finally, we then show that functions with one of these properties are not
simple. The idea is to use the Finite Determinacy Theorem, to reduce the
study of right equivalence classes to the study of orbits under a group action in
CN for some N ≫ 0. In fact, we study the group action on the k–jets, which
are the Taylor series of f up to order k + 1. These orbits are orbits under
the action of an algebraic group. This means that all the actions are given by
polynomial functions. We will see that the tangent space to the orbit is equal to
mJ(f) +mk+1/mk+1. In particular, we get the dimension of the orbit of f . We
deduce that if g /∈ mJ(f), then in the family f+ t ·g there are only finitely many
t such that f + tg is right equivalent to f . The knowledge of the dimension of
the orbits is our main tool for showing that certain functions are not simple.

9.1 Finite Determinacy of Hypersurface Singularities

Definition 9.1. Let f, g ∈ m ⊂ C{x1, . . . , xn}, where m is, as usual, the
maximal ideal.

1. One says that f is right equivalent to g, f ∼
R
g, if there exists an automor-

phism ϕ of C{x1, . . . , xn} such that ϕ(f) = g.

2. One says that f is contact equivalent to g, f ∼
C
g, if there exists an au-

tomorphism ϕ of C{x1, . . . , xn} such that (ϕ(f)) = (g), that is, there
exists a unit u such that ϕ(f) = ug. Thus f and g are contact equiv-
alent exactly if the C–algebras C{x1, . . . , xn}/(f) and C{x1, . . . , xn}/(g)
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are isomorphic. This is exactly the same as saying that the germs of the
analytic hypersurfaces defined by f and g are isomorphic.

Definition 9.2. Let f ∈ m ⊂ C{x1, . . . , xn}. Then f is called k–determined
if all g ∈ C{x1, . . . , xn} with f − g ∈ mk+1 are right equivalent to f . If f is
k–determined for some k ∈ N, then f is called finitely determined. In particular,
a k–determined f is right equivalent to a polynomial.

The fact that functions which have an isolated singularity are finitely deter-
mined follows quite easily from Newton’s Lemma ??, as we will show now.

Theorem 9.3. Let f ∈ m2 ⊂ C{x1, . . . , xn}. Suppose mk+1 ⊂ mJ(f)2. Then f
is k–determined. In particular, functions with isolated singularities are finitely
determined.

Proof. Let g ∈ m such that f − g ∈ mk+1. Consider the following system of
equations, which we want to solve for y1, . . . , yn ∈ C{x1, . . . , xn}:

F (x, y) := f(y)− g(x) = 0.

We start with the initial approximation ȳi(x) = xi. Obviously ∂F
∂yi

(

x, ȳ(x)
)

=
∂f
∂yi

(

ȳ(x)
)

= ∂f
∂xi

. As by assumption F (x, ȳ) = f(x) − g(x) ∈ mk+1 ⊂ mJ(f)2,

we can apply Newton’s Lemma 6.2. There exist y1, . . . , yn ∈ C{x1, . . . , xn} with

• F (x, y) = 0,

• yi(x) ≡ xi mod mJ(f). Note that mJ(f) ⊂ m2.

This says that the y give a coordinate transformation transforming f into g.

So the fact that germs of holomorphic functions with an isolated singularity
are right equivalent to a polynomial is a relatively easy consequence of Newton’s
Lemma. For our purposes we need, however, a stronger version of the Finite De-
terminacy Theorem. The statement of the above theorem can be strengthened
to the following statement.

Theorem 9.4 (Finite Determinacy Theorem). Let f ∈ m2 ⊂ C{x1, . . . , xn}.
Suppose that mk+1 ⊂ m2J(f). Then f is k–determined. In particular, if k ≥
µ(f) + 1, then f is k–determined.

Proof. The proof can be found in [JP00]

The basic idea of the proof of the Finite Determinacy Theorem is to connect
f and g via the path Ft = f + t · (g − f), for 0 ≤ t ≤ 1. We need a criterion
whether for given t, s the element Ft is right equivalent to Fs. The following
theorem gives us such a criterion “locally”. By this we mean that we give a
criterion that Ft is right equivalent to F0, for small t.

