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1. Introduction

A ring morphism u : A→ A′ has regular fibers if for all prime ideals P ∈ SpecA the ring A′/PA′

is a regular ring, i.e. its localizations are regular local rings. It has geometrically regular fibers if
for all prime ideals P ∈ SpecA and all finite field extensions K of the fraction field of A/P the
ring K ⊗A/P A′/PA′ is regular. If for all P ∈ SpecA the fraction field of A/P has characteristic
0 then the regular fibers of u are geometrically regular fibers. A flat morphism u is regular if its
fibers are geometrically regular. If u is regular of finite type then u is called smooth. A localization
of a smooth algebra is called essentially smooth.

In Artin approximation theory (introduced in [2]) an important result (see [16]) is the following
theorem, generalizing the Neron Desingularization [9], [2].

Theorem 1 (General Neron Desingularization, Popescu [11], [12], [13], André [1], Swan [20],
Spivakovski [19]). Let u : A → A′ be a regular morphism of Noetherian rings and B a finite type
A-algebra. Then any A-morphism v : B → A′ factors through a smooth A-algebra C, that is v is a
composite A-morphism B → C → A′.
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The purpose of this paper is to give an algorithmic proof of the above theorem when A,A′ are
one dimensional local rings, that is Theorem 2. When A,A′ are domains such algorithm is given in
[10], the case when A,A′ are discrete valuation rings proved by Néron [9] is given in a different way
in [15] with applications in arcs frame. The present algorithm was implemented by the authors in
the Computer Algebra system Singular [3] and will be as soon as possible found in a development
version at
https://github.com/Singular/Sources/blob/spielwiese/Singular/LIB/.

The proof of Theorem 2 splits essentially in three steps. We will give here the idea in case A
and A′ are domains. In step 1 we reduce the problem to the case when HB/A ∩ A 6= 0, HB/A

being the ideal defining the nonsmooth locus of B over A. Let 0 6= d ∈ HB/A ∩ A. This means
geometrically that SpecBd → SpecAd is smooth. In the second step we construct a smooth A-
algebra D, A ⊂ D ⊂ A′ and an A-morphism v′ : B → D/d3D such that v ≡ v′ modulo d3A′. If A′

is the completion Â of A we can use D = A. The third step resolves the singularity. If B = A[Y ]/I,
Y = (Y1, . . . , Yn) then we can find f = (f1, . . . , fr), r ≤ n a system of polynomials from I (given a
tuple (b1, . . . bs) we denote usually by the corresponding unindexed letter b the vector (b1, . . . bs)),
and an r × r-minor M of the Jacobian matrix (∂fi/∂Yj) such that d ≡ MN modulo I for some
N ∈ (f) : I), where (f) denotes the ideal generated by the system f . Then v′(MN) = ds for
some s ∈ 1 +dD. Assume that M = det(∂fi/∂Yj)1≤i,j≤r. Let H be the matrix obtained by adding
to (∂f/∂Y ) the boarder block (0|Idn−r) and let G′ be the adjoined matrix of H and G = NG′.
Consider in D[Y, T ], T = (T1, . . . , Tn) the ideal J = ((f, s(Y −y′)−dG(y′)T ) : d2), where y′ ∈ Dn is
lifting v′(Y ). Then C is a suitable localization of the B⊗AD-algebra D[Y, T ]/(I, J) and v extends
to C by v(T ) = t = (1/d2)H(y′)(v(Y )− y′).

Consider the following example. Let A = Q[x](x), A
′ = C[[x]], B = A[Y1, Y2]/(Y 2

1 + Y 2
2 ),

a ∈ C a transcendental element over Q, ū ∈ C[[x]] \ C[x](x) and u = a + x6ū. Let v be given

by v(Y1) = xu, v(Y2) = xiu, where i =
√
−1. In step 1 we change B by B1 = A[Y1, Y2, Y3]/I,

I = (Y 2
1 + Y 2

2 , x− 2Y1Y3) and extend v by v(Y3) = 1/(2u). We have 4Y 2
1 Y

2
3 ∈ HB/A which implies

d = x2 ∈ HB/A ∩ A. We define D = A[a, a−1, i] and v′(Y ) = y′ = (xa, xia, 1/(2a)). This is step
two.

