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ALGORITHMS OF COMPUTATIONAL ALGEBRA

VIKTOR LEVANDOVSKYY, GERHARD PFISTER, AND VALERY G. ROMANOVSKI

ABSTRACT. We describe an algorithmic approach to studying limit cycle bifurcations
in a neighborhood of an elementary center or focus of a polynomial system. Using it
we obtain an upper bound for cyclicity of a family of cubic systems. Then using a
theorem by Christopher [3] we study bifurcation of limit cycles from each component
of the center variety. We obtain also the sharp bound for the cyclicity of a generic
time-reversible cubic system.

1. INTRODUCTION

Consider systems of ordinary differential equations on R? of the form

(1) = P(u,v), 0= Q(u,v)

where P and ) are polynomials, max{deg P,deg @} = n. We view (1) as defining a
family of systems parametrized by the coefficients of P and (). The parameter space
denoted by £ is a Euclidean (n + 1)(n + 2)-space, every point E of which corresponds
to a system of the form (1). A singular point (ug,vy) € R? of a system E € £ is said
to have cyclicity k with respect to £ if and only if any sufficiently small perturbation of
E in € has at most k limit cycles in a sufficiently small neighborhood of (ug, vg), and k
is the smallest number with this property. The problem of the cyclicity of a center or a
focus of a system of the form (1), which we always assume to be located at the origin,
is known as the local 16th Hilbert problem ([8]), based on its connection to Hilbert’s still
unresolved 16th problem, which in part asks for a bound on the number of limit cycles
anywhere in the phase portrait of a system of the form (1) in terms of n alone.

The concept of cyclicity was introduced by Bautin in his seminal paper [1], where
he showed that the cyclicity problem in the case of an elementary focus or center can be
reduced to the problem of finding a basis for the ideal of focus quantities (the so-called
Bautin ideal) in the ring of polynomials in the coefficients of the system.

Bautin’s approach is described in details and further developed in [14, 23, 24]. The
cyclicity problem for some families of polynomial systems was treated also in [8, 13, 25,
27, 28, 26].

Following Bautin’s method the cyclicity problem can be easily solved in the case
when the Bautin ideal of the system is a radical one (see e.g. [23, 27, 28]). A method to
treat the cyclicity problem with a Bautin ideal which is a non-radical ideal in the poly-
nomial ring of the coefficient of system (1) but still a radical one in a certain coordinate
ring has been recently proposed in [16]. In [20] it was generalized to the case when the
Bautin ideal is non-radical also in the coordinate ring, but has a primary decomposition
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of the form N;_;Q);, where \/Q; = Q; fori =1,...,5, /Qs # Qs and /(s is a maximal

ideal.

In the present paper we extend the method to the case when the Bautin ideal is
of a general form in the coordinate ring, that is, it is equal to N{_;@Q;, where for some
1 <k <sthe

@1, . ..,Q are radical ideals while Q. 1, ... Qs are not radical. We believe that the
described approach can be applied to evaluate the cyclicity of many other systems for
which the variety of N;_, ;Q; is "much less” than the variety of N¥_,Q;.

At present two problems of a major interest for the theory of plane polynomial
systems of ODEs are the cyclicity problem for the general real cubic system

(2) & =Ax+izx(l — a10r — any — a_197 Y* — ax0r® — anry — agy® — a_zr'y?)
and the center problem for the associated complex system

(3) T =2(1 — apr — any — a712$71y2 — axr’ — anry — a02y2 - (Llsl’flyg)a
y = — y(l — bg’_l.%'Qy_l — bl().f — b()ly — b3’_1l’3y_1 — b20$2 — bu[Ey — b02y2).

However the study of these systems involves tremendous computations which cannot
be completed even with powerful computers, so in recent years many works have been
devoted to investigation of different subfamilies of (2) and (3).

In the present paper we study the cyclicity of the polynomial family considered in
[19],

(4) T = \x + Z(ZE — CL10I'2 — a_12f2 — CLHI'QZE — CL_1’3133).

We first obtain an upper bound for the cyclicity of the system for ”almost all” values
of parameters. Then using the approach of Christopher [3] we study bifurcations of limit
cycles from each component of the center variety. In the last section the cyclicity of
generic time-reversible systems in the family (2) is investigated.

2. PRELIMINARIES

We recall briefly the approach of [16, 23]. Any polynomial system with an elemen-
tary antisaddle at the origin can be written as one complex differential equation
(5) T =Ar+ir— Z Ap g1 T,
(p.a)€S
where
S=A{pja):pita=>17=1...,0} C({-1} UNp) x Ny,

and Ny = {0,1,2,...}. The equation (5) is embedded in a natural way into the two-
dimensional complex system

&= Ar+i(z — Z apg”y?) = P(z,y),
(p.q)€S
(6)

g=Xy—i(y+ Y bypry) = Qx,y).

