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Abstract

In this paper we state and explain techniques useful for the computation of strong Gröb-
ner and standard bases over Euclidean domains: First we investigate several strategies
for creating the pair set using an idea by Lichtblau. Then we explain methods for avoid-
ing coefficient growth using syzygies. We give an in-depth discussion on normal form
computation resp. a generalized reduction process with many optimizations to further
avoid large coefficients. These are combined with methods to reach GCD-polynomials at
an earlier stage of the computation. Based on various examples we show that our new
implementation in the computer algebra system Singular is, in general, more efficient
than other known implementations.
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1. Introduction

In 1964 Hironaka already investigated computational approaches towards singular-
ities and introduced the notion of standard bases for local monomial orders,1 see, for
example, Hironaka, H. (1964a,b); Grauert, H. (1972). In Buchberger, B. (1965, 2006),
Buchberger initiated, in 1965, the theory of Gröbner bases for global monomial orders
by which many fundamental problems in mathematics, science and engineering can be
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1See Definition 1.
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solved algorithmically. Specifically, he introduced some key structural theory, and based
on this theory, proposed the first algorithm for computing Gröbner bases. Buchberger’s
algorithm introduced the concept of critical pairs and repeatedly carries out a certain
polynomial operation (called reduction).

Many of those reductions would be determined as “useless” (i.e. no contribution to
the output of the algorithm), but only a posteriori, that is, after an (often expensive)
reduction process. Thus intensive research was carried out, starting with Buchberger, to
avoid the useless reductions via a priori criteria, see, for example, Buchberger, B. (1979,
1985); Gebauer, R. and Möller, H. M. (1988).

Once the underlying structure is no longer a field, one needs the notion of strong
Gröbner bases resp. strong standard bases. Influential work was done by Kandri-Rody,
A. and Kapur, D. (1988), introducing the first generalization of Buchberger’s algorithm
over Euclidean domains computing strong Gröbner bases. Moreover, Pan introduced
the notion of D-bases of polynomial ideals over principal ideal domains, see Pan (1989).
Since then only a few optimizations have been introduced, see, for example, Wienand
(2011); Lichtblau (2012); Eder, C. et al. (2017).

In this paper we introduce several new optimizations to the computation of strong
standard bases over Euclidean domains. In Section 2 we give the basic notation and
introduce the idea of a reduction step, generalized from the field case. We state Buch-
berger’s algorithm over Euclidean domains for global and also for local monomial orders.
Section 3 discusses different variants of how to handle S-polynomials and GCD-polyno-
mials, especially generalized variants of Buchberger’s product and chain criterion. Over
Euclidean domains like the integers, coefficient swell and the missing normalization of the
lead coefficient play an important role when it comes to practical and efficient compu-
tation. Modular computation are not possible in general, but we give a new attempt for
keeping coefficients small in Section 4. In Section 5 we finally give an in-depth discussion
on the normal form computation which provides various attempts like lead term reduc-
tions and lead coefficient reductions. This, again, helps to keep coefficients small and
minimizes the number of polynomials in a basis which have the same leading monomial
by applying efficient gcd computation. We have done a new implementation of Buch-
berger’s algorithm in the computer algebra system Singular. In Section 6 we compare our
implementation with Macaulay2 and Magma, exploring the impact of the above ideas
with some interesting results.

2. Basic notations

Let R be a Euclidean domain.2 A polynomial in n variables x1, . . . , xn over R is a finite
R-linear combination of terms av1,...,vn

∏n
i=1 xvi

i , f =
∑

v avxv ..=
∑finite

v∈Nn av1,...,vn

∏n
i=1 xvi

i , such
that v ∈ Nn and av ∈ R. The polynomial ring P ..= R[x] ..= R[x1, . . . , xn] in n variables over
R is the set of all polynomials over R together with the usual addition and multiplication.
For f =

∑
v avxv , 0 ∈ P we define the degree of f by deg( f ) := max {v1 + · · · + vn | av , 0}.

For f = 0 we set deg( f ) := −1.
Let ( f1, . . . , fm) ∈ P be a finite sequence of polynomials. We define a module homo-

morphism π : Pm → P by ei 7→ fi for all 1 ≤ i ≤ m. We use the shorthand notation

2The reader can feel free to think of R = Z.
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α ..= π(α) ∈ P for α ∈ Pm. An element α ∈ Pm with α = 0 is called a syzygy. The module
of all syzygies (of 〈 f1, . . . , fm〉) is denoted syz (〈 f1, . . . , fm〉).

In the following we discuss computation with respect to different monomial orders:

Definition 1. Let < denote a monomial order on P.
1. < is called global if xα ≥ 1 for all α ∈ Nn.
2. < is called local if xα ≤ 1 for all α ∈ Nn.

Given such a monomial order < we can highlight the maximal terms of elements in P
w.r.t. <: for f ∈ P \ {0}, lt ( f ) is the lead term, lm ( f ) the lead monomial, and lc ( f ) the
lead coefficient of f . For any set F ⊂ P we define the lead ideal L(F) = 〈lt ( f ) | f ∈ F〉; for
an ideal I ⊂ P, L(I) is defined as the ideal of lead terms of all elements of I. Moreover,
we define the ecart of f by ecart ( f ) := deg( f ) − deg (lm ( f )).

Working over a field there are many equivalent definitions of how to obtain a canonical
or normal form when reducing a given polynomial by a Gröbner basis G. Working over
more general rings these definitions are no longer equivalent and over Euclidean domains,
like the integers, this, in particular, results in the term of being “strong”, see Definition 4:

Assuming that our coefficient ring R is an Euclidean domain we can define a total order
≺ using the Euclidean norm | · | of its elements: Let a1, a2 ∈ R, then a1 ≺ a2 if |a1| < |a2|.
For example, for the integers we can use the absolute value and break ties via sign:

0 ≺ −1 ≺ 1 ≺ −2 ≺ 2 ≺ −3 ≺ 3 ≺ . . .