Theorem 9.5. Let F ∈ C{x1, . . . , xn, t} and c ≥ 0 be an integer. The following
conditions are equivalent:

1. ∂F
∂t ∈ (x1, . . . , xn)

c
(

∂F
∂x1

, . . . , ∂F
∂xn

)

.

2. There exists a ϕ = (ϕ1, . . . , ϕn) ∈ C{x1, . . . , xn, t}n such that
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(a) ϕi(x1, . . . , xn, 0) = xi,

(b) ϕi − xi ∈ (x1, . . . , xn)
c,

(c) F (ϕ1, . . . , ϕn, 0) = F (x1, . . . , xn, t).

Proof. The proof can be found in [JP00]

Corollary 9.6. Suppose that

∂F

∂t
∈ (x1, . . . , xn)

(

∂F
∂x1

, . . . , ∂F
∂xn

)

for some F ∈ C{x1, . . . , xn, t}. Then there exists a small neighborhood U of 0
in C such that for all fixed a ∈ U the function Fa := F (x1, . . . , xn, a) is right
equivalent to F0.

Proof. Consider the elements ϕ1, . . . , ϕn ∈ C{x1, . . . , xn, t} which exist accord-
ing to 9.5. There exists a small open neighborhood U of 0 in C, so that for all

a ∈ U , the ϕi(x, a) are convergent and det
(

∂ϕi(x,a)
∂xj

(0)
)

6= 0. Thus for fixed

a ∈ U , (ϕ1, . . . , ϕn) is an automorphism of C{x1, . . . , xn}. Moreover, formula (c)
in Theorem 9.5 says that it transforms F (x1, . . . , xn, 0) into F (x1, . . . , xn, a).

Theorem 9.5 can be generalized as follows:

Theorem 9.7 (Characterization of Local Analytic Triviality). Let c ≥ 0 be an
integer and f ∈ C{x1, . . . , xn, y1, . . . , ym}. The following conditions are equiva-
lent:

1. ∂f
∂yi

∈ (x1, . . . , xn)
c
(

∂f
∂x1

, . . . , ∂f
∂xn

)

+ (f) for i = 1, . . . ,m.

2. There exist ϕ1, . . . , ϕn, u ∈ C{x1, . . . , xn, y1, . . . , ym} such that

• u(x1, . . . , xn, 0, . . . , 0) = 1

• ϕi(x1, . . . , xn, 0, . . . , 0) = xi

• ϕi − xi ∈ (x1, . . . , xn)
c

• f(x1, . . . , xn, y1, . . . , ym) = u · f(ϕ1, . . . , ϕn, 0, . . . , 0).

If moreover ∂f
∂yi

∈ (x1, . . . , xn)
c
(

∂f
∂x1

, . . . , ∂f
∂xn

)

for all i, then we can

choose u = 1.

We now come to the Theorem of Mather and Yau.

Theorem 9.8 (Mather-Yau). Let f and g ∈ m = (x1, . . . , xn) ⊂ C{x1, . . . , xn}.
Then the following conditions are equivalent:

1. C{x1, . . . , xn}/(f) ∼= C{x1, . . . , xn}/(g), that is, f and g are contact equiv-
alent.

2. C{x1, . . . , xn}/
(

(f)+mJ(f)
) ∼= C{x1, . . . , xn}/

(

(g)+mJ(g)
)

as C–algebras.

If f and g define isolated singularities these conditions are equivalent to

3. C{x1, . . . , xn}/
(

(f) + J(f)
) ∼= C{x1, . . . , xn}/

(

(g) + J(g)
)

as C–algebras.
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To put it in another way, the function f and g are contact equivalent if and only
if the Tjurina algebras of f and g are isomorphic.

Proof. The proof can be found in [JP00].

