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Abstract. We describe an algorithmic approach to studying limit cycle bifurcations
in a neighborhood of an elementary center or focus of a polynomial system. Using it
we obtain an upper bound for cyclicity of a family of cubic systems. Then using a
theorem by Christopher [3] we study bifurcation of limit cycles from each component
of the center variety. We obtain also the sharp bound for the cyclicity of a generic
time-reversible cubic system.

1. Introduction

Consider systems of ordinary differential equations on R2 of the form

(1) u̇ = P (u, v), v̇ = Q(u, v)

where P and Q are polynomials, max{degP, degQ} = n. We view (1) as defining a
family of systems parametrized by the coefficients of P and Q. The parameter space
denoted by E is a Euclidean (n + 1)(n + 2)-space, every point E of which corresponds
to a system of the form (1). A singular point (u0, v0) ∈ R2 of a system E ∈ E is said
to have cyclicity k with respect to E if and only if any sufficiently small perturbation of
E in E has at most k limit cycles in a sufficiently small neighborhood of (u0, v0), and k
is the smallest number with this property. The problem of the cyclicity of a center or a
focus of a system of the form (1), which we always assume to be located at the origin,
is known as the local 16th Hilbert problem ([8]), based on its connection to Hilbert’s still
unresolved 16th problem, which in part asks for a bound on the number of limit cycles
anywhere in the phase portrait of a system of the form (1) in terms of n alone.

The concept of cyclicity was introduced by Bautin in his seminal paper [1], where
he showed that the cyclicity problem in the case of an elementary focus or center can be
reduced to the problem of finding a basis for the ideal of focus quantities (the so-called
Bautin ideal) in the ring of polynomials in the coefficients of the system.

Bautin’s approach is described in details and further developed in [14, 23, 24]. The
cyclicity problem for some families of polynomial systems was treated also in [8, 13, 25,
27, 28, 26].

Following Bautin’s method the cyclicity problem can be easily solved in the case
when the Bautin ideal of the system is a radical one (see e.g. [23, 27, 28]). A method to
treat the cyclicity problem with a Bautin ideal which is a non-radical ideal in the poly-
nomial ring of the coefficient of system (1) but still a radical one in a certain coordinate
ring has been recently proposed in [16]. In [20] it was generalized to the case when the
Bautin ideal is non-radical also in the coordinate ring, but has a primary decomposition
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of the form ∩si=1Qi, where
√
Qi = Qi for i = 1, . . . , s,

√
Qs 6= Qs and

√
Qs is a maximal

ideal.
In the present paper we extend the method to the case when the Bautin ideal is

of a general form in the coordinate ring, that is, it is equal to ∩si=1Qi, where for some
1 ≤ k ≤ s the

Q1, . . . , Qk are radical ideals while Qk+1, . . . Qs are not radical. We believe that the
described approach can be applied to evaluate the cyclicity of many other systems for
which the variety of ∩si=k+1Qi is ”much less” than the variety of ∩ki=1Qi.

At present two problems of a major interest for the theory of plane polynomial
systems of ODEs are the cyclicity problem for the general real cubic system

(2) ẋ = λx+ ix(1− a10x− a01y − a−12x
−1y2 − a20x

2 − a11xy − a02y
2 − a−13x

−1y3)

and the center problem for the associated complex system

(3)
ẋ =x(1− a10x− a01y − a−12x

−1y2 − a20x
2 − a11xy − a02y

2 − a−13x
−1y3),

ẏ =− y(1− b2,−1x
2y−1 − b10x− b01y − b3,−1x

3y−1 − b20x
2 − b11xy − b02y

2).

However the study of these systems involves tremendous computations which cannot
be completed even with powerful computers, so in recent years many works have been
devoted to investigation of different subfamilies of (2) and (3).

In the present paper we study the cyclicity of the polynomial family considered in
[19],

(4) ẋ = λx+ i(x− a10x
2 − a−12x̄

2 − a11x
2x̄− a−1,3x̄

3).

We first obtain an upper bound for the cyclicity of the system for ”almost all” values
of parameters. Then using the approach of Christopher [3] we study bifurcations of limit
cycles from each component of the center variety. In the last section the cyclicity of
generic time-reversible systems in the family (2) is investigated.

2. Preliminaries

We recall briefly the approach of [16, 23]. Any polynomial system with an elemen-
tary antisaddle at the origin can be written as one complex differential equation

(5) ẋ = λx+ ix−
∑

(p,q)∈S

ap,qx
p+1x̄q,

where

S = {(pj, qj) : pj + qj ≥ 1, j = 1, . . . , `} ⊂ ({−1} ∪ N0)× N0,

and N0 = {0, 1, 2, . . .}. The equation (5) is embedded in a natural way into the two-
dimensional complex system

(6)

ẋ = λx+ i(x−
∑

(p,q)∈S

apqx
p+1yq) = P (x, y),

ẏ = λy − i(y +
∑

(p,q)∈S

bqpx
qyp+1) = Q(x, y).
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In the case of a weak focus or a center, that is when λ = 0, system (6) is written as

(7)

ẋ = i(x−
∑

(p,q)∈S

apqx
p+1yq) = P (x, y),

ẏ = −i(y +
∑

(p,q)∈S

bqpx
qyp+1) = Q(x, y).