The reduction process of two polynomials f and g in P depends now on the uniqueness
of the minimal remainder in the division algorithm in R:

Definition 2. Let f , g ∈ P and let G = {g1, . . . , gr} ⊂ P be a finite set of polynomials.
1. We say that g top-reduces f if lm (g) | lm ( f ) and if there exist a, b ∈ R such that

lc ( f ) = a lc (g) + b such that a , 0 and b ≺ lc ( f ). The top-reduction of f by g is
then given by

f − a
lm ( f )
lm (g)

g.

So a top-reduction takes place if the reduced polynomial will have either a smaller
lead monomial or a smaller lead coefficient.

2. Relaxing the reduction of the lead term to any term of f , we say that g reduces f .
In general, we speak of the reduction of a polynomial f w.r.t. a finite set F ⊂ P.

3. We say that f has a weak standard representation w.r.t. G if f =
∑r

i=1 higi for some
hi ∈ P such that lm ( f ) = lm

(
h jg j

)
for some j ∈ {1, . . . , r}.

4. We say that f has a strong standard representation w.r.t. G if f =
∑r

i=1 higi for
some hi ∈ P such that lm ( f ) = lm

(
h jg j

)
for some j ∈ {1, . . . , r} and lm ( f ) > lm (hkgk)

for all k , j.

This kind of reduction is equivalent to CP3 from Kandri-Rody and Kapur (1984) and
generalizes Buchberger’s attempt from Buchberger, B. (1985).

The result of such a reduction might not be unique. This uniqueness is exactly the
property standard bases give us. Before defining standard bases, let us give a short note
on the naming convention in this paper:
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Convention 3. Note that the term Gröbner basis was introduced by Buchberger in 1965
for bases w.r.t. a global monomial order (Buchberger, B. (1965, 2006)). Independently,
Hironaka (Hironaka, H. (1964a,b)), and, again independently, Grauert (Grauert, H.
(1972)), developed an analogous concept, called standard basis, for multivariate power
series, i.e. for polynomial rings equipped with a local monomial order. For this paper we
decided to use the notion standard basis since it is nowadays the more general one.

Definition 4. A finite set G ⊂ P is called a standard basis for an ideal I w.r.t. a monomial
order < if G ⊂ I and L(G) = L(I). Furthermore, G is called a strong standard basis if for
any f ∈ I\{0} there exists a g ∈ G such that lt (g) | lt ( f ).

Remark 5. Note that G being a strong standard basis is equivalent to all elements g ∈ G
having a strong standard representation w.r.t. G. See, for example, Theorem 1 in Licht-
blau (2012) for a proof.

Clearly, assuming the field case, any standard basis is a strong standard basis. But
in our setting with R being an Euclidean ring one has to check the coefficients, too, as
explained in Definition 2.

Example 6. Let R = Z and I = 〈x〉 ∈ R[x]. Clearly, G := {2x, 3x} is a standard basis for I:
L(I) = 〈x〉 and x = 3x − 2x ∈ L(G). But G is not a strong standard basis for I since 2x ∤ x
and 3x ∤ x.

In order to compute strong standard bases we need to consider two different types of
special polynomials:

Definition 7. Let f , g ∈ P. We assume w.l.o.g. that lc ( f ) ≺ lc (g). Let t = lcm (lm ( f ) , lm (g)),
t f =

t
lm( f ) , and tg = t

lm(g) .
1. Let a = lcm (lc ( f ) , lc (g)), a f =

a
lc( f ) , and ag =

a
lc(g) . The S-polynomial of f and g is

denoted
spoly ( f , g) = a f t f f − agtgg.

2. Let b = gcd (lc ( f ) , lc (g)) . Choose b f , bg ∈ R such that b = b f lc ( f ) + bglc (g).3 The
GCD-polynomial of f and g is denoted

gpoly ( f , g) = b f t f f + bgtgg.

Remark 8.
1. In the field case we do not need to consider GCD-polynomials at all since we can

always normalize the polynomials, i.e. ensure that lc ( f ) = 1.
2. Note that gpoly ( f , g) is not uniquely defined: Working over R = Z we know that we

can write 〈lc ( f ) , lc (g)〉 as a principal ideal, say 〈c〉 = 〈lc ( f ) , lc (g)〉 for some c ∈ R.
Then there exist c f , c′f , cg , c′g ∈ R such that

c f lc ( f ) + cglc (g) = c = c′f lc ( f ) + c′glc (g) .

Depending on the implementation of the gcd algorithm one specific choice is made
for each GCD-polynomial.

3Since R is an Euclidean ring the extended gcd always exists.
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From Example 6 it is clear that the usual Buchberger algorithm as in the field case
will not compute a strong standard basis as we would only consider spoly (2x, 3x) =
3 ·2x−2 ·3x = 0. Luckily, we can fix this via taking care of the corresponding GCD-poly-
nomial:

gpoly (2x, 3x) = (−1) · 2x − (−1) · 3x = x.

It follows that given an ideal I ⊂ P a strong standard basis for I can now be computed
using Buchberger’s algorithm taking care not only of S-polynomials but also of GCD-
polynomials. We refer, for example, to Lichtblau (2012) for more details.