To understand step 3 we simplify the example taking B = A[Y1, Y2]/(Y1Y2 − x2), u = 1 + x6ū
and v given by v(Y1) = xu, v(Y2) = x/u. Then d = x ∈ HB/A, D = A, y′1 = x = y′2. We obtain

H =

Y2 Y1
0 1

,G = G′ =

1 −Y1
0 Y2

,N = 1 and J = ((Y1Y2−x2, Y1−x−xT1+x2T2, Y2−x−x2T2) :

x2). We have J = (xT1T2 − x2T 2
2 + T1, Y1 − x − xT1 + x2T2, Y2 − x − x2T2) and we obtain that

C ∼= (A[T1, T2]/(xT1T2 − x2T 2
2 + T1))1+xT2

∼= (A[T2])1+xT2 is a smooth A-algebra.
When A′ is the completion of a Noetherian local ring A of dimension one we show that we may

have a linear Artin function as it happens in the Greenberg’s case (see [5] and [10, Theorem 18]).
More precisely, the Artin function is given by c→ (ρ+ 1)(e+ 1) + c, where e, ρ depend on A and
the polynomial system of equations defining B (see Theorem 14).

2. Theorem 1 in one dimensional local rings

Let u : A → A′ be a flat morphism of Noetherian local rings of dimension 1. Suppose that the
maximal ideal m of A generates the maximal ideal of A′. Moreover suppose that u is a regular
morphism, k is infinite and there exist canonical inclusions k = A/m ⊂ A, k′ = A′/mA′ ⊂ A′ such
that u(k) ⊂ k′.
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Let B = A[Y ]/I, Y = (Y1, . . . , Yn). If f = (f1, . . . , fr), r ≤ n is a system of polynomials from I
then we can define the ideal ∆f generated by all r × r-minors of the Jacobian matrix (∂fi/∂Yj).
After Elkik [4] let HB/A be the radical of the ideal

∑
f ((f) : I)∆fB, where the sum is taken over

all systems of polynomials f from I with r ≤ n. Then BP , P ∈ SpecB is essentially smooth over
A if and only if P 6⊃ HB/A by the Jacobian criterion for smoothness. Thus HB/A measures the
non smooth locus of B over A. B is standard smooth over A if there exists f in I as above such
that B = ((f) : I)∆fB.

The aim of this paper is to give an easy algorithmic proof of the following theorem.

Theorem 2. Any A-morphism v : B → A′ factors through a standard smooth A-algebra B′.

We consider in the algorithmic part the following assumption, which we will keep in the whole
paper

(∗) A is essentially of finite type over a field k, let us say A ∼= (k[x]/J)(x) for some variables
x = (x1, . . . xm), and the completion of A′ is k′[[x]]/(J).

When v is defined by polynomials y from k′[x] then our problem is easy. Let L be the field
obtained by adjoining to k all coefficients of y. Then R = (L[x]/(J))(x) is a subring of A′ containing
Im v which is essentially smooth over A. Then we may take B′ as a standard smooth A-algebra
such that R is a localization of B′. Thus we will not suppose in this paper that y is polynomial
and therefore L is not necessarily a finite type field extension of k.

In the proof we need to know that v(HB/A) is not contained in any minimal prime ideal of
A′. In theory, we may reduce to this case as it follows. Let p ∈ MinA′. Since u is regular, it
induces a regular map up : A(p∩A) → A′p of local Artinian rings (in particular k(p) ⊗Ap∩A up,
k(p) = A(p∩A)/(p ∩ A)A(p∩A) is a separable field extension). Note that A(p∩A) ⊃ k(p) because
of (∗) and A′p is a filtered inductive limit of its subrings of the form EFp

= A(p∩A) ⊗k(p) Fp for
all finite type field subextension Fp/k(p) of (A′p/pA

′
p)/k(p). We may change B by a finite type

B-algebra B̃ of A′ such that B̃p∩B̃
∼= EFp

. It follows that v(HB/A) 6⊂ pA′ for all p ∈ MinA′. Next
we will assume from the beginning that

(∗∗) v(HB/A) 6⊂ pA′ for all p ∈ MinA′.
Unfortunately, the computer cannot decide this since we are not able to give the whole infor-

mation concerning the coefficients of y. But we are able to decide if v(HB/A) is not contained in
mNA′+p for N >> 0 and one p ∈ MinA′. In the following we suppose that v(HB/A) 6⊂ mNA′+p for
all p ∈ MinA′ and a certain N >> 0. Choose γ ∈ HB/A such that v(γ) is not in ∪p∈MinA′p+mNA′.