To find the correct theorem for the case of right equivalence, we consider the
Milnor algebra C{x1, . . . , xn}/J(f) as C{t}–algebra with multiplication t · h :=
fh for h ∈ C{x1, . . . , xn}/J(f).
Theorem 9.9 (Mather-Yau for Right Equivalence). Let f, g ∈ m with m =
(x1, . . . , xn) ⊂ C{x1, . . . , xn}. Then the following conditions are equivalent:

1. f ∼
R
g.

2. C{x1, . . . , xn}/mJ(f) ∼= C{x1, . . . , xn}/mJ(g) as C{t}–algebras.
If f and g define isolated singularities these conditions are equivalent to

3. C{x1, . . . , xn}/J(f) ∼= C{x1, . . . , xn}/J(g) as C{t}–algebras.
Proof. The proof can be found in [JP00].

9.2 The A-D-E–singularities are simple.

We consider the automorphism group G of On = C{x1, . . . , xn}. Let f ∈
C{x1, . . . , xn}. The right equivalence class of f is exactly the orbit of f under
the following group action.2

G ×On −→ On; (G, f) 7→ G(f).

We denote the orbit of f by G · f := {G(f) : G ∈ G }3. The problem with the
study of such orbits is, that On as C–vector space is infinite-dimensional! In case
of isolated singularities, this is not a severe problem, as we can use the Finite
Determinacy Theorem, which allows us to reduce the study of this problem to
the finite-dimensional case.

Definition 9.10. Let coordinates x1, . . . , xn on (Cn, 0) be given, and let m be
the maximal ideal of On. Let k ≥ 1 be a natural number.

1. We define the k–jet space by Jk := On/m
k+1. Each element in Jk has a

representative of type
∑

|ν|≤k aνx
ν . Note that Jk is a finite-dimensional

C–vector space.

2. Let f =
∑

ν aνx
ν ∈ On be given. The k − jet of f is defined by jkf =

∑

|ν|≤k aνx
ν .

3. We can view G as a subset of⊕n
i=1m. Indeed ifG ∈ G then put gi := G(xi).

Then G is uniquely determined by the element (g1, . . . , gn). We now define

Gk := {(g1 mod m
k+1, . . . , gn mod m

k+1) : (g1, . . . , gn) ∈ G }.
2Group action means that (G1 ·G2)(f) = G1(G2(f)).
3In case of contact equivalence, we have to use the semi-direct product G ⋊ O∗

n
of G

with O∗

n
. Here O∗

n
is the group of units in On = C{x1, . . . , xn}. As a set the semi-direct

product is just the Cartesian product, but the multiplication is given by (ϕ1, w1) · (ϕ2, w2) :=
(ϕ1ϕ2, w1 ·ϕ1(w2)). One needs this strange looking product so that the action of G ⋊O∗

n
on

C{x1, . . . , xn} sending ((ϕ, u), f) to u · ϕ(f) is a group action.
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4. We get group actions
Gk × Jk −→ Jk.

induced by those of G . Here G · f := jk(G(f)). One immediately checks
that this is a group action and is well defined.

Lemma 9.11. Let coordinates x1, . . . , xn on (Cn, 0) be given. Consider f ∈ On,
and k ∈ N such that f is k–determined. Consider the group operation of Gk on
Jk, and let g ∈ On be given. Then

jkg ∈ Gk(j
kf) ⇐⇒ g is right equivalent to f.

Proof. The implication ⇐= is obvious. Suppose on the other hand that jkg ∈
Gk(j

kf). Then there exists a G ∈ G such that f ≡ G(g) mod mk+1. Because f
is k–determined, and f and G(g) have the same k–jet, we have that f and G(g)
are right equivalent. By transitivity, f and g are right equivalent.

Definition 9.12. On all jet spaces Jk, which are as vector spaces isomorphic to
some CN , we take the usual (Euclidean) C–topology. Consider the projection
maps

πk : On = C{x1, . . . , xn} −→ Jk = C{x1, . . . , xn}/mk+1.