In Algorithm 3 we give pseudo code for a generic Buchberger algorithm over the
integers. Here, no criterion for detecting useless elements is applied. This is the topic
of the next section. But what is necessary to discuss beforehand is how to get strong
standard representations of elements handled by Algorithm 3. This is the concept of a
normal form.
Definition 9. Let < be a monomial order on P. Let G denote the set of all finite subsets
G ⊂ P. We call the map

NF : P × G −→ P

( f ,G) 7−→ NF ( f ,G) ,

a weak normal form w.r.t. < if for all f ∈ P and all G ∈ G the following hold:
1. NF (0,G) = 0.
2. If NF ( f ,G) , 0 then lt (NF ( f ,G)) < L(G).
3. If f , 0 then there exists a unit u ∈ P such that either u f = NF ( f ,G) or r =

u f −NF ( f ,G) has a strong standard representation w.r.t. G.
A weak normal form NF is called a normal form if we can always choose u = 1.

Next we give algorithms that compute normal forms. For their correctness we refer
to Section 1.6 in Greuel, G.-M. and Pfister, G. (2007). Algorithm 1 presents a normal
form algorithm for computation w.r.t. a global monomial order <:

Algorithm 1 Normal form w.r.t. a global monomial order < (NF)
Input: Polynomial f ∈ P, finite subset G ⊂ P
Output: NF of f w.r.t. G and <

1: h← f
2: while (h , 0 and Gh := {g ∈ G | g top-reduces h} , ∅) do
3: Choose g ∈ Gh.
4: h← Top-reduction of h by g (see Definition 2)
5: end while
6: return h

Note that Algorithm 1 may enter an infinite while loop if applied to local monomial
orders. Let us illustrate this behaviour with the “standard” example.
Example 10. Let P = K[x] where K is a field. We equip P with a local monomial order
<, i.e. x < 1. We set G = {g} where g = x − x2 and we want to compute NF ( f ,G) where
f = x. Using Algorithm 1 we start setting h := f and find that g top-reduces h:

h := x −
(
x − x2

)
= x2.
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Now we can again top-reduce h via subtracting xg:

h := x2 − x
(
x − x2

)
= x3.

This process does not stop, but constructs a power series equation: x−
(∑∞

i=0 xi
) (

x − x2
)
=

0. Since x < 1 we know that ∑∞i=0 xi = 1
1−x . We see that Algorithm 1 computes correctly

since (1− x)x = x− x2, still, it is not able to find the finite expression of the power series.
The main fact is, that Algorithm 1 does not take into account the ecart of the polynomials:
ecart ( f ) = 0 whereas ecart (g) = 1. Thus, once we reduce f by g the generated h = x2 has
ecart (h) = 0, but the degree grows. If we would be able to reduce h not only by g, but also
by the initial f = x, then we could terminate the reduction process: h− x f = x2− x · x = 0.
All in all, we would get the desired representation (1 − x)x = x − x2.

In Mora, T. (1982) Mora gave the first attempt to achieve a terminating normal form
algorithm also for local monomial orders taking into account the ecart of the reducer
polynomials:

Algorithm 2 Mora’s normal form algorithm w.r.t. a local monomial order < (NF)
Input: Polynomial f ∈ P, finite subset G ⊂ P
Output: NF of f w.r.t. G and <

1: h← f
2: T ← G
3: while (h , 0 and Th := {g ∈ T | g top-reduces h} , ∅) do
4: Choose g ∈ Th with ecart (g) minimal.
5: if (ecart (g) > ecart (h)) then
6: T ← T ∪ {h}
7: end if
8: h← Top-reduction of h by g (see Definition 2)
9: end while

10: return h

Note that Algorithm 2 in general computes a weak normal form for f , i.e. u might
not be trivial. See u = 1 − x in Example 10.

Example 11. Let P = Z[x, y]. A strong standard basis for the ideal I =
⟨
6 + y + x2, 4 + x

⟩
⊂

P w.r.t. negative degree reverse lexicographical order < is given by

G =
{
2 − x + y + x2, x − 2y − x2 − xy − x3

}
.

Since 4+ x ∈ I we assume that NF (4 + x,G) = 0. In Table 1 we state Mora’s normal form
computation with notation as in Algorithm 2, i.e. if we have a choice for the reducer, we
take the one of minimal possible ecart. We start with h = 4 + x and Th = G.

Note the importance of 4+x being added to Th. Without 4+x as reducer the reduction
process would not terminate.

Remark 12. Sometimes it can be more efficient to not only add the current status of h
to Th as a new reducer, but also to generate GCD-polynomials with h. Doing so, several
lead coefficient reductions may be done in one step. See Example 25 in Section 5 for
more details.

6



h g h added to Th?

4 + x 2 − x + y + x2 ✓
3x − 2y − 2x2 4 + x -
−x − 2y − 3x2 x − 2y − x2 − xy − x3 ✓

−4y − 4x2 − xy − x3 4 + x -
−4x2 − x3 4 + x -

0 - -

Table 1: Weak normal form computation due to Mora

Now we are ready to state Buchberger’s algorithm. For the theoretical background
of the algorithm (Buchberger’s criterion) we refer to Theorem 17 in Section 3.

Algorithm 3 Buchberger’s algorithm for computing strong standard bases (sBBA)
Input: Ideal I = 〈 f1, . . . , fm〉 ⊂ P, monomial order <, normal form algorithm NF (depend-

ing on <)
Output: Gröbner basis G for I w.r.t. <

1: G ← { f1, . . . , fm}
2: P←

{
spoly

(
fi, f j

)
, gpoly

(
fi, f j

)
| 1 ≤ i < j ≤ m

}
3: while (P , ∅) do
4: Choose h ∈ P, P← P \ {h}
5: h← NF (h,G)
6: if (h , 0) then
7: P← P ∪ {spoly (g, h) , gpoly (g, h) | g ∈ G

}
8: G ← G ∪ {h}
9: end if

10: end while
11: return G

3. How to choose Pairs

Having two classes of polynomials to handle, namely S-polynomials and GCD-poly-
nomials we also need criteria for deciding when such a polynomial is useless in the sense
of predicting a zero reduction or having already a strong standard representation. The
criteria presented in the following are then applied to Algorithm 3 in lines 2 and 7 when
new elements for the pair set are generated.