(p,g)es
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In the case of a weak focus or a center, that is when A = 0, system (6) is written as

& =iz — Z apg”y?) = P(x,y),
(p.q)€S

(7)

j= iyt S bpaty™) = Q).
(pg)es
We denote by (a,b) = (ap,.q15- - Opyges Vgopes - - - » g pn ) the ordered vector of coefficients

and by E(a,b) = C* (resp., E(), (a,b))) the parameter space of (7) (resp., of (6)), and
by Cla, b] the polynomial ring in the coefficients a;;, b;; of system (7) over the field of the
complex numbers. For system (7) one can always find (see, for example, [23]) a function
U of the form

(8) U(z,y) =ay+ Y > v ja’y”,

s=3 j=0
where the v, ,_; are polynomials in the coefficients of P and @, such that

(9) g—iP(% y) + g—jQ(% y) = gu - (2y)* + goo - (vy)’ + gaz - (xy)* + -+ .

The ggr are polynomials in the coefficients of (7) called the focus quantities. A system of
the form (7) on C? is said to have a center at the origin if it admits a local first integral
of the form (8). That is, system (7) with coefficients (a*,b*) € E(a,b) has a center at
the origin if and only if (a*,b*) € V(g11, go2, g33, - - .), where here and below we denote
by V(f1,..., [fs) the variety of the ideal (fi,..., fs). The ideal

B = (gir : k € N) C Cla, b]

is called the Bautin ideal and its variety V(B) is called the center variety of family (7).
We will also use the notation By, for the ideal (g11, 922, - - -, Gkk)-

For parameters (X, a) let n(y q) denote the number of limit cycles of the correspond-
ing system (5) that lie wholly within an e-neighborhood of the origin. To define more
precisely the notion of cyclicity for a singular point we say that the singularity at the
origin for system (5) with fixed coefficients (\*, a*) € E(\,a) has cyclicity ¢ with respect
to the space E (), a) if there exist positive constants g and €g such that for every pair e
and ¢ satisfying 0 < € < ¢y and 0 < § < J

max{nxa). : |(A, a) — (A", a")| <} =c.

Denote by G4 p+) the ring of germs of complex analytic functions at (a*,b*). The
following statement is a reformulation of Theorem 6.2.9 of [23].

Theorem 1. Suppose that for (a*,b*) € E(a,b) B = B,,. Then the cyclicity of the origin
of the system of the form (5) with parameters (0, (a*,b%)) € E(), (a,b)) is at most m.
3. THE CENTER VARIETY OF A CUBIC SYSTEM

The center problem for the real system (4) has been solved in [19]. However to
apply our approach we need to know the center variety of the associated complex system
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of the type (7) which is written as

(10) T = Z(l‘ - 6110$2 - a_12y2 - a11I2y - a_1,3y3),
§ = —i(y — by _12% — b1y — bz _12° — byxy?).

Thus, first we solve the center problem for (10).

Theorem 2. For system (10) V(B) = V(B5) and the minimal associate primes of B

are:

1) Ji = {a_13,b3_1,a11,b11),

2) Jy = <b3,717b11, ai, 52,71>>

3) J3 = <@713,b117a11,a—12>,

4) Jy = (b%—bs,—la—w, —bo1b11 +bz,71a713, b2,7lbll_b01b3,717 —a_12bi1+apa_i3, aipbii —
a—12b3,—1, —Cl—12b2,—1 + a10b017 11 — b11,>

5) Js = (a‘ilzbg,,l—bé,,lailg, —a_12bp1b3,—1+aiobs,—1a_13, aloa:’imbi,l—bé,,lbmailg, CL%OCL%Ing’_l—
557_15(2)&—13, afoa_12 — bo 103, b5 b3 1 + afya_is, a1y — b)),

5) Jo = (Cln - 511,501,G10>-

Proof. With the algorithm of Table 3.1 and a simple modification of the MATHEMAT-
1CAcode of Figures 6.1 and 6.2 of [23] we have computed the first nine focus quantities of
(10). The first five form the ideal Bs = (g1, ..., gss) ' Then, computing with minAssGTZ
[7] procedure of SINGULAR[12] we obtain the ideals Ji, ..., Js.

Now we have to show that all systems corresponding to V(J;), ..., V(Js) are inte-
grable.

In Case 1 the system is the quadratic system with 3 invariant lines and, as it is
well-known, is integrable (see, e.g. [4, 23]).