We define a topology on C{x1, . . . , xn} as the coarsest topology such that all πk
are continuous.

Thus a basis for the topology for On is given by π−1
k (V ) for V ⊂ Jk. In-

formally speaking, a power series is near zero when “some of its coefficients are
small”, and the coefficients of monomials which are not small are in a high power
of the maximal ideal m. On G we similarly define a topology. It is the topology
induced by the product topology of mn. The action of G on On is continuous.
We omit the boring proof, as we do not need the result.

Definition 9.13. We consider the action of G on On. Let f ∈ m ⊂ On. Then
f is called simple, if there exists an open neighborhood U of f , such that the
number of orbits which intersect U is finite.

Theorem 9.14. The tangent space to the orbit of f ∈ Jk under the action of

Gk is equal to mJ(f)+m
k+1

m
k+1 .

Proof. As Gk can be viewed as an open subset of ⊕n
i=1m/m

k+1, it follows that
the tangent space of Gk is equal to the tangent space of ⊕n

i=1m/m
k+1. The

differential of the orbit map

Gk −→ Jk, h 7→ f ◦ h = h(f),

at the identity is given by (h1, . . . , hn) ∈ ⊕n
i=1m/m

k+1 7→ h1
∂f
∂x1

+ . . .+ hn
∂f
∂xn

,

because f(x1 + εh1, . . . , xnεhn) − f = ε
(

h1
∂f
∂x1

+ . . . + hn
∂f
∂xn

)

, as a simple
calculation shows.

Remark 9.15. There is a different way to phrase the definition of simple. Namely,
consider families

F (x, t) ∈ C{x1, . . . , xn, t}
such that F (x, t) ∈ (x1, . . . , xn), and F (x, 0) = f . Families with this property
are also called deformations. Then f is called simple, if there exist finitely many
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right equivalence classes G1, . . . , Gs such that for all families F (x, t) as above
and t small and fixed the germ Ft ∈ C{x1, . . . , xn} is right equivalent to one of
the germs in G1, . . . , Gs.

Theorem 9.16 (Classification of Simple Singularities). Suppose that f ∈ On

is simple. Then f is right equivalent to one of the singularities in the following
list.

• Ak : f(x1, . . . , xn) = xk+1
1 + x22 + . . .+ x2n, k ≥ 0, 4

• Dk : f(x1, . . . , xn) = x1x
2
2 + xk−1

1 + x23 + . . .+ x2n, k ≥ 4,

• E6 : f(x1, . . . , xn) = x31 + x42 + x23 + . . .+ x2n,

• E7 : f(x1, . . . , xn) = x31 + x1x
3
2 + x23 + . . .+ x2n,

• E8 : f(x1, . . . , xn) = x31 + x52 + x23 + . . .+ x2n.

We give real pictures in dimension two of A2, A3, D5, D6, E6 and E7.

In this section we will show that the A-D-E–singularities of Arnold’s list
are simple. In the next section we will show that there are no other simple
singularities.

We first define the corank of a function. It is the coarsest invariant of right
equivalence classes.

Definition 9.17. Let f ∈ m2 ⊂ C{x1, . . . , xn}. The Hesse matrix of f is
defined by

H(f) =

(

∂2f

∂xi∂xj
(0)

)

1≤i,j≤n

.

The corank of f is defined as Corank(f) := n− rank(H(f)).

The following easy lemma is left as an exercise.

4Note that A0 is the germ of a smooth map.
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Lemma 9.18. Let f be right equivalent to g. Then Corank(f) = Corank(g).
Moreover, let Ft be a holomorphic family of functions with Ft ∈ m2 for all t.
Then for all t small Corank(Ft) ≤ Corank(F0).

We now state the Splitting Lemma, which is a generalization of the Morse
Lemma.

Lemma 9.19 (Splitting Lemma).