A first criterion takes care of useless GCD-polynomials and goes back to Pan:

Lemma 13 (Pan (1989)). Let f , g ∈ P such that lc ( f ) | lc (g) or lc (g) | lc ( f ). Then
gpoly ( f , g) reduces to zero w.r.t. { f , g}.

Proof. Since gcd (lc ( f ) , lc (g)) = lc ( f ) we can choose b f = 1 and bg = 0. Thus gpoly ( f , g) =
1 · t f · f − 0 · tg · g = t f f for monomial multiples t f , tg such that t f lm ( f ) = tg lm (g) =

7



lcm (lm ( f ) , lm (g)). It follows that gpoly ( f , g) just a multiple of f and thus reduces to
zero w.r.t. { f , g}.

As a next step we state well-known criteria by Buchberger, the Product and the Chain
criterion:

Lemma 14 (Buchberger’s Product Criterion). Let f , g ∈ P be polynomials such that
lm ( f ) and lm (g) are coprime and lc ( f ) and lc (g) are coprime. Then spoly ( f , g) reduces
to zero w.r.t. { f , g}

Proof. The proof is the same as in the field case. See Theorem 11 in Lichtblau (2012)
for more details.

Note that Lemma 14 does not apply to GCD-polynomials. Take, for example, G =
{ f , g} with f = 3x and g = 2y. Then lm ( f ) = x and lm (g) = y are coprime and spoly ( f , g) =
g f − f g = 0, but gpoly ( f , g) = y · 3x− x · 2y = xy. Clearly, we cannot reduce xy any further
w.r.t. G.

Lemma 15 (Buchberger’s Chain Criterion). Let G ⊂ P finite and let f , g, h ∈ G be
polynomials such that

1. lm ( f ) | lcm (lm (g) , lm (h)) and
2. lc ( f ) | lcm (lc (g) , lc (h)).

If spoly ( f , g) and spoly ( f , h) have a strong standard representation w.r.t. G then also
spoly (g, h) has a strong standard representation w.r.t. G.

Proof. The lemma is proven as in the field case. We want to have an S-polynomial chain

spoly (g, h) = c f ,gm f ,gspoly ( f , g) + c f ,hm f ,hspoly ( f , h)

for some coefficients c f ,g, c f ,h and some monomials m f ,g,m f ,h. Property (1) ensures proper
monomial multiples m f ,g and m f ,h. Working over the integers we have to take care of the
coefficients, too. Thus property (2) is needed to ensure the existence of proper multiples
c f ,g and c f ,h. For more details see, for example, the proof of Theorem 12 in Lichtblau
(2012): There the statement is proven for a strengthened version of property (2), namely
lc ( f ) | lc (g) | lc (h) resp. lc (g) | lc ( f ) | lc (h).

Moreover, we can state a similar criterion for GCD-polynomials:

Lemma 16. Let G ⊂ P finite and let f , g, h ∈ G be polynomials such that
1. lm ( f ) | lcm (lm (g) , lm (h)) and
2. lc ( f ) | gcd (lc (g) , lc (h)).

Then gpoly (g, h) has a strong standard representation w.r.t. G.

Proof. See Theorem 10.11 in Becker, T. et al. (1993) and Theorem 13 in Lichtblau
(2012).

Besides these statements one can “decide” for two polynomials f and g if we need to
compute the corresponding GCD-polynomial or the corresponding S-polynomial. This
goes back to Kandri-Rody, A. and Kapur, D. (1988) and Pan (1989) and can be also
found as a variant of Buchberger’s criterion as Theorem 10 in Lichtblau (2012) resp.
in Mora (2016).
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Theorem 17 (Variant of Buchberger’s Criterion). Let G ⊂ P be a finite set of polynomials,
let < be a monomial order on P. The following are equivalent:

1. G is a strong standard basis w.r.t. <.
2. For all f , g ∈ G spoly ( f , g) and gpoly ( f , g) reduce to zero.
3. For all f , g ∈ G the following hold:

(a) If lc ( f ) | lc (g) or lc (g) | lc ( f ) then spoly ( f , g) reduces to zero.
(b) If lc ( f ) ∤ lc (g) and lc (g) ∤ lc ( f ) then gpoly ( f , g) reduces to zero.

Clearly, when implementing the above criteria especially the choice between Condi-
tion 2 and Condition 3 in Theorem 17 has a huge influence on the computation:

1. Depending the choice of the next element in the pair set in Algorithm 3 it is
obvious that Condition 3 places an emphasis on GCD-polynomials. For a pair
of polynomials f , g ∈ G the algorithm tries to keep of the lead coefficient of the
generated polynomial as small as possible. This process goes on until at some point
eventually this smaller lead coefficient divides lc ( f ) lc (g). Then the corresponding
S-polynomial is generated which then removes the whole lead term.

2. If we use Condition 2 then there might be a lead term cancellation, i.e. S-polyno-
mial, being handled before the complete reduction process of the lead coefficient,
i.e. handling of GCD-polynomials, is finished.

Of course, one can have an influence on the above situation depending on the choice
of the next element from the pair set P in Line 4 of Algorithm 3. Lichtblau notes
in Lichtblau (2012) that, until now, there is no real comparison between the two attempts
due to missing implementations.

One statement we can make is the following:

Proposition 18. Theorem 17 already includes Lemma 14.