We denote by (a, b) = (ap1,q1 , . . . , ap`,q` , bq`,p` , . . . , bq1,p1) the ordered vector of coefficients
and by E(a, b) = C2` (resp., E(λ, (a, b))) the parameter space of (7) (resp., of (6)), and
by C[a, b] the polynomial ring in the coefficients aij, bji of system (7) over the field of the
complex numbers. For system (7) one can always find (see, for example, [23]) a function
Ψ of the form

(8) Ψ(x, y) = xy +
∞∑
s=3

s∑
j=0

vj,s−jx
jys−j,

where the vj,s−j are polynomials in the coefficients of P and Q, such that

(9)
∂Ψ

∂x
P (x, y) +

∂Ψ

∂y
Q(x, y) = g11 · (xy)2 + g22 · (xy)3 + g33 · (xy)4 + · · · .

The gkk are polynomials in the coefficients of (7) called the focus quantities. A system of
the form (7) on C2 is said to have a center at the origin if it admits a local first integral
of the form (8). That is, system (7) with coefficients (a∗, b∗) ∈ E(a, b) has a center at
the origin if and only if (a∗, b∗) ∈ V(g11, g22, g33, . . .), where here and below we denote
by V(f1, . . . , fs) the variety of the ideal 〈f1, . . . , fs〉. The ideal

B := 〈gkk : k ∈ N〉 ⊂ C[a, b]

is called the Bautin ideal and its variety V(B) is called the center variety of family (7).
We will also use the notation Bk for the ideal 〈g11, g22, . . . , gkk〉.

For parameters (λ, a) let n(λ,a),ε denote the number of limit cycles of the correspond-
ing system (5) that lie wholly within an ε-neighborhood of the origin. To define more
precisely the notion of cyclicity for a singular point we say that the singularity at the
origin for system (5) with fixed coefficients (λ∗, a∗) ∈ E(λ, a) has cyclicity c with respect
to the space E(λ, a) if there exist positive constants δ0 and ε0 such that for every pair ε
and δ satisfying 0 < ε < ε0 and 0 < δ < δ0

max{n(λ,a),ε : |(λ, a)− (λ∗, a∗)| < δ} = c .

Denote by G(a∗,b∗) the ring of germs of complex analytic functions at (a∗, b∗). The
following statement is a reformulation of Theorem 6.2.9 of [23].

Theorem 1. Suppose that for (a∗, b∗) ∈ E(a, b) B = Bm. Then the cyclicity of the origin
of the system of the form (5) with parameters (0, (a∗, b∗)) ∈ E(λ, (a, b)) is at most m.

3. The center variety of a cubic system

The center problem for the real system (4) has been solved in [19]. However to
apply our approach we need to know the center variety of the associated complex system
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of the type (7) which is written as

(10)
ẋ = i(x− a10x

2 − a−12y
2 − a11x

2y − a−1,3y
3),

ẏ = −i(y − b2,−1x
2 − b01y

2 − b3,−1x
3 − b11xy

2).

Thus, first we solve the center problem for (10).

Theorem 2. For system (10) V(B) = V(B5) and the minimal associate primes of B
are:
1) J1 = 〈a−13, b3,−1, a11, b11〉,
2) J2 = 〈b3,−1, b11, a11, b2,−1〉,
3) J3 = 〈a−13, b11, a11, a−12〉,
4) J4 = 〈b2

11−b3,−1a−13,−b01b11 +b2,−1a−13, b2,−1b11−b01b3,−1,−a−12b11 +a10a−13, a10b11−
a−12b3,−1,−a−12b2,−1 + a10b01, a11 − b11, 〉

5) J5 = 〈a4
−12b

3
3,−1−b4

2,−1a
3
−13,−a−12b01b3,−1+a10b2,−1a−13, a10a

3
−12b

2
3,−1−b3

2,−1b01a
2
−13, a

2
10a

2
−12b3,−1−

b2
2,−1b

2
01a−13, a

3
10a−12 − b2,−1b

3
01,−b4

01b3,−1 + a4
10a−13, a11 − b11〉,

6) J6 = 〈a11 − b11, b01, a10〉.

Proof. With the algorithm of Table 3.1 and a simple modification of the Mathemat-
icacode of Figures 6.1 and 6.2 of [23] we have computed the first nine focus quantities of
(10). The first five form the ideal B5 = 〈g11, . . . , g55〉 1. Then, computing with minAssGTZ

[7] procedure of Singular[12] we obtain the ideals J1, . . . , J6.
Now we have to show that all systems corresponding to V(J1), . . . ,V(J6) are inte-

grable.
In Case 1 the system is the quadratic system with 3 invariant lines and, as it is

well-known, is integrable (see, e.g. [4, 23]).
In Case 2 we are not able to find an invariant curve of the system rather then y = 0,

so we cannot construct a Darboux integral, but we can show that the corresponding
system

(11) ẋ = x− a10x
2 − a−12y

2 − a−13y
3 = P (x, y), ẏ = y(−1 + b01y) = Q(x, y)

is integrable. We look for a first integral in the form

(12) Ψ(x, y) =
∞∑
k=1

fk(x)yk.

Then the function Ψ should satisfy the partial differential equation ∂Ψ
∂x
P + ∂Ψ

∂y
Q = 0.