The idea of the proof of Theorem 2 is to find f = (f1, . . . , fr) in I and a d ∈ v(((f) : I)∆f )A′∩A
which is not in ∪p∈MinA′p. The assumption (∗∗) gives just that there exists fp for any p ∈ MinA′

such that ∆fp((fp) : I) 6⊂ pA′ for all p ∈ MinA′. The main problem is to reduce to the case when
fp does not depend of p. Actually, this follows if Iγ/I

2
γ is free over Bγ . In the next three lemmas

containing some results of Elkik [4] (in the form used in [11], [20], [14]), we see that this is true if
we reduce to the case when ΩBγ/A is free over Bγ . In general, the last module is projective but
not free as the following example shows.

Example 3. Let k be a subfield of R, A = (k[x1, x2, x3]/(x21 − x2x3, x23 − x1x2))(x1,x2,x3), and
α = x1Y

2
1 + x2Y

2
2 + x3Y

2
3 − x1 − x2 − x3 ∈ A[Y ], Y = (Y1, Y2, Y3). Set f1 = x2α = x23Y

2
1 + x22Y

2
2 +

x21Y
2
3 − x23 − x22 − x21, f2 = x1α, f3 = x3α and I = (f). Then x2I ⊂ (f1), x1I ⊂ (f2), x3I ⊂ (f3).

Also note that x22Y2 ∈ ∆f1 , x21Y1 ∈ ∆f2 , x23Y3 ∈ ∆f3 .
Let B = A[Y ]/I, A′ = k′[[x1, x2, x3]]/(x21 − x2x3, x23 − x1x2), where k ⊂ k′ is a field extension.

Let u1, u2 be two algebraically independent elements of k′[[x1, x2, x3]] over k[x1, x2, x3]. Set y1 =
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x3u1 − 1, y2 = x3u2 − 1 and we may find y3 such that y23 = 1− x1x3u21 + 2x1u1 − x2x3u22 + 2x2u2.
Clearly, α(y) = 0, that is α(yi) = 0 for all 1 ≤ i ≤ n, and so we get an A-morphism v : B → A′

given by Y → y.
Note that HB/A = (x1, x2, x3). Take γ = x1 + x2 + x3 and β = f1 + f2 + f3. Then Iγ =

(β)γ = (α)γ and we claim that ΩBγ/A is projective but not free. Indeed, ΩB/A = BdY1 ⊕
BdY2 ⊕ BdY3/(x1Y1dY1 + x2Y2dY2 + x3Y3dY3) and ΩBγ/A is projective because its Fitting ideal
is (x1Y1, x2Y2, x3Y3)Bγ ⊃ (x1Y

2
1 + x2Y

2
2 + x3Y

2
3 )Bγ = γBγ = Bγ (see e.g. [7, Proposition 1.3.8]).

Now suppose that ΩBγ/A is free over Bγ . Then λ = x1Y1+x2Y2+x3Y3 can be included in a basis
of BγdY1⊕BγdY2⊕BγdY3. More precisely, there exists a 3×3 invertible matrix (aij), aij = aij(x, Y )
over Bγ with a1j = xjYj for j ∈ [3], let us say aij = bij(x, Y )/c(x), j = 2, 3 with bij ∈ k[x, Y ],
c ∈ k[x]. We may choose some positive real numbers x′1.x

′
2, x
′
3 such that x′21 = x′2x

′
3, x′23 = x′1x

′
2,

c(x′) 6= 0 and the matrix (aij(x
′, Y )) invertible in B′ = R[Y ]/(x′1Y

2
1 +x′2Y

2
2 +x′3Y

2
3 −x′1−x′2−x′3).

It follows that P ′ = (B′dY1 ⊕ B′dY2 ⊕ B′dY3)/ < x′1Y1dY1 + x′2Y2dY2 + x′3Y3dY3 > is free over
B′. Changing Yi by

√
x′i/(x

′
1 + x′2 + x′3)Yi we see that over B′′ = R[Y ]/(Y 2

1 + Y 2
2 + Y 2

3 − 1) the
module P ′′ = (B′′dY1 ⊕B′′dY2 ⊕B′′dY3)/ < Y1dY1 + Y2dY2 + Y3dY3 > is free, that is the tangent
bundle over the real sphere is trivial which contradicts for example [8, page 114].