1. Let f ∈ C{x1, . . . , xn}, with f ∈ m2 and Corank(f) equal to s. Suppose
that f is finitely determined. Then f is right equivalent to an element of
type

g(x1, . . . , xs) + x2s+1 + . . .+ x2n.

where g ∈ C{x1, . . . , xs} and g ∈ m3.

2. Let g1 and g2 ∈ m3 ⊂ C{x1, . . . , xs} both have isolated singularities. Then
g1(x1, . . . , xs)+x

2
s+1+. . .+x

2
n is right equivalent to g2(x1, . . . , xs)+x

2
s+1+

. . .+ x2n if and only if g1 is right equivalent to g2.

3. Let f ∈ C{x1, . . . , xs} have an isolated singularity. Then f(x1, . . . , xs) +
x2s+1 + . . .+ x2n is simple if and only if f is simple.

Proof. The proof can be found in [JP00].

Corollary 9.20. Let f ∈ m2 with µ(f) < ∞, and Corank(f) = 1. Then there
exists a k ≥ 2 such that f is right equivalent to Ak, that is, x

k+1
1 +x22+ . . .+x

2
n.

Moreover, the Ak singularities are simple.

Proof. By the Splitting Lemma, we only have to consider a function in one
variable f(x) ∈ C{x}. If f(x) = 0 then µ(f) = ∞. As this is not the case, there
exists a unique k with f(x) = xk+1u, where u is a unit in C{x}. By the Implicit
Function Theorem, the function k+1

√
u exists, is holomorphic and a unit in C{x}.

We do the coordinate change x′ = k+1
√
ux. In this coordinate f(x′) = x′k+1

.
This proves that f is right equivalent to Ak. If Ft is a deformation of f , then
µ(Ft) ≤ µ(f) for all t small. It follows that an Ak singularity only deforms into
an Al singularity with l ≤ k. In particular, the Ak singularities are simple.

Now we turn our attention to functions of corank two. By the Splitting
Lemma, we only have to consider f(x, y) ∈ (x, y)3 ⊂ C{x, y}.

Proposition 9.21. Let f ∈ C{x, y} and f ∈ m3. After a linear coordinate
change we may assume that j3f is of one of the following types.

1. j3f = xy(x+ y), the zero set of j3f consists of three different lines.

2. j3f = x2y, two lines coincide.

3. j3f = x3, the three lines coincide.

4. j3f = 0.

Suppose Ft is a holomorphic family with F0 = f and Ft ∈ m2 for all small t.
Then for all t 6= 0 and small we have for the types (1), (2), resp (3):

(1) Either Corank(Ft) = 0 or 1 or j3Ft = 0 consists of three different lines.
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(2) Either Corank(Ft) = 0 or 1 or j3Ft = 0 consists of three different lines,
or two lines coincide.

(3) Either Corank(Ft) = 0 or 1 or j3Ft = 0 consists of three different lines,
or two lines coincide, or the three lines coincide.

Proof. Write
j3f = ax3 + bx2y + cxy2 + dy3.

Case 1. a = d = 0. Then j3f = xy(bx+ cy).

(i) If b = c = 0 we get 4.

(ii) Suppose b = 0 or c = 0, but not both. Without loss of generality, let
c = 0. Then j3f = xy(bx). As b 6= 0, we can do the coordinate change
y′ = by. Then j3f = x2y′ which is 2.

(iii) Both b and c are nonzero. After the coordinate change x′ = bx, y′ = cy
we may assume that b = c. By putting x′ = 3

√
b · x, y′ = 3

√
b · y we get

j3f = x′y′(x′ + y′) which is 1.

Case 2. Suppose a 6= 0 or d 6= 0. Without loss of generality, we may assume that
a 6= 0 and, after the coordinate change x′ = 3

√
a · x, even a = 1. We factorize

j3f :
j3f = (x− αy)(x − βy)(x− γy).

We do the coordinate change x′ = x−αy, so that we may assume α = 0. Hence

j3f = x · (x− βy)(x − γy).

(i) If β = γ = 0 we get 3.