Proof. By Theorem 17 we only consider spoly ( f , g) if either lc ( f ) | lc (g) or lc (g) | lc ( f ).
Lemma 14 applies only in the other situations, but there no S-polynomial is generated
at all.

We have implemented Buchberger’s algorithm with both variants of Buchberger’s
criterion in Singular. In Section 6 we present more detailed results. Note that in both
cases we implemented the criteria to remove useless pairs in the vein of the Gebauer-
Möller installation, we refer to Gebauer, R. and Möller, H. M. (1988) as well as its
reformulation in Mora (2005) resp. Ceria et al. (2019) for more details.

4. Avoiding Coefficient Swell

One main problem when computing over the integers is coefficient growth. We cannot
normalize polynomials as usually done over fields. The only method to keep at least lead
coefficients as small as possible from inside the algorithm is to efficiently compute GCD-
polynomials as discussed in Section 3.

The first idea to handle coefficient swell might be to use modular methods as done
over fields, see, for example, Arnold, E. A. (2003). Sadly this concept is not working over
the integers.
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Example 19. Let I = 〈6x, 8x〉 ⊂ Z[x]. A strong standard basis w.r.t. a global mono-
mial order < is G = {2x, 6x, 8x} where 2x = gpoly (8x, 6x). Next we try to compute
modular standard bases for 〈6x, 8x〉 ⊂ Fp[x] for some prime number p > 3.4 The corre-
sponding standard basis is Gp = {6x, 8x}: Buchberger’s algorithm over Fp only considers
spoly (8x, 6x) = 0 and terminates afterwards, thus only the initial generators are added
to Gp. If we ensure that Buchberger’s algorithm computes a reduced5 standard basis we
then get Gp = {x}. The problem is that in no case we would get 2x ∈ Gp which is the
important element for the strongness of the standard basis for I over Z. Even before
applying Hensel lifting or the Chinese remainder theorem the information needed is lost.

Thus there is no way to compute a strong standard basis over Z via modular compu-
tations over Fp and lifting techniques in general.

One trick we can do is trying to find monomials or constants in the ideal we want
to compute a strong standard basis for. If we can add such elements to the list of input
polynomials of Algorithm 3 this can give a huge speed up to the overall computation.
The following lemma gives us a hint on how to do so.

Lemma 20. Let < be a monomial order on Z[x] and let I = 〈 f1, . . . , fm〉 ⊂ Z[x]. Let
Ĩ = 〈 f1, . . . , fm〉 ⊂ Q[x]. If the standard basis G = 〈1〉 for Ĩ w.r.t. < then there exists a
constant c ∈ Z such that c ∈ I.

Proof. Let G = 〈1〉 ⊂ Q[X]. Consider J = 〈1, f1, . . . , fm〉 ⊂ Q[x]. Consider the free module
Q[x]m+1 with standard generators e0, . . . , em together with the map π : Q[x]m+1 → Q[x]
defined via e0 7→ 1 and ei 7→ fi for all 1 ≤ i ≤ m. Since 1 ∈ G there must exist a syzygy
σ ∈ Q[x]m+1 of the following structure

σ = e0 +

m∑
i=1

piei

where pi ∈ Q[x] are polynomials for all 1 ≤ i ≤ m. In other words, we can represent
1 = π(e0) as a Q[x]-linear combination of the fi = π(ei). Moreover, we define

c := lcm (all denominators of all coefficients of all terms of all pi) .

Thus we get another syzygy cσ which corresponds to the equation

c = c · 1 = c · π(e0) =
m∑

i=1

(cpi) · π(ei) =
m∑

i=1

(cpi) · fi

where cpi ∈ Z[x] for all 1 ≤ i ≤ m. By construction it follows that c ∈ I.

Example 21. We give two examples, a small one we do by hand and a bigger one which
gives a real benefit for the overall computational time:

4We choose p > 3 since it should at least not divide the lead coefficients of the input polynomials.
5A reduced standard basis over a field w.r.t. a global monomial order means that the lead coefficients

of all elements in the basis are 1 and no lead term divides any term of any other polynomial in the basis.
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Algorithm 4 RationalPreCheck (RPC)
Input: Ideal I = 〈 f1, . . . , fm〉 ⊂ P, monomial order <
Output: Ideal J such that J = I

1: G ← standard basis for 〈 f1, . . . , fm〉 in Q[x] w.r.t. <
2: if 1 ∈ G then
3: S ← syz (〈1, f1, . . . , fm〉) ⊂

∑m
i=0 Q[x]ei w.r.t. <

4: Search for σ ∈ S with 0th component of the form ce0, c ∈ Q.
5: Find multiple λ ∈ Z such that λσ ∈ ∑m

i=0 Z[x]ei

6: J ← 〈λc, f1, . . . , fm〉
7: end if
8: return J

1. Let I ⊂ Z[x, y] be given by I = 〈x + 4, xy + 9, x − y + 8〉. We want to compute a
strong standard basis for I w.r.t. the degree reverse-lexicographical order <. The
standard basis for I over Q includes 1, so we have a constant in the standard basis
for I over Z. We compute syz (〈1, x + 4, xy + 9, x − y + 8〉) ⊂ ∑3

i=0 Q[x, y] and get the
following three syzygies:

σ1 = 7e0 − (x + 4)e1 + e2 + xe3,

σ2 = (y − 4)e0 − e1 + xe3,

σ3 = (x + 4)e0 − e1.

σ1 is the relation from which we can extract the corresponding constant for I:

7 = 7π(e0) = (x + 4)π(e1) − π(e2) − xπ(e3)

= (x + 4)(x + 4) − (xy + 9) − x(x − y + 8)

= x2 + 8x + 16 − xy − 9 − x2 + xy − 8x.