On the other hand, note that ΩBγ [Y4]/A =

Bγ [Y4]dY1 ⊕Bγ [Y4]dY2 ⊕Bγ [Y4]dY3 ⊕Bγ [Y4]dY4/ < x1Y1dY1 + x2Y2dY2 + x3Y3dY3 >

is free because in
∑4
i=1Bγ [Y4]dYi we have the basis

{x1Y1dY1 + x2Y2dY2 + x3Y3dY3, dY1 − Y1dY4, dY2 − Y2dY4, dY3 − Y3dY4}.

Let B1 be the symmetric algebra SB(I/I2) of I/I2 over B. Then (B1)γ is the symmetric algebra
SBγ ((I/I2)γ) of (I/I2)γ over Bγ . But (I/I2)γ is free generated by α and so (B1)γ ∼= Bγ [Y4].
Consequently, Ω(B1)γ/A is free from above.

Lemma 4. ([11, Lemma 3.4]) Let B1 be the symmetric algebra SB(I/I2) of I/I2 over 1 B. Then
HB/AB1 ⊂ HB1/A and (ΩB1/A)γ is free over (B1)γ .

Lemma 5. ([20, Proposition 4.6]) Suppose that (ΩB/A)γ is free over Bγ . Let I ′ = (I, Y ′) ⊂
A[Y, Y ′], Y ′ = (Y ′1 , . . . , Y

′
n). Then (I ′/I ′2)γ is free over Bγ .

Lemma 6. ([14, Corollary 5.10]) Suppose that (I/I2)γ is free over Bγ . Then a power of γ is in
((g) : I)∆g for some g = (g1, . . . gr), r ≤ n in I.

Step 1. Reduction to the case when ΩBγ/A is free over Bγ .
Let B1 be given by Lemma 4. The inclusion B ⊂ B1 has a retraction w which maps I/I2 to

zero. For the reduction we change B, v by B1, vw.
Step 2. Reduction to the case when (I/I2)γ is free over Bγ .
Since ΩBγ/A is free over Bγ we see using Lemma 5 that changing I with (I, Y ′) ⊂ A[Y, Y ′] we

may suppose that (I/I2)γ is free over Bγ .
Step 3. Reduction to the case when a power of γ is in ((f) : I)∆f for some f = (f1, . . . fr),

r ≤ n in I.
We reduced to the case when (I/I2)γ is free over Bγ . Then it is enough to use Lemma 6.

1 Let M b e a finitely represented B-module and Bm
(aij)−−−→ Bn → M → 0 a presentation then SB(M) =

B[T1, . . . , Tn]/J with J = ({
n∑

i=1

aijTi}j=1,...,m).
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Step 4. The Jacobian matrix (∂f/∂Y ) can be completed with (n− r) rows from kn obtaining
a square n matrix H with v(detH) 6∈ ∪p∈MinA′p.

We may suppose that r < n, otherwise there exist nothing to show. Note that the rows of
(∂f/∂Y ) are mapped by v in r linear independent vectors from (A′/p)n for each p ∈ MinA′.
Fix a p and consider the set Λp of all (n − r) linear independent vectors from kn which define
a basis in Q(A′/p)n together with the rows of v(∂f/∂Y ). Clearly Lp is a nonempty open Zariski
set of kn(n−r). Since kn(n−r) is irreducible we get ∩p∈MinA′Lp 6= ∅. Choosing (n − r) rows from
∩p∈MinA′Lp we may complete (∂f/∂Y ) to the wanted matrix H.

Step 5. Reduction to the case when ((detH)((f) : I)) ∩A is m primary.
By Step 3 there exists a polynomial R′ ∈ ((f) : I) such that v(R′) is not in ∪p∈MinA′p. Set

P ′ = R′ detH. Then v(P ′) generates in A′ an ideal of height 1 which must be mA′ primary. Then
(v(P ′)) ∩ A is m primary too and we may choose d′ ∈ (v(P ′)) ∩ A such that d′A is m primary,
let us say d′ = v(P ′)z for some z ∈ A′. Set B1 = B[Z]/(fr+1), where fr+1 = −d′ + P ′Z and let
v1 : B1 → A′ be the map of B-algebras given by Z → z. It follows that d′ ∈ ((f, fr+1) : (I, fr+1))
and d′ ∈ ∆f , d′ ∈ ∆fr+1 . Then d = d′2 ≡ P modulo (I, fr+1) for P = P ′2Z2 ∈ HB1/A. For

the reduction change B by B1 and H by

H 0

∗ P ′

 . Note that d ∈ ((detH)((f) : I)) ∩ A. The

determinant of the new H is the determinant of the old H multiplied with P ′. Thus P is the
determinant of the new H multiplied with R = R′Z2

Remark 7. In Example 3 the module ΩBγ/A is not free and so we may apply Step 1. In fact we
do not need to apply the Steps 1, 2, 3 because (I/I2)γ is already free.