(ii) Suppose that β 6= 0 or γ 6= 0. Without loss of generality β 6= 0. Take
y′ = x − βy. Then j3f = x′y′(x′ − δy′) for some δ, and we are back in
Case 1.

This proves the first part of the proposition. The second part of the proposition
follows from the fact that the corank can only drop, see 9.18, and the fact that
the zeros of the polynomial j3(Ft(x, 1)) depend continuously on t.

Proposition 9.22. Let f ∈ C{x, y}, µ(f) <∞.

1. Suppose j3f = xy(x+ y). Then f is right equivalent to D4.

2. Suppose j3f = x2y. Then there exists a k ≥ 5 such that f is right equiva-
lent to Dk.

3. The germs Dk for k ≥ 4 are simple.

Proof. 1. Suppose that j3f = xy(x+ y). It is an exercise to show that from
the Finite Determinacy Theorem it follows that xy(x+y) is 3–determined.
It follows without difficulty that f is right equivalent to D4.
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2. Suppose j3f = x2y. As we suppose µ(f) < ∞, the element f is k–
determined for some k. Suppose that we have an s ≥ 4, such that

jsf = x2y + ays + bxys−1 + x2ϕ,

for a suitable ϕ ∈ ms−2, and a, b ∈ C. This we certainly have for s = 4.
We do the coordinate transformation x′ = x+ 1

2by
s−2, y′ = y + ϕ. Then

a simple calculation shows that jsf = x′2y′ + ay′s. Renaming x′ to x and
y′ to y we may therefore suppose that jsf = x2y + ays. There are two
cases to consider.

Case 1. We have a 6= 0. Do the coordinate change y′ = s
√
a ·y, x′ = 1

2s
√
a
x.

Then jsf = x2y + ys. As x2y + ys is s–determined (exercise), it follows
that f is a Ds+1 singularity.

Case 2. We have a = 0. In this case we write down js+1f . Iterate the
above coordinate changes until we come in Case 1, or until s ≥ k. We will
show that s ≥ k leads to a contradiction. As f is k–determined it follows
that f is right equivalent to jsf = x2y + ays. If a = 0, then f does not
have an isolated singularity, contrary to our assumption.

3. Consider D4, and a holomorphic family Ft with F0 = f = xy(x+ y). We
have that µ(Ft) < ∞. If for fixed t small, the corank of Ft is zero, then
Ft has an A1–singularity by the Morse Lemma. If the corank is one, then
Ft is right equivalent to Ak for some k by 9.20. As µ(Ft) ≤ µ(D4), it
follows that k ≤ 4.5 Hence D4 can only deform in finitely many germs. If
Corank(Ft) = 2, it follows that j3Ft = 0 consists of three different lines by
9.21. Hence there exist coordinates such that j3Ft = xy(x + y) for fixed
t. Hence, by what we just proved, j3Ft is right equivalent to D4. This
shows that D4 can deform only in finitely many germs.

The proof that the Dk for k ≥ 5 are simple, is similar.

So in view of Proposition 9.21, the case to consider now are functions f ∈
C{x, y} whose 3–jet is x3.

Proposition 9.23. Let f ∈ C{x, y} with µ(f) < ∞. Suppose j3f = x3. Then
either

1. f is right equivalent to E6, E7 or E8 or

2. f is right equivalent to a function which lies in the ideal (x, y2)3 =
(x3, x2y2, xy4, y6).

Moreover, E6, E7 and E8 are simple.

Proof. Suppose j3f = x3. We write down the four jet.

j4f = x3 + ay4 + bxy3 + x2ϕ,

with a, b ∈ C and ϕ ∈ m2. We do the coordinate change x′ = x+ 1
3ϕ. Hence we

may assume
j4f = x3 + ay4 + bxy3.