Substituting in this equation the series (12) and equating in the obtained expression the
coefficient of the same power of y we find f1 = x/(1− a10x) and for each k = 2, 3, . . . we
obtain the linear ordinary differential equation

(13) (x− a10x
2)f ′k(x)− kfk(x) + (k − 1)b01fk−1(x)− a−12f

′
k−2(x)− a−13f

′
k−3(x) = 0,

1The polynomials are too long, so we do not present them here, however they are available at
www.math.rwth-aachen.de/ Viktor.Levandovskyy/filez/cyclicity/fqcubic.tst. One can also

obtain the polynomials generating B5 applying to polynomials g
(F )
11 , . . . g

(F )
55 in Section 4 the homomor-

phism (23).
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where it is assumed that f−1 = f0 = 0. Let ps denote a polynomial of degree at most s.
Using induction on k we wish to show that

(14) fm =
pm(x)

(1− a10x)m
.

Assuming that for m < k (14) holds we find that a solution to (13) is

fk(x) =
pk

(1− a10x)k
,

as required. Thus, the system (11) admits a formal integral of the form (8), which yields
also the existence of an analytic integral (8).

Case 3 is dual to Case 2 under the involution aij ↔ bji.
In Case 4 the system can be written as

(15)
ẋ =− (−b01b2,−1x+ a10b01b2,−1x

2 + a−13b
2
2,−1x

2y + a10b
2
01y

2 + a−13b01b2,−1y
3)/(b01b2,−1),

ẏ =(b2
01b2,−1x

2 + a−13b
2
2,−1x

3 − b2
01y + b3

01y
2 + a−13b01b2,−1xy

2)/b2
01.

To avoid cumbersome expressions involving radicals without loss of generality we assume
that b01 = b2,−1 = 1. Then the system has the invariant curves

f1 = 1+ia−13x
2−iy(−i+a10+a−13y)−x(−i+a10+2a−13y), f2 = 1−ia−13x

2+iy(i+
a10 + a−13y)− x(i+ a10 + 2a−13y), which allow us to construct an analytical integrating
factor of the Darboux type µ = (f1f2)−1. Therefore the system has a center at the origin.

Systems corresponding to Case 5 are time-reversible (by Theorem 6 of [15]) and
those corresponding to Case 6 are Hamiltonian with the Hamiltonian H = −(b2,−1x

3)/3−
(b3,−1x

4)/4 + xy − 1/2b11x
2y2 − (a−12y

3)/3− (a−13y
4)/4. �

4. The cyclicity of system (4)

To resolve the cyclicity problem for system (4) we use the following specific structure
of the focus quantities which we briefly describe now. Fix a family (5), hence the index
set S = {(p1, q1), . . . , (p`, q`)} ⊂ ({−1} ∪ N0) × N0. For ν = (ν1, . . . , ν2`) ∈ N2`

0 let L be
the map from N2`

0 to Z2 defined by

(16) L(ν) =

(
L1(ν)

L2(ν)

)
=

(
p1

q1

)
ν1 + · · ·+

(
p`
q`

)
ν` +

(
q`
p`

)
ν`+1 + · · ·+

(
q1

p1

)
ν2`.

Define the monoid M⊂ N2`
0 by

(17) M =

{
ν ∈ N2`

0 : there exists k ∈ N such that L(ν) =

(
k

k

)}
.

For ν = (ν1, . . . , ν2`) ∈ N2`
0 let [ν] denote the monomial in C[a, b] given by

(18) [ν] = aν1p1q1 · · · a
ν`
p`q`

bν`+1
q`p`
· · · bν2`q1p1

,

and ν̂ denote the involution of ν, ν̂ = (ν2`, ν2`−1, . . . , ν1). Let {µ1, . . . , µs} be a Hilbert
basis of the monoidM. We denote by C[M] the polynomial subalgebra C[[µ1], . . . , [µs]].
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It is shown in [23] (similar result has been obtained also in [6, 17]) that the focus
quantities of system (7) have the form

(19) gkk =
∑

ν:L(ν)=(k
k)

g(ν)([ν]− [ν̂]),

with ig(ν) ∈ Q, k = 1, 2, . . . . In particular, (19) implies that gkk ∈ C[M] for all k ∈ N.
The following statement is a simple generalization of Proposition 1 of [20].

Proposition 3. Let I = 〈g1, . . . , gt〉 be an ideal in C[x1, . . . , xn] such that the primary
decomposition of I is given as

I = P1 ∩ · · · ∩ Pk ∩Q1 ∩ · · · ∩Qm,

where Ps =
√
Ps for s = 1, . . . , k, and Qj 6=

√
Qj for j = 1, . . . ,m.

Let Q = Q1 ∩ · · · ∩ Qm and g be a polynomial vanishing on V(I). Let x∗ =
(x∗1, . . . , x

∗
n) be an arbitrary point of V(I) \ V(Q). Then in a small neighborhood of

x∗

g = g1f1 + · · ·+ gtft,

where f1, . . . , ft are power series convergent at x∗.

Proof. From the condition of the proposition we have that
√
I = P1 ∩ · · · ∩ Pk ∩

√
Q1 ∩ · · · ∩

√
Qm.

Let g ∈
√
I. Then g ∈ P1∩· · ·∩Pk and g ∈

√
Q. For any polynomial q ∈ Q we have qg ∈

P1∩· · ·∩Pk and qg ∈ Q, hence qg ∈ I; in particular there exist f1, . . . , ft ∈ C[x1, . . . , xn]
such that

(20) qg = f1g1 + · · ·+ ftgt.