3. Proof of the case when ((detH)((f) : I)) ∩ A is m primary.

Let (0) = ∩p∈AssAQp be a reduced primary decomposition 2 of (0) in A, where Qp is a primary
ideal with

√
Qp = p. Let d be defined as in the end of Section 2. Define e by (0 :A d

e) = (0 :A d
e+1).

This equality happens for example taking e such that pe ⊂ Qp for all p ∈ AssA. Set Ā = A/(d2e+1),
Ā′ = A′/d2e+1A′, ū = Ā⊗Au, B̄ = B/d2e+1B, v̄ = Ā⊗Av. By base change ū is a regular morphism
of Artinian local rings.

Step 6. There exists a smooth A-algebra and an A-morphism ω : D → A′ such that y = v(Y ) ∈
Imω + d2e+1A′.

We extend the proof of [15, Theorem 10] in our case. But now A′ is not the completion of A,
that is the coefficients of y in x are not necessarily from k. Fortunately, as in the proof of [15,
Theorem 10] we need only a finite number of this coefficients, namely those of monomials x which
are not in d2e+1A′. This is the reason to ask for the existence of such D,ω.

By [6, 19,7.1.5] for every field extension L/k there exists a flat complete Noetherian local Ā-
algebra Ã, unique up to an isomorphism, such that mÃ is the maximal ideal of Ã and Ã/mÃ ∼= L.
It follows that Ã is Artinian. On the other hand, we may consider the localization AL of L⊗k Ā in
m(L⊗k Ā) which is Artinian and so complete. By uniqueness we see that AL ∼= Ã. It follows that
Ā′ ∼= Ak′ . Note that AL is essentially smooth over A by base change and Ā′ is a filtered union of
sub-Ā-algebras AL with L/k finite type field sub extensions of k′/k.

2 The primary decomposition of an ideal in a polynomial ring and its localizations by a maximal ideal can be

computed using the SINGULAR library primdec.lib. This is a very difficult task in the computational algebra
usually needing a lot of Gröbner basis computations with respect to the lexicographical ordering.
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Choose L/k a finite type field extension such that AL contains the residue class ȳ ∈ Ā′n induced
by y. In fact ȳ is a vector of polynomials in the generators of m with the coefficients cν in k′ and we
may take L = k((cν)ν). Then v̄ factors through AL. Assume that k[(cν)ν ] ∼= k[(Uν)ν ]/J̄ for some
new variables U and a prime ideal J̄ ⊂ k[U ]. We have HL/k 6= 0 because L/k is separable. Then
we may assume that there exist w = (w1, . . . , wp) in J̄p such that ρ = det(∂wi/∂Uν)i,ν∈[p] 6= 0 and
a nonzero polynomial τ ∈ ((w) : J̄) \ J̄ (we set [p] = {1, . . . , p}). Actually, we may reduce to the
case when p = 1, but this means a complication for our algorithm. Thus L is a fraction ring of the
smooth k-algebra (k[U ]/(w))ρτ . Note that w, ρ, τ can be considered in A[U ] because k ⊂ A and
cν ∈ A′ because k′ ⊂ A′.

Then v̄ factors through a smooth Ā-algebra C ∼= (Ā[U ]/(w))ρτγ for some polynomial γ which is
not in m(Ā[U ]/(w))ρτ .

Lemma 8. There exists a smooth A-algebra D such that v̄ factors through D̄ = Ā⊗A D.

Proof. By our assumptions u(k) ⊂ k′. Set D = (A[U ]/(w))ρτγ and ω : D → A′ be the map given
by Uν → cν . We have C ∼= Ā⊗AD. Certainly, v̄ factors through ω̄ = Ā⊗A ω but in general v does
not factor through ω.

It is worth recalling the following two remarks from [10].

Remark 9. If A′ = Â then Ā ∼= Ā′ and we may take D = A.