In Case 2 we are not able to find an invariant curve of the system rather then y = 0,
so we cannot construct a Darboux integral, but we can show that the corresponding
system

(11) &=z —ar’ —a_12y’ — a1y’ = P(z,y), §=y(-1+bny) = Q(z,y)

is integrable. We look for a first integral in the form
(12) U(a,y) =Y fulz)y”.
k=1

Then the function ¥ should satisfy the partial differential equation %—‘i’P + %—‘5 = 0.
Substituting in this equation the series (12) and equating in the obtained expression the
coefficient of the same power of y we find f; = 2/(1 — ajpx) and for each k = 2,3, ... we
obtain the linear ordinary differential equation

(13) (z — aw0x®) fi(@) — kfi(z) + (k — Dbor furr () — a—1afi_5(7) — arsfr_s(x) =0,

IThe polynomials are too long, so we do not present them here, however they are available at
www.math.rwth-aachen.de/ Viktor.Levandovskyy/filez/cyclicity/fqcubic.tst. One can also
obtain the polynomials generating Bs applying to polynomials gif), e gég) in Section 4 the homomor-

phism (23).
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where it is assumed that f_; = fy = 0. Let p, denote a polynomial of degree at most s.
Using induction on k£ we wish to show that

- pm(x)
- = T o

Assuming that for m < k (14) holds we find that a solution to (13) is

_ Pk
fk(x) N (1 — algﬂf)k7

as required. Thus, the system (11) admits a formal integral of the form (8), which yields
also the existence of an analytic integral (8).

Case 3 is dual to Case 2 under the involution a;; <+ bj;.

In Case 4 the system can be written as
(15)
& = — (=borba, 17 + aroborba,—12” + 071353,,15522/ + arobiyy” + a—13borba,—1y”) [ (bo1be,—1),

9 =(bgib2,—12* + a_13b§771x3 — 001y + bo1y” + a_1zboiba, 12y?) /b5,

To avoid cumbersome expressions involving radicals without loss of generality we assume
that byy = bg,—1 = 1. Then the system has the invariant curves

fi = 1+ia_1322 —iy(—i+ap+a_13y) —x(—i+a+2a_13y), fo = 1—ia_32* +iy(i+
ayo + a_13y) — x(i + a0 + 2a_13y), which allow us to construct an analytical integrating
factor of the Darboux type p = (f1f2) . Therefore the system has a center at the origin.

Systems corresponding to Case 5 are time-reversible (by Theorem 6 of [15]) and
those corresponding to Case 6 are Hamiltonian with the Hamiltonian H = —(by,_123)/3—
(b, _12") /4 + 2y — 1/2b112%y* — (a_129°) /3 — (a_13y*) /4. O

4. THE CYCLICITY OF SYSTEM (4)

To resolve the cyclicity problem for system (4) we use the following specific structure
of the focus quantities which we briefly describe now. Fix a family (5), hence the index
set S ={(p1,q1),---,(pe;q)} C ({=1} UNp) x No. For v = (vy,...,190) € N2 let L be
the map from N2 to Z? defined by

w0 = ()= (e (o (e ()

Define the monoid M C N2¢ by

k
(17) M = {V € N2 : there exists k € N such that L(v) = (k:) } :
For v = (v, ...,v) € N2 let [v] denote the monomial in Cla, b] given by
(18) ] = agig, - G Vaie - Vgt
and  denote the involution of v, ¥ = (vgp, v9p_1,...,v1). Let {uq,..., s} be a Hilbert

basis of the monoid M. We denote by C[M] the polynomial subalgebra C[[1],. .., [1s]]-
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It is shown in [23] (similar result has been obtained also in [6, 17]) that the focus
quantities of system (7) have the form

(19) Gkk = Z 9w (V] = [2]),
viL(v)=(})

with ig,) € Q, k=1,2,.... In particular, (19) implies that gy, € C[M] for all k € N.
The following statement is a simple generalization of Proposition 1 of [20].

Proposition 3. Let I = (gi,...,g:) be an ideal in Clxy, ..., x,] such that the primary
decomposition of I is given as

I=PNn---NPNQiN--NQp,

where Py = /Py for s=1,...,k, and Q; # \/Q; for j =1,...,m.
Let Q = Q1N ---NQy and g be a polynomial vanishing on V(I). Let z* =
(x3,...,2%) be an arbitrary point of V(I) \ V(Q). Then in a small neighborhood of

rrn
*

g=gfi+- -+ gfi

where fi, ..., fi are power series convergent at x*.