Since x∗ = (x∗1, . . . , x
∗
n) ∈ V(I) \V(Q), there exists q ∈ Q such that q(x∗) 6= 0. Since

such q is invertible in the local ring at x∗, we can write:

(21) g =
f1

q
g1 + · · ·+ ft

q
gt.

Clearly, for any l = 1, . . . , t fl
q

can be expressed as a power series in a neighborhood of
x∗. �

Following Algorithm 5.1 of [23, p.235] to find the generators of C[M] we compute
the reduced Gröbner basis of

J = 〈1−wα5, a10−t1, b01−αt1, a−12−t2, α3b2,−1−t2, a11−t3, b11−t3, a−13−t4, α4b3,−1−t4〉

with respect to the lexicographic order with w � α � {ti} � {aij, bji}, and then take
from the output list the binomials which do not depend on w, α, tj. Then the monomials
of the binomials together with the ”symmetric” binomials a10b01, a−12b2,−1 and a−13b3,−1

generate C[M]. The polynomials of the output list that do not depend on w, α, t1, t2, t3, t4
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are exactly the binomials given in 5) of Theorem 2. Denote the monomials of these
binomials by µ1, . . . , µ14, that is,

µ1 = a11, µ2 = b11, µ3 = (a3
−13b

4
2,−1), µ4 = a4

−12b
3
3,−1, µ5 = a2

−13b01b
3
2,−1,

µ6 = a10a
3
−12b

2
3,−1, µ7 = a10a−13b2,−1, µ8 = a−12b01b3,−1, µ9 = a−13b

2
01b

2
2,−1,

µ10 = a2
10a

2
−12b3,−1, µ11 = a3

10a−12, µ12 = b3
01b2,−1, µ13 = a4

10a−13, µ14 = b4
01b3,−1.

Thus, the monomials µ1, . . . , µ14 together with the monomials

µ15 = a−12b2,−1, µ16 = a10b01, µ17 = a13b3,−1

generate the subalgebra C[M] for system (10), that is, for this system C[M] = C[µ1, . . . , µ17].

Theorem 4. The center at the origin of system (4), where |a11|+|a−13| 6= 0, has cyclicity
at most 6.

Proof. By Theorem 1 an upper bound for cyclicity of system (4) with fixed coefficients
(a∗) is equal to the number m such that B = Bm in G(a∗,ā∗), where G(a∗,ā∗) is the ring of
germs of complex analytic functions at (a∗, ā∗). Thus in order to prove the theorem it is
sufficient to show that for any (a∗) such that |a11|+ |a−13| 6= 0, and k > 6

(22) gkk = g11f1 + g22f2 + g33f3 + g44f4 + g55f5 + g66f6

in G(a∗,ā∗).
Let h = (h1, . . . , h17) and denote by J the ideal in C[a, b, h] defined by hj −µj(a, b),

that is,

J = 〈hj − µj(a, b) : j = 1, . . . , 17〉.
We also define the polynomial mapping

F : C8 → C17 : (a, b) 7→ (h1, . . . , h17) = (µ1(a, b), . . . , µ17(a, b)).

F induces the C-algebra homomorphism

(23) F∗ : C[h]→ C[a, b] :
∑

c(α)hα1
1 · · ·hα17

17 7→
∑

c(α)µα1
1 (a, b) · · ·µα17

17 (a, b).

That is, instead of variables (a, b) we introduce new variables h1, . . . , h17. Computing the
normal forms of gii according to Proposition 7 of §7.3 of [5] we find that the expressions
of the preimages of gii in C[h] up to a constant factor which are given in the Appendix.
Here each focus quantity is reduced in C[h] modulo a Gröbner basis of the previous ones.

Denote by W the image of C8 under F and by W its Zariski closure. Let G̃6 be the

ideal 〈g(F )
11 , . . . , g

(F )
66 〉 in C[W ] and let R be the kernel of F∗. Then R = kerF∗ = J ∩C[h]

and, by the Elimination Theorem (see e.g. Theorem 2 of §3.1 of [5])), R = 〈g ∈ JG : g ∈
C[h]〉. The unique reduced Gröbner Basis of the ideal contains 105 binomials r1, . . . , r105,
that is, R = 〈r1, . . . , r105〉. We do not present these polynomials in the paper, however
the interested reader can easily obtain them computing the reduced Gröbner basis of J
with help of any available computer algebra system. Note that by Theorem 1 of §3.3 of
[5] W = V(R).

Denote by V the variety V(B) and by Vh the image of V under F , Vh = F (V ).

Similarly as in [16] we check that Vh = V(〈g(F )
kk : k ∈ N〉) = V6, where V6 = V(〈̃G6, R〉).
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Let K = 〈g(F )
11 , . . . , g

(F )
55 , g

(F )
66 , R〉 ⊂ C[h]. For every k ∈ N g

(F )
kk vanishes on Vh, the

subvariety of G̃6 in W . That means g
(F )
kk as a polynomial of C[h] vanishes on the variety

of K ⊂ C[h]. Computing the primary decomposition of K ⊂ C[h] using primdecGTZ

[7, 9] we find that

(24) K = P1 ∩ · · · ∩ P5 ∩Q1 ∩Q2 ∩Q3,

where P1, . . . , P5 are prime ideals, and Qi are not prime, but primary ideals, such that√
Q1 = 〈{hi | 1 ≤ i ≤ 10, 13 ≤ i ≤ 17}, h11h12 − h15h

3
16〉
√
Q2 = 〈h1, . . . , h17〉,

√
Q3 =

〈{hi | 3 ≤ i ≤ 16}, h1 − h2, 13975h4
2 − 11562h2

2h17 + 5971h2
17〉.