5It is an exercise that even k ≤ 3.
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Case 1. Suppose a 6= 0. Then by doing the coordinate change y′ = 4
√
ay we

may assume a = 1. After doing the coordinate change y′ = y + 1
4bx we get

j4f = x3 + y4 + x2ψ, with ψ ∈ m2. By the coordinate change x′ = x + 1
3ψ, we

can get rid of ψ to obtain j4f = x3 + y4. As x3 + y4 is 4–determined it follows
that f is right equivalent to E6. Redoing this proof for a holomorphic family
Ft with F0 = x3 + y4 shows that E6 can only deform into singularities of type
Ak, Dk or E6. As µ(Ft) ≤ µ(f) it follows that E6 is simple.

Case 2. Suppose a = 0, and b 6= 0. We may assume then that b = 1, by the
coordinate change y′ = 3

√
by. From the Finite Determinacy Theorem it follows

that f is 5–determined, but it does not follow from this theorem that f is 4–
determined. Indeed, one calculates that (xy4, x2y3, x3y2, x4) ⊂ m2J(f), but
y5 /∈ m2J(f). But in fact f is 4–determined. To prove this, we write down the
5–jet of f

j5f = x3 + xy3 + cy5 + xϕ,

with c ∈ C and ϕ ∈ m4. We do the coordinate change x′ = x+ cy2, and get

j5f = x′
3
+ x′y3 − 3cx′

2
y2 + x′ϕ′,

with ϕ′ ∈ m4. Now we do the coordinate change y′ = y − cx′. Then

j5f = x′
3
+ x′y′

3 − 3cx′
3
y′ + ψ,

with ψ ∈ (x′y′4, x′2y′3, x′3y′2, x′4) ⊂ m2J(f). Replacing x′ by x′ 3
√
1− 3cy′, and

renaming the coordinates we get

j5f = x3 + xy3 + ψ,

with ψ ∈ (xy4, x2y3, x3y2, x4) ⊂ m2J(x3 + xy3). It follows that f is right
equivalent to x3 + xy3, that is, we have an E7–singularity. Similarly, one shows
that E7 is simple, and this proof is left to the reader.

Case 3. The final case to consider is a = b = 0, that is, j4f = x3. So we consider
the 5–jet:

j5f = x3 + cy5 + dxy4 + x2ϕ,

with c, d ∈ C and ϕ ∈ m3. Again we can get rid of the x2ϕ term. The two
remaining cases are:

Case 3a. Suppose c 6= 0. We can after the coordinate change y′ = 5
√
cy get

that c = 1. Now put y′ = y + 1
5dx. Then j5f = x3 + y′5 + x2ψ, with ψ ∈ m3.

By doing the coordinate change x′ = x + 1
3ψ, we can attain ψ = 0. Hence

j5f = x′3 + y′5. By the Finite Determinacy Theorem, it follows that f is right
equivalent to an E8–singularity. Similarly, it is proved that E8 is simple.

Case 3b. Consider the case c = 0. Then f ∈ (x3, xy4) + (x, y)6 ⊂ (x, y2)3, as
was to be proved.

We now succeeded in our goal of proving that the A-D-E-singularities are
simple. In the next section, we will show that these are the only ones. Up to
now, we already observed the following

Remark 9.24. Suppose f ∈ On is not simple. Then either

1. f has a nonisolated singularity, or
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2. Corank(f) ≥ 3, or

3. Corank(f) = 2, and we may suppose f ∈ C{x, y} with f ∈ m4, or

4. Corank(f) = 2, and we may suppose f ∈ C{x, y} with f ∈ (x, y2)3.

Remark 9.25. Let f ∈ m2 ⊂ On have an isolated singularity, and suppose k
satisfies mk+1 ⊂ mJ(f). Then the codimension of the orbit of f under Gk in Jk
is equal to n+ µ(f).