Proof. From the condition of the proposition we have that
VI=PN---NPNy/QiN--N/Qn

Let g € v/I. Then g € PiN---NP;, and g € v/Q. For any polynomial ¢ € Q we have qg €
PiN---NP;and qg € @, hence qg € I; in particular there exist fi,..., fi € Clzy, ..., x,]
such that

(20) q9 = fig1 + -+ + fig.
zi) € V(I)\ V(Q), there exists ¢ € @ such that ¢(z*) # 0. Since

: * *
Since z* = (z7,...,x}
such ¢ is invertible in the local ring at x*, we can write:

f J;
(21) g="g+ -+ g

q q
Clearly, for any [ = 1,...,t % can be expressed as a power series in a neighborhood of
x*. ]

Following Algorithm 5.1 of [23, p.235] to find the generators of C[M] we compute
the reduced Grobner basis of

J = (1—wa®, ajg—ty, boy—aty,a_19—ta, a’by 1 —ty,ay;—t3,b11—t3,a_13—ts, by _1—14)

with respect to the lexicographic order with w > o > {t;} > {a;;,b;;}, and then take
from the output list the binomials which do not depend on w, c, t;. Then the monomials
of the binomials together with the "symmetric” binomials ajobgi, a—12b2 —1 and a_;3b3 1
generate C[M]. The polynomials of the output list that do not depend on w, «, t1, ta, t3, 4
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are exactly the binomials given in 5) of Theorem 2. Denote the monomials of these
binomials by g1, ..., f14, that is,

_ _ _ (.3 14 _ 4 33 2 3
p1 = ar, pg = b1, p3 = (a713b2,71)a pa = aZq9by 4, pi5 = aZy3bo1b; _q,

_ 3 32 _ _ _ 2 72
He = a10a712b3,71> pr = aipa_13ba 1, p1g = a_12bo1b3 1, prg = a—13bo1b2,717
2 2 3 3 4 4
Hi0 = a10a_12b3,—17 H11 = QpQ—12, H12 = 50152,—1, H13 = A19G-13, Hi14 = 50153,—1-
Thus, the monomials 1, ..., t14 together with the monomials

H15 = a—12b2,—1; pie = aiobor, p17 = G1353,—1

generate the subalgebra C[M] for system (10), that is, for this system C[M] = Cluy, . . ., t17].

Theorem 4. The center at the origin of system (4), where |ay1|+|a_13| # 0, has cyclicity
at most 0.

Proof. By Theorem 1 an upper bound for cyclicity of system (4) with fixed coefficients
(a*) is equal to the number m such that B = B,, in G4+ g+), where G« 5+) is the ring of
germs of complex analytic functions at (a*,a@*). Thus in order to prove the theorem it is
sufficient to show that for any (a*) such that |ai;| + |a_13| # 0, and k > 6

(22) gkk = g11f1 + goaf2 + 9333 + gaafs + g55/5 + ges fe
in Q(a*’a*).
Let h = (h1, ..., hi7) and denote by J the ideal in Cla, b, h| defined by h; — 11,(a, b),
that is,
J = (h; —pi(a,b) : j=1,...,17).
We also define the polynomial mapping
F:C®— CY7:(a,b) = (hi,...,h7) = (ua(a,b), ..., pizr(a,b)).
F induces the C-algebra homomorphism

(23)  F.:Ch] = Cla,b]: > ™t b > ™ (a,b) - - p5Y (a, D).

That is, instead of variables (a, b) we introduce new variables hy, ..., hi7. Computing the
normal forms of g;; according to Proposition 7 of §7.3 of [5] we find that the expressions
of the preimages of g;; in C[h] up to a constant factor which are given in the Appendix.
Here each focus quantity is reduced in C[h] modulo a Grébner basis of the previous ones.

Denote by W the image of C® under F and by W its Zariski closure. Let G be the
ideal (¢\" ..., gty in C[W] and let R be the kernel of F,. Then R = ker F, = J N C[h]
and, by the Elimination Theorem (see e.g. Theorem 2 of §3.1 of [5])), R=(g9 € Jg:g €
C[h]). The unique reduced Grobner Basis of the ideal contains 105 binomials 71, . . . , 7105,
that is, R = (rq,...,7r105). We do not present these polynomials in the paper, however
the interested reader can easily obtain them computing the reduced Grobner basis of J
with help of any available computer algebra system. Note that by Theorem 1 of §3.3 of
5] W = V(R).

Denote by V' the variety V(B) and by V}, the image of V under F, V}, = F(V).
Similarly as in [16] we check that V}, = V((gg) :k € N)) = Vi, where Vg = V((Gg, R)).
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Let K = (gg), . ,gé5),gé6 ,R) C C[h]. For every k € N g,(f,:) vanishes on V},, the
subvariety of Gg in . That means g,(gl,:) as a polynomial of C[h] vanishes on the variety
of K C CJh]. Computing the primary decomposition of K C C[h] using primdecGTZ

[7, 9] we find that
(24) K=PN---NPsNQ;NQyNQs,

where Py, ..., P5 are prime ideals, and (); are not prime, but primary ideals, such that
\/@ = <{hz | 1 S 1 S 10, 13 S 1 S 17},h11h12 — h15h§’6> \/@ = <h1,...,h17>, \/@ =
({h; | 3 <i <16}, hy — hy, 13975h3 — 11562h3hy7 + 5971R3.).