Thus, K has the structure as in Proposition 3. The minimal associate primes
of ∩3

i=1F (Qi) are T1 = 〈a−13, b11, a11, b01, a−12〉, T2 = 〈b3,−1, b11, a11, b2,−1, a10〉, T3 =
〈a−13, b3,−1, b11, a11〉. Obviously, the intersection of V(Q1) ∪ V(Q2) ∪ V(Q3) with the
parameter space E(a) is the set a11 = a−13 = 0.

Let now (a∗, ā∗) be a point from E(a, b) corresponding to a system (5). If |a∗11| +
|a∗−13| 6= 0 then F ((a∗, ā∗) 6∈ V(Q1) ∪ V(Q2) ∪ V(Q3). Therefore, by the proposition,

there exist rational functions fj,k, sj,k such that for h ∈ W in a neighborhood of F ((a∗, ā∗)
with |a∗11|+ |a∗−13| 6= 0

(25) g
(F )
kk (h) = g

(F )
11 (h)f1,k(h) + · · ·+ g

(F )
55 (h)f5,k(h) + g

(F )
66 (h)f6,k(h) +

105∑
j=1

rj(h)sj,k(h).

Applying F∗ to (25) we see that (22) holds in a neighborhood of (a∗, ā∗).
Thus, G6 is a basis of B in G(a∗,ā∗) at any (a∗, ā∗) with |a∗11|+ |a∗−13| 6= 0. Therefore,

by Theorem 1 the cyclicity of the center at the origin of the corresponding system (4) is
at most 6. �

For (10) V(B) = V(B5), however it appears that B = B8. Computations show

that for K = 〈g(F )
11 , . . . , g

(F )
55 , g

(F )
66 , g

(F )
77 , R〉 and K = 〈g(F )

11 , . . . , g
(F )
55 , g

(F )
66 , g

(F )
77 , g

(F )
88 , R〉 the

ideal K has a simpler structure with the embedded component Q3 being removed, K =
P1 ∩ · · · ∩ P5 ∩Q1 ∩Q2. Also in these cases the computations are much faster. However
if we deal with B7 by Theorem 1 we have to conclude that the upper bound for the
cyclicity is 7, that is, the conclusion is weaker, than given by Theorem 4.

We believe it would be possible to obtain five as an upper bound for the cyclicity
of the system if we were able to find a primary decomposition of the ideal

(26) K = 〈g(F )
11 , . . . , g

(F )
55 , R〉.

However we were unable to complete the calculations with Singularon our computa-
tional facilities due to the very high memory consumption of the calculation process.
We have tried to apply modular calculations to this ideal. The result of calculation is 9
components five of which are the radical ones and four are not. However in this case the
lifting (reconstruction) to the rational numbers gives an ideal which does not coincide
with K, that is the modular calculations do not give true primary ideals of K.

5. The cyclicity of components of the center variety

In this section we study bifurcations of limit cycles from each component of the
center variety.



EVALUATING CYCLICITY OF CUBIC SYSTEMS 9

Let I = 〈f1, . . . , fm〉 ⊂ k[x1, . . . , xn] be an ideal and V(I) be its variety, decomposi-
tion of V = V(I) is given and let p be a point from V . The tangent space to V at p is de-
fined as Tp = p+{v|Jp(I)v = 0} , where J(I) is the Jacobian of the polynomials f1, . . . , fm
and Jp indicates that it is evaluated at p. It follows that dimTp = n − rank(Jp(I)). It
is said that p is a smooth point of V if dimTp = dimVp. Let C be a component of V of
codimension k and assume that p ∈ C, rank(Jp(I)) = s. Then k ≥ s and p is a smooth
point C if and only if k = s; in this case rank(Jq(I)) = k at any smooth point of C.

Denote by gRkk the polynomials obtained after the substituting bqp with āpq into gkk.
Then the center variety of the real system (5) with λ = 0 is the the variety V R in E(ā)
of the ideal BR = 〈gR11, g

R
22, . . .〉.

The following statement is slightly reformulated Theorem 2.1 of [3].

Theorem 5 (C. Christopher). Assume that for system (5) with λ = 0 p ∈ V R and
rank Jp(BR

k ) = k. Then p lies on a component of V R of codimension at least k and there
are bifurcations of (5) which produce k limit cycles locally from the center corresponding
to the parameter value p.

If furthermore, p lies on a component C of V R of codimension k then p is a smooth
point of the center variety, and the cyclicity of p and any generic point of C is exactly
k.

Thus, the cyclicity of generic point of a component of the center variety can be easily
determined if we know the dimension of the center variety. The dimension of complex
variety can be easily computed using algorithms of computational algebra, since it is
equal to the degree of the affine Hilbert polynomial of any ideal defining the variety.
However determining dimensions of real varieties is more difficult problem.