Remark 10. If k ⊂ A but L 6⊂ A′ then D = (A[U,Z]/(w − d2e+1Z))ρτγ , Z = (Z1, . . . , Zp),
U = (U1, . . . , Uq) is a smooth A-algebra and D̄ ∼= C[Z]. Note that v̄ factors through a map C → Ā′

given let us say by U → λ + d2e+1A′q for some λ in A′q. Thus w(λ) = d2e+1z for some z in A′p

and we get a map ω : D → A′, (U,Z) → (λ, z). As above v̄ factors through ω̄ = Ā ⊗A ω but in
general v does not factor through ω. If also k 6⊂ A then the construction of D goes using a lifting
of w, τ, γ from k[U ] to A[U ]. In both cases we may use D as it follows.

Let δ : B ⊗A D ∼= D[Y ]/ID[Y ]→ A′ be the A-morphism given by b⊗ λ→ v(b)ω(λ).
Step 7. δ factors through a special finite type B ⊗A D-algebra E.
Note that the map B̄ → D̄ is given by Y → y′ + d2e+1D for some y′ ∈ Dn. Thus I(y′) ≡ 0

modulo d2e+1D. Since v̄ factors through ω̄ we see that ω̄(y′ + d2e+1D) = ȳ. Set ỹ = ω(y′). We get
y − ỹ = v(Y )− ỹ ∈ d2e+1A′n, let us say y − ỹ = de+1ε for ε ∈ deA′n.

Recall that P = R detH for R ∈ ((f) : I) (see Step 5). We have d ≡ P modulo I and so P (y′) ≡ d
modulo d2e+1 in D because I(y′) ≡ 0 modulo d2e+1D. Thus P (y′) = ds for a certain s ∈ D with
s ≡ 1 modulo d. Let G′ be the adjoint matrix of H and G = RG′. We have GH = HG = P Idn
and so

dsIdn = P (y′)Idn = G(y′)H(y′).

But H is the matrix (∂fi/∂Yj)i∈[r],j∈[n] completed with some (n− r) rows from kn. Especially
we obtain

(∂f/∂Y )G = (P Idr|0). (1)

Then t := H(y′)ε ∈ deA′n satisfies

G(y′)t = P (y′)ε = dsε

and so
s(y − ỹ) = deω(G(y′))t.

Let
h = s(Y − y′)− deG(y′)T, (2)
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where T = (T1, . . . , Tn) are new variables. The kernel of the map ϕ : D[Y, T ]→ A′ given by Y → y,
T → t contains h. Since

s(Y − y′) ≡ deG(y′)T modulo h

and

f(Y )− f(y′) ≡
∑
j

∂f

∂Yj
(y′)(Yj − y′j)

modulo higher order terms in Yj − y′j , by Taylor’s formula we see that for p = maxi deg fi we have

spf(Y )− spf(y′) ≡
∑
j

sp−1de
∂f

∂Yj
(y′)Gj(y

′)Tj + d2eQ (3)

modulo h where Q ∈ T 2D[T ]r. We have f(y′) = de+1b for some b ∈ deDr. Then

gi = spbi + spTi + de−1Qi, i ∈ [r] (4)

is in the kernel of ϕ. Indeed, we have spfi = de+1gi modulo h because of (1) and P (y′) = ds.
Thus de+1ϕ(g) = de+1g(t) ∈ (h(y, t), f(y)) = (0). Since Q ∈ T 2D[T ]r and t ∈ deA′n we get
g(t) ∈ deA′r and so g(t) ∈ (0 :A′ de+1) ∩ deA′ = 0, because u is flat and (0 :A′ de) = (0 :A′ de+1).
Set E = D[Y, T ]/(I, g, h) and let ψ : E → A′ be the map induced by ϕ. Clearly, v factors through

ψ because v is the composed map B → B ⊗A D ∼= D[Y ]/I → E
ψ−→ A′.

Step 8. There exist s′, s′′ ∈ E such that Ess′s′′ is smooth over A and ψ factors through Ess′s′′ .
Note that the r × r-minor s′ of (∂g/∂T ) given by the first r-variables T is from srp + (T ) ⊂