Thus, we add 7 to the initial generators of I and run Algorithm 3. We receive a
strong standard basis G = {7, x + 4, y − 4} ⊂ Z[x, y] for I.

2. A bigger example is given as rationalPreCheckExample() in our publicly available
benchmark library (Eder, C. (2018b)): The ideal I we are considering is generated
by 70 polynomials in Z[x, y, z]. We want to compute a strong standard basis for I
w.r.t. the degree reverse-lexicographical order <. In Table 2 we give some char-
acteristics of the computation of a standard basis for I on an Intel Core i7-5557U
CPU with 16 GB RAM. Note that the computation of Algorithm 4 over Q takes
< 0.01 seconds and needs < 0.3 MB of memory, so it is negligible compared to
the computational cost over Z. The same holds for the syzygy computation. The
strong standard basis for I computed by our implementation consists of only 9
elements

G =
{
18, 6z − 12, 2y − 4, 2z2 + 4z + 8, .

yz + z + 3, 3x2z − 15x2, x2y + 3x2z + x2,

x3 + 10z, x2z2 − 4x2z − 11x2
}
.
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From Algorithm 4 we do not directly get the constant 18 ∈ G, but we get a mul-
tiple of it: 6, 133, 248. Adding this constant to the generators of I and applying
Algorithm 3 represents the third column of Table 2, whereas a direct application
of Algorithm 3 on I is given in column two.

Characteristics \ Algorithms sBBA RPC + sBBA

maximal degree 13 13
# zero reductions 1,130 795

# product / chain criteria 1,279 / 2,990 826 / 1,925
memory usage (in MB) 1.51 0.78

Table 2: Characteristics of standard basis computations of Example 21

Remark 22.
1. Clearly, one can generalize Algorithm 4: If we do not have 1 ∈ G over Q we

might still get a short polynomial, even a monomial whose corresponding Z[x]
representation can then be recovered from the corresponding syzygy module. Note
that in this case the reconstruction is a bit harder and the precheck might take
longer, since we have a more complex standard basis computation over Q that does
not terminate early.

2. If one has a computer with at least two cores available the usage of parallel.lib resp.
task.lib (Steenpaß, A. (2016a,b)) in Singular might be worthwhile: One could start
the direct computation of sBBA over Z on one core plus RPC over Q on the other
core. Using the waitfirst command one could always ensure that the fatest possible
running time is achieved.

5. Normal Form Computations

Let us recall Definition 2 and give the two different types of a reduction step a name:

Definition 23. Let f ∈ P and let G ⊂ P be a finite subset.
1. If there exists g ∈ G such that lm (g) | lm ( f ) and lc (g) | lc ( f ) then f − lc( f )

lc(g)
lm( f )
lm(g) g is

a top-lt-reduction of f (w.r.t. g).
2. If there exists g ∈ G such that lm (g) | lm ( f ), lc (g) ≺ lc ( f ) and lc (g) ∤ lc ( f ) then

f − a lm( f )
lm(g) g with lc ( f ) = a lc (g) + b where a, b ∈ Z, b , 0 amd b ≺ lc ( f ) is a

top-lc-reduction of f (w.r.t. g).

First we can note that it is enough to consider lt-reductions since lc-reductions are
taken care of when generating new pairs:

Lemma 24. Algorithm 3 terminates and computes a correct strong standard basis for
a given set of geneators and a given momonmial order if we change the corresponding
normal form algorithms to consider only lt-reductions.

12



Proof. We need to show that lc-reductions are considered when adding new GCD-poly-
nomials to the pair set P. Assume h is the outcome of an lt-reduction. If there exist
possible lc-reductions for h w.r.t. G then there is a g ∈ G such that lm (g) | lm (h),
lc (g) ∤ lc (h) and lc (h) ∤ lc (g). Thus gpoly (h, g) is generated:

gpoly (h, g) = ah + btg

where a, b ∈ Z such that gcd (lc (h) , lc (g)) = alc ( f ) + blc (g) and t = lm(h)
lm(g) . Now we

distinguish two cases:
1. If a = 1 then gpoly (h, g) = h − btg which is exactly the corresponding lc-reduction

of h w.r.t. g.
2. If a , 1 then the lc-reduction of h w.r.t. g, h′ = h − ctg for some c ∈ Z, t ∈ P,

coresponds to the first step of the Euclidean algorithm calculating gcd (lc (h) , lc (g)).
If there is no further reduction of h′ then Algorithm 3 generates a corresponding
GCD-polynomial between h′ and g. It follows that

h − ctg + gpoly
(
h′, g
)
= gpoly (h, g) .

If h′ is further reducible by some g′ ∈ G then we note the following: First of all
g′ ∈ G \ {g} since lc (g) � lc (h′) thus there cannot exist a lt-reduction or lc-reduction
of h′ w.r.t. g. Now the reduction of h′ by g′ is given as

h′ − c′t′g′ = h − ctg − c′t′g′

for some c′ ∈ Z and t′ ∈ P. Since lm (h) = lm (tg) = lm (t′g′) we conclude that
ctg+c′t′g′ corresponds to a multiple of either spoly (g, g′) or gpoly (g, g′) depending on
divisibility of lc (g) and lc (g′). Nonetheless, once we have a standard representation
for spoly (g, g′) or gpoly (g, g′) we can redefine h by h − ctg − c′t′g′. Either the lead
term or the lead coefficient of h increases in this process. Thus after finitely many
steps this process terminates and we reach either case (1) or there is no further
lc-reduction reduction possible.

This was the usual way Singular implemented standard basis reduction over the in-
tegers. Clearly, this is due to historical reasons where the implementation over Z was
only thought of as a slight generalization of the computation over fields.