We go from the complex system to the real one by setting

(27)
a10 = A10 + IB10, b01 = A10 − IB10, a−12 = A−12 + IB−12, b2,−1 = A−12 − IB−12,

a11 = A11 + IB11, b11 = A11 − IB11, a−13 = A−13 + IB−13, b3,−1 = A−13 − IB−13,

where I stands for the complex root of unity.
The following statement describes the center variety of (4).

Theorem 6. The center variety in R8 of the real system (4) with λ = 0 consists of the
following four irreducible components:
1) B11 = A11 = A−13 = B−13 = 0,
2) B11 = −A−13B10 + A11B−12 − A10B−13 = −A2

10 + A2
−12 − B2

10 + B2
−12 = A11B10 −

A−13B−12 + A−12B−13 = −A10A11 + A−12A−13 + B−12B−13 = A11A−12 − A10A−13 +
B10B−13 = A2

11−A2
−13−B2

−13 = −A11A−13B10 +A2
−13B−12−A10A11B−13 +B−12B

2
−13 = 0,

3) −4A3
−12A

3
−13B−12+4A−12A

3
−13B

3
−12+3A4

−12A
2
−13B−13−18A2

−12A
2
−13B

2
−12B−13+3A2

−13B
4
−12B−13+

12A3
−12A−13B−12B

2
−13−12A−12A−13B

3
−12B

2
−13−A4

−12B
3
−13+6A2

−12B
2
−12B

3
−13−B4

−12B
3
−13 =

−3A2
10A−12B10 +A−12B

3
10−A3

10B−12 + 3A10B
2
10B−12 = −4A3

10A−13B10 + 4A10A−13B
3
10−

A4
10B−13 + 6A2

10B
2
10B−13 −B4

10B−13 = −B11 = 0
4) A10 = B10 = B11 = 0,
of dimensions 4, 4, 5, 5, respectively.
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Proof. Performing the substitution (27) we obtain from 1), 4) and 6) of Theorem 2 the
conditions 1), 2) and 4), respectively. The ideals 2) and 3) of Theorem 2 yield a subvariety
of 1) of the present theorem. By Theorem 3.3 of [22] the variety V(J5) is the same as the
variety of 〈a4

−12b
3
3,−1 − b4

2,−1a
3
−13, a

3
10a−12 − b2,−1b

3
01,−b4

01b3,−1 + a4
10a−13, a11 − b11〉, which,

after the substitution (27), gives the component 3).
The dimension of components 1) and 4) is obvious. To find dimensions of the other

components we look for their rational parametrization.
We guess that 2) can be parametrized as

(28)
B11 = f0, A11 = f1(r1), A10 = f2(r1, r2, t1, t2)/g2(t2), B10 = f3(r1, r2, t1, t2)/g2(t2),

A−12 = f4(r1, r2, t1, t2)/(g1(t1)g2(t2)), B−12 = f5(r1, r2, t1, t2)/(g1(t1)g2(t2)),

A−13 = f6(r1, r2, t1, t2)/g1(t1), B−13 = f7(r1, r2, t1, t2)/g1(t1),

where f0 = 0, f1 = r1, f2 = r2(1−t22), f3 = 2r2t2), f4 = r2(−1−t1−t2+t1t2)(−1+t1+t2+
t1t2), f5 = −2r2(t1 + t2)(−1 + t1t2), f6 = r1(1− t21), f7 = 2r1t1, g1(t1) = 1 + t21, g2(t2) =
1 + t22.

We eliminate from the ideal

〈1− wg1g2, A11 − r1, g2A10 − f2, g2B10 − f3, g1g2A−12 − f4, g1g2B−12 − f5,

g1A−13 − f6, g1B−13 − f7 ⊂ R[w, r1, r2, t1, t2, A10, B10, A−12, B−12, A11, A−13, B−13]

variables w, r1, r2, t1, t2 and obtain the ideal which coincides with the ideal defined by the
equations of 2). By Theorem 2 of [5, §3.3] it means that (28) give a rational parametriza-
tion of the third component and the dimension of the component is less or equal to
four. Computing the Jacobian of the functions f0, . . . , f7 at the randomly chosen point
t1 = 1, t2 = 2, r1 = 3, r2 = 4 we see that it is four. Therefore, the dimension of the
component is four as well.

Similarly, one can check that a polynomial parametrization of 3) is given by

(29) A11 = u1, A−13 = u2(u4
3 − 6u2

3u
2
4 + u4

4), B−13 = 4u2u3u4(−u2
3 + u2

4),

A−12 = u3u5(u2
3 − 3u2

4), B−12 = u5u4(−3u2
3 + u2

4), A10 = u3, B10 = u4.

Indeed, eliminating from (29) u1, u2, u3, u4, u5 we obtain an ideal whose radical is equal to
the radical of the ideal defining 3. Similarly as above one can easily check the dimension
of the component is equal to five. �

We denote by J
(k)
p the rank of the Jacobian of the first k focus quantities evaluated

at the point p.

Theorem 7. The cyclicity of a generic point of components 2) is equal to four, and of a
generic point of 3) is equal to 3. Define the polynomials F1 = 3A2

10B10A−12−B3
10A−12 +

A3
10B−12−3A10B

2
10B−12 and F4 = 4A3

−12B−12A
3
−13−4A−12B

3
−12A

3
−13−3A4

−12A
2
−13B−13 +

18A2
−12B

2
−12A

2
−13B−13−3B4

−12A
2
−13B−13−12A3

−12B−12A−13B
2
−13+12A−12B

3
−12A−13B

2
−13+

A4
−12B

3
−13 − 6A2

−12B
2
−12B

3
−13 + B4

−12B
3
−13. Then the cyclicity of a point p of 1) with

F1(p) 6= 0 and of a point p′ of 4) with F4(p′) 6= 0 is at least 3.