1 + (d, T ) because Q ∈ (T )2. Then V = (D[Y, T ]/(h, g))ss′ is smooth over D. We claim that
I ⊂ (h, g)D[Y, T ]ss′s′′ for some other s′′ ∈ 1 + (d, T )D[Y, T ]. Indeed, we have PI ⊂ (h, g)D[Y, T ]s
and so P (y′ + s−1deG(y′)T )I ⊂ (h, g)D[Y, T ]s. Since P (y′ + s−1deG(y′)T ) ∈ P (y′) + de(T ) we
get P (y′ + s−1deG(y′)T ) = ds′′ for some s′′ ∈ 1 + (d, T )D[Y, T ]. It follows that s′′I ⊂ ((h, g) :
d)D[Y, T ]ss′ . On the other hand, I ≡ I(y′) modulo (de, h)D[Y, T ] and I(y′) ⊂ d2e+1D. Thus
s′′I ⊂ (0 :V d)∩ deV = 0 because (0 :A d)∩ deA = 0 and the maps A→ D, D → V are flat, which
shows our claim. It follows that I ⊂ (h, g)D[Y, T ]ss′s′′ . Thus Ess′s′′ ∼= Vs′′ is a B-algebra which is
also standard smooth over D and A.

As ω(s) ≡ 1 modulo d and ψ(s′), ψ(s′′) ≡ 1 modulo (d, t), d, t ∈ mA′ we see that ω(s), ψ(s′), ψ(s′′)
are invertible because A′ is local and ψ (thus v) factors through the standard smooth A-algebra
Ess′s′′ .

Remark 11. When A′ is the completion of A then the algorithmic proof is much easier (one
reason is given by Remark 9) and it is somehow similar to the proof of Theorem 14. Certainly, in
this case the next algorithm could be substantially easier.

Remark 12. If we want to study the case when dimA = 2 then we need first to treat the case
when dimA = 0, dimA′ = 1 and after that the case when A, A′ are one dimensional but not local
rings. We expect that an algorithmic proof in the last case is a hard goal. However, if we are lucky
to get such proof it is doubtful that the corresponding algorithm will really work.

4. The algorithm

We obtain the following algorithm:
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Algorithm 1 Neron Desingularization

Input: N ∈ Z>0 a bound
A := k[x](x)/J, J = (h1, . . . , hg) ⊆ k[x], x = (x1, . . . , xt), k an infinite field

k′ := Q(k[U ]/J), J = (a1, . . . , ar) ⊆ k[U ], U = (U1, . . . , Uw) separable over k
B := A[Y ]/I, I = (g1, . . . , gl) ⊆ k[x, Y ], Y = (Y1, . . . , Yn)
v : B → A′ ⊆ K[[x]]/JK[[x]] an A–morphism, given by y′1, . . . , y

′
n ∈ k[U, x], approximations

mod(x)N of v(Yi),K ⊇ k′ a field.
Output: A Neron desingularization of v : B → A′ or the message ”the algorithm fails since the

bound N is too small”
1: Compute P1, . . . , Ps the minimal associated primes of A.

2: Compute w = (ai1 , . . . , aip) and a p–minor ρ of
(
∂aiv
∂Uj

)
such that ρ 6∈ J .

Compute τ ∈ (w) : J such that k[U ]ρτ/(a1, . . . , ar) = k[U ]ρτ/(w).
D := A[U ]ρτ/(w).

3: Compute HB/A and HB/A ∩A.
4: If dim(A/HB/A ∩A) = 1
B := SB(I/I2), v trivially extended, write B = A[Y ]/I, n := #Y
Y := Y,Z, I := (I, Z), B := A[Y ]/I, Z = (Z1 . . . Zn) , v trivially extended

5: Compute f = (f1, . . . , fr) in I such that v(((f) : I)∆f ) 6⊆ Pi + (x)N for all i

6: Complete
(
∂fi
∂Yj

)
by random vectors from kn to obtain a square matrix H with v(det(H)) 6∈

Pi + (x)N for all i
7: Compute R ∈ (f) : I such that v(R) 6∈ Pi + (x)N for all i.
8: P := R · det(H) , compute (P ) ∩A
9: If dim(A/(P ) ∩A) = 1

Compute d in v(P ) ∩A an active element. fr+1 := PYn+1 − d,
B := B[Yn+1]/fr+1 f := f, fr+1 , Y := Y, Yn+1, y

′ := y′, d
v(P ) , n := n+ 1, r:=r+1

H :=

H 0

∗ P

 d := d2,R := RY 2
n , P := R · det(H)

10: Else
Compute d in ((P ) ∩A) an active element, P := d.