Thus, K has the structure as in Proposition 3. The minimal associate primes
of m?:lp(Qi) are T = <a7137b117a117b017a712>7 T, = <b3,71,b117a117 b2,7176110>7 T3 =
(a_13,b3.-1,b11,a11). Obviously, the intersection of V(Q1) U V(Q2) U V(Q3) with the
parameter space E(a) is the set a;; = a_13 = 0.

Let now (a*,a*) be a point from F(a,b) corresponding to a system (5). If |a};| +
la* 5] # 0 then F((a*,a*) € V(Q1) U V(Q2) U V(Q3). Therefore, by the proposition,
there exist rational functions f;, s;x such that for h € W in a neighborhood of F((a*, a*)
with |af;| 4 |aZy3] # 0

(25) gl(cllj)<h) —911 ( )f1e(h) + +955 ( )f5.k(h )+966 ) fox(h Z h)s;k(h

Applying F, to (25) we see that (22) holds in a neighborhood of (a*,a )
Thus, G is a basis of B in G+ z+) at any (a*,a*) with |a},| + |a_13| # 0. Therefore,
by Theorem 1 the cyclicity of the center at the origin of the corresponding system (4) is

at most 6. U
For (10) V(B) = V(Bs), however it appears that B = Bs. Computations show
that for K = (g}, .., g% . 9 . gvs ), B) and K = {9\, ..., g% gi¢) ot 9 . R) the

ideal K has a simpler structure with the embedded component ()3 being removed, K =
Pin---NPsNEQ1NEs. Also in these cases the computations are much faster. However
if we deal with B; by Theorem 1 we have to conclude that the upper bound for the
cyclicity is 7, that is, the conclusion is weaker, than given by Theorem 4.

We believe it would be possible to obtain five as an upper bound for the cyclicity
of the system if we were able to find a primary decomposition of the ideal

(26) K=" 40 R).

However we were unable to complete the calculations with SINGULARon our computa-
tional facilities due to the very high memory consumption of the calculation process.
We have tried to apply modular calculations to this ideal. The result of calculation is 9
components five of which are the radical ones and four are not. However in this case the
lifting (reconstruction) to the rational numbers gives an ideal which does not coincide
with K, that is the modular calculations do not give true primary ideals of K.

5. THE CYCLICITY OF COMPONENTS OF THE CENTER VARIETY

In this section we study bifurcations of limit cycles from each component of the
center variety.
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Let I = {(f1,..., fm) C k[x1,...,2,] be an ideal and V(I) be its variety, decomposi-
tion of V' = V(I) is given and let p be a point from V. The tangent space to V" at p is de-
fined as T, = p+{v|J,(I)v = 0}, where J([) is the Jacobian of the polynomials fi, ..., fm
and J, indicates that it is evaluated at p. It follows that dim T, = n — rank(J,(I)). It
is said that p is a smooth point of V' if dim 7}, = dim V,,. Let C' be a component of V' of
codimension k£ and assume that p € C, rank(J,(I)) = s. Then k > s and p is a smooth
point C' if and only if k = s; in this case rank(J,(I)) = k at any smooth point of C.

Denote by g the polynomials obtained after the substituting b,, with @, into gs.
Then the center variety of the real system (5) with A = 0 is the the variety V® in F(a)
of the ideal BX = (¥, g5, . . .).

The following statement is slightly reformulated Theorem 2.1 of [3].

Theorem 5 (C. Christopher). Assume that for system (5) with A = 0 p € VE and
rank J,(BY) = k. Then p lies on a component of V* of codimension at least k and there
are bifurcations of (5) which produce k limit cycles locally from the center corresponding
to the parameter value p.

If furthermore, p lies on a component C of V® of codimension k then p is a smooth

point of the center variety, and the cyclicity of p and any generic point of C is exactly
k.

Thus, the cyclicity of generic point of a component of the center variety can be easily
determined if we know the dimension of the center variety. The dimension of complex
variety can be easily computed using algorithms of computational algebra, since it is
equal to the degree of the affine Hilbert polynomial of any ideal defining the variety.
However determining dimensions of real varieties is more difficult problem.

We go from the complex system to the real one by setting

(27)
aig = Aio + IBig, by = Ao — I B, a1 =A_19+ 1B 13, by 1 = A_19 — IB_y3,
ajn = Ay + 1By, by = An — 1By, a3 =A_13+ 1B 13, by 1 = A_13— IB_i3,

where [ stands for the complex root of unity.
The following statement describes the center variety of (4).