Example 25. Recall Example 11 from Section 2: If we allow only lt-reductions when
reducing h = 4+x w.r.t. the strong standard basis G =

{
2 − x + y + x2, x − 2y − x2 − xy − x3

}
then we get the following reduction table with Th = G at the beginning.

If we compare it to Table 1 we see one more reduction step introduced by choosing
x − 2y − x2 − xy − x3 as reducer in the second reduction step, since lc-reductions are not
allowed.

Note that Lemma 24 shows that lc-reductions are, from the theoretical point of
view, not needed. A lc-reduction corresponds to a first step in the Euclidean algorithm
when calculating gcd (lc ( f ) , lc (g)) which will be done in the algorithm when considering
gpoly ( f , g). Still, it has a strong impact on the performance of the algorithm in prac-
tice: cutting the lead coefficient down as much as possible means that the element might
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h g h added to Th?

4 + x 2 − x + y + x2 ✓
3x − 2y − 2x2 x − 2y − x2 − xy − x3 ✓

4y + x2 + 3xy + 3x3 4 + x -
x2 + 2xy + 3x3 x − 2y − x2 − xy − x3 ✓

4xy + 4x3 + x2y + x4 4 + x -
4x3 + x4 4 + x -

0 - -

Table 3: Only lt-reductions used in Mora normal form

be used more often for reduction purposes. Moreover, generating new S-polynomials
and GCD-polynomials with it leads to lower lead coefficients there. In some sense lc-
reductions are the bridge between an lt-reduction of f by g and the gpoly ( f , g). In one
specific situation we can go directly from one to another, without the need of a bridge.
Lemma 24 also gives a hint to this situation stated in the following during the reduction
process over the integers. 6

Lemma 26. Let f ∈ P, G ⊂ P finite and g ∈ G such that lm (g) = lm ( f ). Then it holds
that

〈 f , g〉 = ⟨spoly ( f , g) , gpoly ( f , g)
⟩
.

Proof. Let u, v, d ∈ Z such that

u lc ( f ) + v lc (g) = d = gcd (lc ( f ) , lc (g)) . (1)

We can then write

gpoly ( f , g) = u f + v g.

spoly ( f , g) =
lc(g)

d f − lc( f )
d g.

In order to show the statement we have to prove that ( f , g) and (gpoly ( f , g) , spoly ( f , g)
)

generate the same Z-lattice. So, in the above representation of gpoly ( f , g) and spoly ( f , g)
in terms of f and g we have to show that the corresponding coefficient matrix is invertible,
i.e. has determinant ±1 ∈ Z: To see this we set

M :=

 u v
lc(g)

d − lc( f )
d

 .
6This idea is also implemented in the computer algebra system Macaulay2. We have discovered it

independently and since we have not found any proof for the statement we give one here.
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Finally, we compute

det (M) = −u
lc ( f )

d
− v

lc (g)
d
= −1

d
(u lc ( f ) + v lc (g))

(1)
= −1.

How to use Lemma 26 in sBBA? The idea is that whenever we reduce a new element
f we check if there exists a reducer g ∈ G with lm ( f ) = lm (g), but lc (g) ∤ lc ( f ). In this
situation we do a 2-by-2 replacement:

1. Compute gpoly ( f , g) and replace g ∈ G by gpoly ( f , g) ∈ G. Clearly, already gener-
ated pairs with g as generator have to be adjusted respectively.

2. Compute spoly ( f , g) and replace f by spoly ( f , g). Note that we have not changed
the degree of f , but probably only multiplied f with some coefficient. With the
newly defined f we again enter the reduction process and see, if we can further
reduce it.

This has two main advantages to the usual reduction process that would compute only
an lc-reduction of f w.r.t. g:

1. We directly compute the GCD-polynomial of f and g whereas the before mentioned
lc-reduction would represent only one step in the Euclidean algorithm for reaching
gpoly ( f , g). So we can directly replace g with gpoly ( f , g) which leads to smaller
coefficients and multiples during the pair generation. Furthermore, gpoly ( f , g) re-
duces other elements at least in all situations g would reduce, but it can possibly
fulfill more lt-reductions due to its smaller lead coefficient.
Furthermore, since lm

(
gpoly ( f , g)

)
= lm (g) we can replace all S-polynomials already

generated with g, again giving smaller coefficients in upcoming reduction processes.
Even more, using gpoly ( f , g) we are possibly able to render more S-polynomials
useless applying the chain criterion, due to the smaller lead coefficient.

2. For f the advantage is that we are not stuck with a lc-reduction only, but we can
go on and perform the lt-reduction spoly ( f , g) and thus directly lower the lead term
without the need of adding f to the basis, which would blow up pair generation.

Remark 27.
1. Note that lm ( f ) = lm (g) is an essential condition for the correctness of Lemma 26.

If, for example, only lm (g) | lm ( f ) holds such that λ = lm( f )
lm(g) > 1 ∈ P, then we can

only recover f and λg via spoly ( f , g) and gpoly ( f , g), but we are no longer able to
recover g.

2. Overall applying lc-reductions has a huge effect on running time: In most examples
we get a speedup factor of 3. If we even apply coefficient reductions to the tail terms
of the newly added element to the basis, we get another factor of 3 − 5.

When we enter the reduction process of an element f in sBBA we search for reducers
in the following order:

1. Is there g ∈ G for a lt-reduction of f ? If so we can cut down the lead term of f
without the need of multiplying f with any coefficient , 1.

2. Is there are g ∈ G fulfilling Lemma 26? If so we can cut down the lead term of
some coefficient multiple of f and we can further replace g by gpoly ( f , g) leading
to a better reducer.
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3. Is there g ∈ G for a lc-reduction of f ? We cannot cut down the lead term of f , but
at least we can reduce the lead coefficient before adding f to G and generating new
S-polynomials and GCD-polynomials.