Proof. Indeed, applying the previous theorem shows that this codimension is
equal to the vector space dimension of On/mJ(f). Now we have the exact
sequence

0 −→ J(f)/mJ(f) −→ On/mJ(f) −→ On/J(f) −→ 0. (3)

The vector space dimension of J(f)/mJ(f) is by Nakayama’s Lemma the mini-
mal number of generators of J(f). As f has an isolated singularity, V (J(f)) =
{0}, or better, J(f) is an m–primary ideal. As the dimension of (Cn, 0) is n, it
follows that number of generators of J(f) is at least n. But then the number of
generators of J(f) is exactly n, because ∂f

∂x1
, . . . , ∂f

∂xn
are n generators of J(f).

The statement therefore follows from the exact sequence (3).

Theorem 9.26. Let f ∈ m2 ⊂ C{x1, . . . , xn}, with finite Milnor number. Let
g /∈ m · J(f). Then there exist only finitely many t ∈ C such that f + t · g is
right equivalent to f .

Proof. Choose k such that mk+1 ⊂ mJ(f). Hence g does not lie in the tangent
space to the orbit through f in Jk under the action of Gk. This implies that the
line f + tg in the jet space Jk does not lie entirely in the orbit of f . Therefore,
the line f + tg in Jk intersects the orbit in only finitely many points, as the
intersection of the orbit with the line is a constructible subspace of the line.
This is exactly the statement of the theorem.

Proposition 9.27. Let f ∈ C{x1, . . . , xn} be simple. Then f has an isolated
singularity.

Proof. Suppose not. Then the Milnor number µ(f) is not finite. As mJ(f) ⊂
J(f), it follows that in particular dimC

(

C{x}/mJ(f)
)

= ∞, that is, for all
k > 0, there exists a gk ∈ mk \ mJ(f) + mk+1, as otherwise mk ⊂ mJ(f) by
Nakayama. Hence for all sufficiently small t 6= 0 the germ fk := f + tgk is not
right equivalent to f . This is because otherwise, gk had to be in the tangent
space of the orbit of f under Gk, but by assumption it is not. Thus even fk and
f are not in the same orbit under Gk. Moreover for k < s also fk is not right
equivalent to fs. Indeed otherwise the classes of fs and fk in the jet space Jk
would be Gk equivalent. But they are not, as in Jk the class of fs is equal to
the class of f . Hence there are infinitely many nonequivalent function germs in
any small neighborhood of f , and therefore f is not simple.

We now can reach our goal of proving that there are no other simple singu-
larities except for the A-D-E–singularities.

Theorem 9.28. Germs f ∈ On with one of the following properties are not
simple.
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1. Nonisolated singularities.

2. n = 2 and f ∈ m4.

3. n = 2 and f ∈ (x, y2)3.

4. f with Corank(f) ≥ 3.

In particular, Arnold’s Classification Theorem of Simple Singularities 9.16 holds.

Proof. It was shown in the previous section, see 9.24 that either f is right
equivalent to an A-D-E–singularity, or right equivalent to a germ with one of
the above listed properties. So if we show that singularities with one of the
above properties are not simple, Arnold’s Classification Theorem follows.

1. The fact that nonisolated singularities are not simple was proved in 9.27.

2. We calculate modulo m5. If f is simple, then j4f ∈ J4 has the property
that in a neighborhood U of j4f there are only finitely many orbits under
the action of G4. We look at the tangent space at the orbit. As f ∈ m4,
the tangent space mJ(j4f) + m5/m5 is a subset of m4/m5. This tangent
space has at most dimension 4, as mJ(j4f) has four generators which all
lie in m4. It follows that the orbit of j4f has dimension at most 4. This
holds for all f ∈ m4. Note that m4/m5 is G4–stable, and has dimension 5.
As a finite union of subvarieties of dimension four never can fill up an open
subset of a vector space of dimension 5, it follows that all neighborhoods
of j4f intersect infinitely many orbits. In particular f is not simple.

3. In this case the argument is somewhat more subtle.We refer to [JP00].

4. The argument is similar to 2., but now we calculate modulo m4. We know
thatmJ(f)/m4 has dimension at most n2, butm3/m4 has dimension

(

n+2
3

)

,
which is bigger.
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