Theorem 6. The center variety in R® of the real system (4) with A = 0 consists of the
following four irreducible components:

1) By =An=A_13=DB_13=0,

2) By = —A_13B10 + Au1B_12 — AygB_13 = —A%O + A2,12 - Bfo + Bglz = A By —
A_13B_1o + A_19B_13 = —AjpAn + A_pA_13+ B_12B_13 = ApnA_1p — AA_13 +
BigB_13 = A%—AQ_B—leg = —A11A—13310+A2_133—12—A10A11B—13+B—12B%13 =0,
3) —4A% 1, A% 3B 19 +4AA 19 A% 3B p43A% |, A% 3B 13—18A% |, A% 3 B? 1, B 13+3A% 3B, B 13+
12A°% 1A 3B 19B2 3= 12A 19A 1382, B2 3 — AL, B? 34+6A% ,B? ,B% 1, — B2, B% |5 =
—3A3)A_19B1o+ A_12B}y — A} B_15 + 3A10 B3, B_15 = —4A3 A_13B19 + 4A10A_13B} —
A%OB_lg + GA%OB%OB_KJ, - Bil[)B—l?) - —B11 - O

4) Aig = Bip = By =0,

of dimensions 4, 4, 5, 5, respectively.
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Proof. Performing the substitution (27) we obtain from 1), 4) and 6) of Theorem 2 the
conditions 1), 2) and 4), respectively. The ideals 2) and 3) of Theorem 2 yield a subvariety
of 1) of the present theorem. By Theorem 3.3 of [22] the variety V(J5) is the same as the
Variety of <a§12b§’71 — bgﬁla?jlg, CL%OCL_H — bQ’_lbgl, —bélbg,_l + CL%OCL_lg, ayl — b11>, WhiCh,
after the substitution (27), gives the component 3).

The dimension of components 1) and 4) is obvious. To find dimensions of the other
components we look for their rational parametrization.

We guess that 2) can be parametrized as

(28)
Bii = fo, Aui = fi(r1), Ao = fo(ri,72,t1,t2)/g2(t2), Bio = f3(r1,72,t1,12)/g2(t2),
A_iy = falri,re t, 12) /(91(t)g2(t2)), Boi2 = fs(r1,m2,t1,t2) /(91 (t1)g2(t2)),
A_13 = fo(ri,ra,t1,t2)/g1(t1), Bois = fr(r1,m2, b, t2) /g1(th),

where fo = 0, f1 = 71, fo = ro(1—13), f3 = 2rata), fa = ro(—1—t1—ta+t1ts)(— 1+t +E2+
tity), fo = =2ry(ty + 1) (=1 +taty), fo = (L — 1)), fr = 2rit1, g1(t1) = L +t], ga(ta) =
1+t

We eliminate from the ideal

<1 — wg192, A1 — 11, 92410 — f2, 92810 — f3,9192A-12 — f1, g192B_12 — [,
G1A 13— f6, 1B_13 — fr C Rlw,r1, 72,1, t2, Aro, Bio, A—12, B_12, A11, A_13, B_13]

variables w, ry, 1o, t1, to and obtain the ideal which coincides with the ideal defined by the
equations of 2). By Theorem 2 of [5, §3.3] it means that (28) give a rational parametriza-
tion of the third component and the dimension of the component is less or equal to
four. Computing the Jacobian of the functions fy,..., f; at the randomly chosen point
ty = 1,to = 2,11 = 3,79 = 4 we see that it is four. Therefore, the dimension of the
component is four as well.

Similarly, one can check that a polynomial parametrization of 3) is given by

(29) AH = Uy, A_lg = U,g(ug - 6U§Ui + Ui), B_13 = 4U2U3U4(—U§ + UZ),
A_lg = ’LL3U5(U§ — 3ui), B_12 = U5U4(—3U§ + Ui), AlO = Uus, BlO = Uy4.

Indeed, eliminating from (29) wy, us, us, us, us we obtain an ideal whose radical is equal to
the radical of the ideal defining 3. Similarly as above one can easily check the dimension
of the component is equal to five. O

We denote by J,Sk) the rank of the Jacobian of the first k£ focus quantities evaluated
at the point p.

Theorem 7. The cyclicity of a generic point of components 2) is equal to four, and of a
generic point of 3) is equal to 3. Define the polynomials Fy = 3A3,B1gA_12 — B3yA_12+
A?OB—IQ — SAloB%OB_lg and F4 = 4A§12B_12A§13 — 4A_12B§12A§13 - 3A§12A2713B_13 +
18A2_12Bg12A2_13B—13_3B4_12A2_13B—13_12Ai12B—12A—13B%13+12A—12B312A—1SB%13+
At B3, — 6A% ,B%,B? 1, + B*,B* ;. Then the cyclicity of a point p of 1) with
Fi(p) # 0 and of a point p' of 4) with Fy(p") # 0 is at least 3.
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Proof. We take a random point on the component 2), e.g. p with the coordinates A;; =
3, Bll == O,A,lg - 0,B,13 == 3,1410 = —12/5, BlO == 16/5,14,12 - —16/5,3712 == —12/5
Calculations yield that TankJIg4) = 4. Since the dimension of 2) is 4, by Theorem 5 the
cyclicity of a generic point of 2) is 4. Similarly, computing JISS) at the random point p :
<A713 = 41, B,13 — 840,14,12 - —568,3712 = 260,1410 = 27310 == 5,1411 - S,BH — 0)
we see that J1§3) = 3. Therefore by Christopher’s theorem the cyclicity of a generic point
of the component is 3.