EVALUATING CYCLICITY OF CUBIC SYSTEMS 11

Proof. We take a random point on the component 2), e.g. p with the coordinates A11 =
3, B11 = 0, A−13 = 0, B−13 = 3, A10 = −12/5, B10 = 16/5, A−12 = −16/5, B−12 = −12/5.

Calculations yield that rankJ
(4)
p = 4. Since the dimension of 2) is 4, by Theorem 5 the

cyclicity of a generic point of 2) is 4. Similarly, computing J
(3)
p at the random point p :

(A−13 = 41, B−13 = 840, A−12 = −568, B−12 = 260, A10 = 2, B10 = 5, A11 = 3, B11 = 0)

we see that J
(3)
p = 3. Therefore by Christopher’s theorem the cyclicity of a generic point

of the component is 3.
Computing Fitting ideals (see e. g. [11]), we obtain that for the component 1)

rankJ
(3)
p = rankJ

(4)
p = 3 at p with F1(p) 6= 0. Similarly for component 4) we have

rankJ
(3)
p = rankJ

(4)
p = 3 at the point p′ with F4(p′) 6= 0.

Thus, by Theorem 5 three limit cycles bifurcate from the origin for the system
corresponding to p. �

6. The cyclicity of a generic time-reversible cubic system

By Theorem 6 of [15], Theorem 3.3 of [22], and Theorem 3.2 of [21] the Zariski
closure of the set of time-reversible systems in the family (3) is the variety of the ideal

I = 〈a−13b
2
20 − a2

02b3,−1, a11 − b11, a02a20 − b02b20, a−13a
2
20 − b2

02b3,−1, a
2
−12b

3
20 − a3

02b
2
2,−1,

a2
−12a

3
20 − b3

02b
2
2,−1,−a3

−13b
4
2,−1 + a4

−12b
3
3,−1,−a02a

2
10 + b2

01b20,

a20b
2
01 − a2

10b02,−a3
10a−12 + b3

01b2,−1,−a4
10a−13 + b4

01b3,−1,−a01a10 + b01b10,

a02b102 − a2
01b20,−a2

01a20 + b02b102, a−12b103 − a3
01b2,−1, a−13b104 − a4

01b3,−1〉

After the substitution

(30)
a10 = A10+IB10, b01 = A10−IB10, a01 = A01+IB01, b10 = A01−IB01, a−12 = A−12+IB−12,

b2,−1 = A−12−IB−12, a20 = A20+IB20, b02 = A20−IB20, a11 = A11+IB11, b11 = A11−IB11,

a02 = A02 + IB02, b20 = A02 − IB02, a−13 = A−13 + IB−13, b3,−1 = A−13 − IB−13

we obtain from I the ideal IR and V(IR) is the set of all time-reversible systems inside
the family (2) with λ = 0.

Theorem 8. The cyclicity of a generic time-reversible system in the general family of
cubic systems (2) is equal to six.

Proof. We first show that the dimension of V(IR) is 7. Noting that the necessary con-
dition for time reversibility is vanishing of B11 we set in all computations B11 = 0.
Computing in Q[t1, . . . , t8, A10, . . . , B−13] the eighth elimination ideal J8 of J = 〈A10 −
f1B10 − f2, A01 − f3, B01 − f4, A−12 − f5, B−12 − f6, A20 − f7, B20 − f8, A11 − f9, A02 −
f10, B02 − f11, A−13 − f12, B−13 − f13〉, where

f1 = t1, f2 = t2, f3 = t1t3, f4 = −t2t3, f5 = t1(t21 − 3t22)t5, f6 = t2(−3t21 + t22)t5,

f7 = (t21 − t22)t6, f8 = 2t1t2t6, f9 = t8, f10 = (t21 − t22)t23t7,

f11 = (−2t1t2t
2
3t7), f12 = (t41 − 6t21t

2
2 + t42)t4, f13 = 4t1t2(−t21 + t22)t4,
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we find that J8 =
√
I. By Theorem 1 of [5, §3, Chapter 3] it means that the polynomials

f1, . . . , f13 define a polynomial parametrization of V(IR). Therefore, dim(V(IR)) ≤ 7.
Computing the Jacobian of the polynomials f1, . . . , f13 at a random point {ti = i, 1 ≤
i ≤ 7} we see that its rank is equal to 7. Taking into account the restriction B11 = 0 we
conclude that the codimension of V(IR) is 6.

The calculation of the Jacobian of gR11, . . . , g
R
66 at the point corresponding to the

parameters ti = i, 1 ≤ i ≤ 7 shows that its rank is 6. Therefore, by Christopher’s
theorem the cyclicity of the generic point of V(IR) is 6. �

7. Concluding remarks

We have described an algorithmic approach to obtain an upper bound for the cyclic-
ity of “most of systems” in a polynomial family and have applied it to study the cyclicity
of the family (4). For this family we have shown that the cyclicity of a generic system of
the component of the center variety defined by the conditions 2), 3) and 4) of Theorem
6 is at most six. The method does not give any bound for the cyclicity of systems corre-
sponding to the first component of Theorem 6. We believe it is possible to improve the
bound computing a primary decomposition of the ideal (26), however the calculations
are very laborious and cannot be completed with our computational facilities.