6. Computational results

In this section we present the new implementation for standard basis computation
over Euclidean domains in Singular 4-1-2.7 We compare it to the current implementations
in the computer algebra systems Macaulay2 (version 1.12) and Magma (version 2.23).
For the comparison we use benchmarks with different properties and behaviours. All
examples are computed with respect to the degree reverse lexicographical order. All
algorithms run single threaded, we use an Intel Core i7-6700 CPU with 3.4 GHz and
64GB RAM. The machine runs Arch Linux with unmodified 4.18.12 kernel. For the
examples we refer to Eder, C. (2018b).

Examples Singular (Thm. 17) Singular (all pairs) Macaulay2 Magma

Cyclic-6 0.330 0.320 4.708 2.799
Cyclic-7 18, 731.820 5, 636.210 out of memory 366.060

Katsura-7 2.200 2.250 204.928 251.630
Katsura-8 133.390 135.360 64, 555.420 (> 24h)
Katsura-9 13, 366.590 12, 951.160 (> 24h) (> 24h)

Eco-9 3.920 4.050 870.409 22.520
Eco-10 38.760 40.670 (> 24h) 289.540

F-633 0.140 0.120 14.982 12.880
F-744 118.610 117.890 (> 24h) (> 24h)

Noon-7 34.930 32.700 (> 24h) (> 24h)
Noon-8 3, 1390.060 3, 079.370 (> 24h) (> 24h)

Reimer-5 3.620 3.590 out of memory 1, 932.400
Reimer-6 1, 216.960 1, 232.530 out of memory (> 24h)
Lichtblau 1.910 1.830 69.536 2, 242.900

Bayes-148 9.970 9.900 117.635 46.240

Mayr-42 212.320 212.770 218.635 40.270

Yang-1 149.120 147.250 181.210 50.330

Jason-210 47.010 46.780 (> 24h) (> 24h)

Table 4: Benchmark timings given in seconds (“(> 24h)” means that we have stopped the computation
after at least 24 hours.)

We can see that Singular’s new implementation is always faster than Macaulay2.
Comparing it to Magma we see that Magma is way faster for Cyclic-7. We assume

7In the Singular sources since git commit 7d2091affbf4b4a1a382e5eb0a47f66c0f3c42f7a.
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that this is due to Magma using Faugère’s F4 algorithm (Faugère, J.-C. (1999)). Our
implementation considers fewer S-polynomials and GCD-polynomials, but the reduction
steps in higher degree are way slower than the linear algebra done in Magma. We believe
that there are more classes of examples where the linear algebra attempt is more efficient
than the polynomial arithmetic used in Singular, still, we need to investigate this problem
in more detail. We can see that the F4 algorithm seems to be beneficial also for Mayr-42
and Yang-1. Nevertheless, for most of the other examples considered, Singular is by a
factor faster than Magma.

In the above table we list timings for Macaulay2’s Buchberger implementation using
polynomial arithmetic (as for Singular). We also tested Macaulay2’s F4 implementa-
tion, but in most of the above examples it was slower or just as fast as the polynomial
arithmetic implementation. Due to its much higher memory usage, we could not finish
most of the examples on the given machine. The only example where we have seen a
better result was Mayr-42 where Macaulay2’s F4 algorithm finished in 185 seconds, still
using way more memory than Magma and nearly 10 times as much as Singular. In the
given example Singular’s new algorithm uses, aside from Cyclic-7, the least memory of
all compared implementations.

For Singular we can see that generating all possible S-polynomials and GCD-poly-
nomials or only the ones needed (recall Theorem 17) does not have a bigger influence
on the computation for most of the examples. Still, for the bigger examples like Noon-8
or Katsura-9 we see that applying Theorem 17 leads to slightly slower computation. In
Cyclic-7 we can even see a huge impact, the computation slows down by a factor of more
than 3! It sems that having more pairs available at an earlier stage of the algorithm
is advantageous compared to having fewer pairs overall. In most of the examples the
algorithm taking care of all possible pairs does not even compute more reductions, the
product and chain criterion removes those pairs which are really useless at some later
stage. All in all it seems that considering all possible S-polynomials and GCD-polyno-
mials leads to a more stable algorithm.

We found that the application of Lemma 26 becomes sometimes a bottleneck. For
example, always exchanging f and g by spoly ( f , g) and gpoly ( f , g) has a huge drawback
in the computation of a basis for Cyclic-7, leading to a slow down of a factor of more than
3. We found that overall it is a good heuristic to apply Lemma 26 at most 5 times per a
single reduction process. The Singular timings in the above table correspond exactly to
this implementation.

7. Conclusion

We have presented new ideas for computing standard bases over Euclidean domains.
The implementation of the corresponding algorithms is available in Singular. We have
seen that Singular is in general faster than Macaulay2 and Magma in various examples.

Our next steps include an implementation of the new ideas in the open source C
library GB which implements Faugère’s F4 algorithm (Eder, C. (2018a)). Doing so
we hope to benefit from the new ideas and the fast linear algebra. Still, not all ideas
presented here are trivial to move to an F4-style algorithm.

Moreover, we still see a lot of zero reductions in higher degree which slow down the
computation. In order to tackle this problem, we work on a more general chain criterion
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trying to exploit more of the structure of the input system. Even more, a further attempt
on signature-based computation over Euclidean rings, see (Eder, C. et al. (2017)), should
be possible.

Finding better heuristics for the application of Lemma 26 depending on the structure
of the input systems is also an interesting topic to study further. If applied in a “good”
way it can have a strong impact on the overall computation.

Another topic we are working on is to improve the implementation in Singular for
Euclidean domains with zero divisors. There, special care needs to be taken of the
annihilator polynomials.
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