Computing Fitting ideals (see e. g. [11]), we obtain that for the component 1)

rankJy) = rankJ5Y = 3 at p with Fi(p) # 0. Similarly for component 4) we have
rankJI£3) = ranleg4) = 3 at the point p’ with Fy(p') # 0.

Thus, by Theorem 5 three limit cycles bifurcate from the origin for the system
corresponding to p. O

6. THE CYCLICITY OF A GENERIC TIME-REVERSIBLE CUBIC SYSTEM

By Theorem 6 of [15], Theorem 3.3 of [22], and Theorem 3.2 of [21] the Zariski
closure of the set of time-reversible systems in the family (3) is the variety of the ideal

I= <Cl—1sb§o - aﬁzba,_l, arr — bi1, agaazy — bo2ba, a—l?ﬂ%g - bggb&—l, cﬁmb%o - a§2b§,71,
a2_12a§0 - bgzbg,—p _a3—13b§1,—1 + ai12b§,—17 _CLOQG%O + b(2)1520»
axbyy — aioboz, —aioa_12 + b ba 1, —atya_1z + by bs —1, —agiaig + boyb10,
agab10? — a3 bag, —ad asg + beab10?, a_19b10% — aglbz_l, a_13b10% — aélbg,_l)
After the substitution
(30)
ayo = Aro+1Bio, bor = Aro—1 B, aor = Api+1Bo1,b10 = Agy—1 By, a_12 = A_19+1B_19,
bo,—1 = A_19—1DB_19,a90 = Ago+1DBs, bos = Asg—1DBsg, a11 = A1 +1B11,b11 = Ain—1Byy,
ao2 = Aoz + 1 Boz, bog = Ao — I Bz, a_13 = A_13+ 1B _13,b3 1 = A 13— IB_13

we obtain from [ the ideal Ir and V([g) is the set of all time-reversible systems inside
the family (2) with A = 0.

Theorem 8. The cyclicity of a generic time-reversible system in the general family of
cubic systems (2) is equal to siz.

Proof. We first show that the dimension of V(Ir) is 7. Noting that the necessary con-
dition for time reversibility is vanishing of Bj; we set in all computations By; = 0.
Computing in Qlty,...,ts, Aio, ..., B_13] the eighth elimination ideal Jg of J = (A —
JiBio — fo, Aot — f3, Bor — fa, A1z — f5, Bo12 — fe, A2o — fr, Bao — fs, A1 — fo, Aoz —
fi0, Boz — fi1, A1z — fi2, B_13 — fi3), where

fi=t1, fa=ta, f3=tits, f1=—lats, fs =t1(t] — 3t3)ts, fo=ta(—3t] +13)15,
fr= (6 — t3)ts, fs = 2titats, fo =18, fio = (5 — t3)t5ts,
fin = (=2t1tat3ty), fi2 = (t] — 6L115 + t3)ts, fis = dtita(—t7 + t3)ty,
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we find that Js = v/I. By Theorem 1 of [5, 83, Chapter 3] it means that the polynomials
fi,..., fis define a polynomial parametrization of V(Ig). Therefore, dim(V(Ig)) < 7.
Computing the Jacobian of the polynomials fi,..., fi3 at a random point {t; =i, 1 <
i < 7} we see that its rank is equal to 7. Taking into account the restriction By; = 0 we
conclude that the codimension of V(Ig) is 6.

The calculation of the Jacobian of g7, .., gss at the point corresponding to the
parameters t; = ¢, 1 < ¢ < 7 shows that its rank is 6. Therefore, by Christopher’s
theorem the cyclicity of the generic point of V(Ig) is 6. O

7. CONCLUDING REMARKS

We have described an algorithmic approach to obtain an upper bound for the cyclic-
ity of “most of systems” in a polynomial family and have applied it to study the cyclicity
of the family (4). For this family we have shown that the cyclicity of a generic system of
the component of the center variety defined by the conditions 2), 3) and 4) of Theorem
6 is at most six. The method does not give any bound for the cyclicity of systems corre-
sponding to the first component of Theorem 6. We believe it is possible to improve the
bound computing a primary decomposition of the ideal (26), however the calculations
are very laborious and cannot be completed with our computational facilities.

We then have studied bifurcations of limit cycle from each component of the center
variety using Christopher’s theorem (Theorem 5). Using this approach we have shown
that for the second and the third components of Theorem 6 the sharp bound for the
cyclicity is four and three, respectively. However the approach does not give upper
bounds for the cyclicity of systems corresponding to the first and forth components of
the theorem.