We then have studied bifurcations of limit cycle from each component of the center
variety using Christopher’s theorem (Theorem 5). Using this approach we have shown
that for the second and the third components of Theorem 6 the sharp bound for the
cyclicity is four and three, respectively. However the approach does not give upper
bounds for the cyclicity of systems corresponding to the first and forth components of
the theorem.

We have proven also that the cyclicity of a generic time-reversible cubic system is
six.
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Appendix

The first focus quantities each reduced modulo the ideal of the generated by the
previous ones and up to a constant factor are as follows:

g
(F )
11 = h1 − h2,

g
(F )
22 = 2/3h7 − 2/3h8,

g
(F )
33 = −1/3h2h11 + 1/3h2h12 − 1/3h9 + 1/3h10,

g
(F )
44 = 29/30h2h9 − 29/30h2h10 + 1/6h2h13 − 1/6h2h14 + 36/5h13h15 − 36/5h14h15 +

36/5h9h16 − 36/5h10h16 − 11/30h11h17 + 11/30h12h17 − 7/6h5 + 7/6h6,
g
(F )
55 = −191/261h2

2h13 + 191/261h2
2h14 + 1688/87h2h13h15 − 1688/87h2h14h15 + 38351/3915h13h

2
15 −
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38351/3915h14h
2
15−187859/37845h2h13h16+187859/37845h2h14h16+38351/3915h9h15h16−38351/3915h10h15h16−

826873/2523h13h15h16+826873/2523h14h15h16−826873/2523h9h
2
16+826873/2523h10h

2
16−11/3915h11h15h17+

11/3915h12h15h17+63602/37845h11h16h17−63602/37845h12h16h17+91/348h2h5−91/348h2h6−1714/135h8h9+

1714/135h8h10 + 14167/270h9h11− 14167/270h10h12 + 277/30h8h13− 16983/10h12h13− 277/30h8h14 +

16983/10h11h14+7/58h5h15−7/58h6h15+1435276/37845h5h16−1435276/37845h6h16−1144/1305h9h17+

1144/1305h10h17 + 7/60h13h17 − 7/60h14h17,

g
(F )
66 = 1/179957124900(314439792836580h2h13h

2
15−314439792836580h2h14h

2
15+167774955434040h13h

3
15−

167774955434040h14h
3
15−459779466666048h2h13h15h16+459779466666048h2h14h15h16+167774955434040h9h

2
15h16−

167774955434040h10h
2
15h16−5564635229863332h13h

2
15h16+5564635229863332h14h

2
15h16+73798251681168h2h13h

2
16−

73798251681168h2h14h
2
16−5564635229863332h9h15h

2
16+5564635229863332h10h15h

2
16+3901291066992420h13h15h

2
16−

3901291066992420h14h15h
2
16+3901291066992420h9h

3
16−3901291066992420h10h

3
16+144551266134h11h

2
15h17−

144551266134h12h
2
15h17+24525527209260h11h15h16h17−24525527209260h12h15h16h17−157879306893924h11h

2
16h17+

157879306893924h12h
2
16h17−219450333375h2

2h5+219450333375h2
2h6−7970291720775h2h8h13−4709316225452220h2h12h13+

7970291720775h2h8h14+4709316225452220h2h12h14+4386231116505h2h5h15−4386231116505h2h6h15−
217622722151280h8h9h15+217622722151280h8h10h15+1048673514504414h9h11h15−1048673514504414h10h12h15+

150644468531700h8h13h15−26924686414769718h12h13h15−150644468531700h8h14h15+28614070529783622h11h14h15−
1689384115013904h12h14h15 + 2023904532510h5h

2
15− 2023904532510h6h

2
15 + 11900099492469h2h5h16−

11900099492469h2h6h16+7909426957536h8h9h16−7909426957536h8h10h16+177784594345584h9h11h16+

1689384115013904h9h12h16−1867168709359488h10h12h16−4463619138396h8h13h16+368377476200712h12h13h16+

4463619138396h8h14h16−368377476200712h11h14h16+627432169709646h5h15h16−627432169709646h6h15h16−
478312580221938h5h

2
16 + 478312580221938h6h

2
16 + 3313052243424h8h11h17 + 3881784152840h2

11h17 −
3313052243424h8h12h17−86033450301634h11h12h17+82151666148794h2

12h17−345194392635h2h13h17+

345194392635h2h14h17−14279546249892h9h15h17+14279546249892h10h15h17+3012698412090h13h15h17−
3012698412090h14h15h17−5074709871906h9h16h17+5074709871906h10h16h17−222914772468h13h16h17+

222914772468h14h16h17+653031322560h11h
2
17−653031322560h12h

2
17+2289495926970h5h8−2289495926970h6h8+

220784663929586h2
9−226815459886126h9h10+6030795956540h2

10+27773253873122h5h11−7191789189140h6h11−
266551007225150h5h12 + 245969542541168h6h12 + 1285321237690193h9h13 − 2720790920240h10h13 −
4745701548305450h9h14+3463101101535497h10h14−1089026251875h3h16+1089026251875h4h16+527287263300h5h17−
527287263300h6h17).
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