We have proven also that the cyclicity of a generic time-reversible cubic system is
Six.
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APPENDIX

The first focus quantities each reduced modulo the ideal of the generated by the
previous ones and up to a constant factor are as follows:

gﬁ?) = h’l - h27
gss) = 2/3h7 — 2/3hs,
B = —1/3hohyy + 1/3hshis — 1/3he + 1/3hyg,
g\ = 29/30hohe — 29/30hohyg + 1/6hahys — 1/6hohyy + 36/5hishis — 36/5hishys +
36/5hgh1g — 36/5h1ohig — 11/30h11hy7 + 11/30h1shyy — 7/6hs + 7/6hs,
gSF) = —191/261h2hy3 + 191/261h3h14 + 1688/8Thahyshys — 1688/87hyhishys + 38351/3915h 3h2; —
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38351/3915h,4h35—187859/37845hoh13h16+187859/37845hohy4hi6+38351/3915hoh5hi6—38351/3915h10h15his—
826873/2523h13h15h16+826873/2523h14h15h16—826873/2523hgh3s+826873/2523h10h3s—11/3915h 1 hyshir+
11/3915h12h15h17+63602/37845h11 high17—63602/37845h19h16h17+91/348hohs—91/348hohe—1714/135hgho+
1714/135hghyg + 14167/270hghy; — 14167/270h10h1g + 277 /30hghyz — 16983/10h12h13 — 277/30hghy 4 +
16983/10hy1h14+7/58hsh15—7/58heh15+1435276/37845hsh16— 1435276 /37845heh16—1144/1305hghi7+
1144/1305h10h17 + 7/60hi3h17 — 7/60hi4h7,

gSE) = 1/179957124900(314439792836580h2hy3h2; —314439792836580hahy 4h2; +167774955434040h, 3h3, —
167774955434040h, 4135 —A459779466666048hah13h15h16-+459779466666048Rhoh 4h15h16+167774955434040hgh?hye—
167774955434040h10h2 5 h16—5564635229863332h13h2 5 h16-+5564635229863332h14h35h16-+T73798251681168hoh13h3g—
73798251681168hoh4h3—5564635229863332h9h15h 36 +5564635229863332h10h15h76+3901291066992420h3h15h 75—
3901291066992420h1 4 h15h3+3901291066992420hgh3 s —3901291066992420h1 0 h3s+144551266134h1 1 h3shir—
144551266134h12h35h17+24525527209260h 1 hyshighir—24525527209260h12h15highr —157879306893924R, 1 h3ghi 7+
157879306893924h 12h3sh17—219450333375h3 hs+219450333375h3 he —7970291720775hohgh13—4709316225452220hah 2k
7970291720775hahghy4+4709316225452220hohy2hy4+4386231116505ho hshis—4386231116505hahehys —
217622722151280hghghy5+217622722151280hgh10hi5+1048673514504414hghy 1 hys—1048673514504414h19h12hy 5+
150644468531700hghy3h15—26924686414769718h12h13h15—150644468531700hgh14h15+28614070529783622h, 1 hyghys—
1689384115013904h19h14h15 + 2023904532510hsh35 — 2023904532510hsh35 + 11900099492469hohshig —
11900099492469hohghi6+7909426957536hghohi— 7909426957536 hghighi6-+177784594345584hg h11 hig+
1689384115013904h9h12h16—1867168709359488h10h12h16—4463619138396hgh13h16+368377476200712h19h 13k 16+
4463619138396hgh14h16—368377476200712h11 h14h16+627432169709646h5h15h16—627432169709646h6hi5h16—
478312580221938h5h3; + 478312580221938heh?s + 3313052243424hghy1hir + 3881784152840h2  hyy —
3313052243424hgh1ahy7 —86033450301634h 11 hiohi7 +82151666148794h3,h 7 —345194392635hah13hy7 +
345194392635hah14h17—14279546249892h0 hyshy7+14279546249892h 10 h1shi7+3012698412090h 1 3h15hy7—
3012698412090k 4h15h17—5074709871906hoh16h17+5074709871906h10h16h17—222914772468h13h16h7+
222914772468h14h16h17+653031322560h11 h37 —653031322560h12h3,+2289495926970hs hg —2289495926970he hg+
220784663929586h3 —226815459886126h9h1+6030795956540h3,+27773253873122hshy1 —7191789189140hgh, —
266551007225150h5h1o + 245969542541168hsh12 + 1285321237690193hgh13 — 2720790920240h10h13 —
4745701548305450h9h14+3463101101535497h1oh14—1089026251875hh16+1089026251875h4hy6+527287263300hshi7—
527287263300hgh7).
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