11: Compute e such that (0 : de) = (0 : de+1)
12: If (x)N 6⊆ (d2e+1) return ”the algorithm fails since the bound is too small”

13: Compute b := f(y′)
de+1 in deDr

14: Compute G′ the adjoint matrix of H , G := RG′

15: Compute s ∈ D such that P (y′) = ds
h := s(Y − y′)− deG(y′)T , T = (T1, . . . , Tn)

16: p := max{deg(fi)}i=1,...,r

write spf(Y )− spf(y′) =
∑
j

sp−1de ∂f∂Yj (y′)Gj(y
′)Tj + d2eQ

define gi := spbi + spTj + de−1Qi and E := D[Y, T ]/(I, g, h)

17: Compute s′ the r–minor of
(
∂g
∂T

)
given by the first r variables of T

18: find s′′ ∈ 1 + (d, T )D[Y,T ] such that I ⊂ (h, g)D[Y, T ]ss′s′′

(s′′ is given by P (y′ + s−1deG(y′)T ) = ds′′)
19: return Ess′s′′
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Example 13. We assume
N = 12,
A = Q[x1, x2](x1,x2)/(x1x2), J = (x1, x2),
k′ = Q,
B = A[Y1, Y2]/(x2Y1 − x1Y2), I = (x2Y1, x1Y2),
v : B → Q[[x1, x2]]/(x1x2), v(Y1) = x1u, v(Y2) = x2w,
u,w ∈ Q[[x1, x2]] algebraically independent,
y′1 = jet(x1u, 11), y′2 = jet(x2w, 11).
Now we follow the steps of the algorithm.
1. P1 = (x1), P2 = (x2),
2. D = A,
3. HB/A = (x1, x2)B, HB/A ∩A = (x1, x2),
4. is not true,
5. f = x2Y1 + x1Y2,

6. H :=

x2 x1

−1 1


7. R = x1 + x2,
8. P = (x1 + x2)2, (P ) ∩A = (x1 + x2)2,
9. is not true,
10. P = d = (x1 + x2)2,
11. e = 1,
12. is not true (x1, x2)12 ⊂ (x1x2, (x1, x2)6),
13. f(y′) = 0, b = 0,

14. G′ :=

1 −x1
1 x2

, G = (x1 + x2)

1 −x1
1 x2

,

15. s = 1, h = Y − y′ − d(x1 + x2)

1 −x1
1 x2

T1
T2

,

16. p = 1, x2(Y1 − y′1) + x1(Y2 − y′2) = d2T1 modh,
g = T1, E = A[Y, T ]/(I, g, h) = A[Y, T ]/(g, h),
17. s′ = 1,
18. s′′ = 1,
19. return A[Y1, Y2, T2]/(Y1 − y′1 − x41T2, Y2 − y′2 − x42T2).

Thus the General Neron Desingularization B′ of B could be A[T2]. Let τ : B → B′ be the map
given Yi → y′i + x4iT2, i = 1, 2. We may find ρi ∈ (xi)Q[[xi]] such that x1u − y′1 = x111 ρ1 and
x2w− y′2 = x112 ρ2. Set t2 = d4(ρ1 + ρ2) and let τ ′ : B′ → A′ be given by T2 → t2. Clearly, v = τ ′τ ,
that is v factors through B′.

5. An extension of Greenberg’s theorem on strong approximation

Let (A,m) be a Noetherian local ring of dimension one, A′ = Â the completion of A, B = A[Y ]/I,
Y = (Y1, . . . , Yn) an A-algebra of finite type and c ∈ N. If A is Henselian excellent DVR then
Greenberg [5] showed that there exists a linear map ν : N → N such that for each A-morphism
v : B → A/mν(c) there exists an A-morphism v′ : B → A such that v′ ≡ v modulo mc. More
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general, if A is a DVR then there exists a linear map ν : N → N such that for each A-morphism
v : B → A/mν(c) there exists an A-morphism v′ : B → A′ such that v′ ≡ v modulo mcA′.

The aim of this section is to give a result of Greenberg’s type for one dimensional rings when the
Jacobian locus is not too small. Let e be as in the beginning of Section 3 and ρ ∈ N. We will show
that the map ν given by c→ (e+ 1)(ρ+ 1) + c works in the special case below. Suppose that there
exists an A-morphism v : B → A/m(e+1)(ρ+1)+c such that (v(((f) : I)∆f ) ⊃ mρ/m(e+1)(ρ+1)+c for
some f = (f1, . . . fr), r ≤ n in I.

Theorem 14. Then there exists an A-morphism v′ : B → Â such that v′ ≡ v modulo mc, that is
v′(Y + I) ≡ v(Y + I) modulo mc.

Proof. We note that the proof of Theorem 2 can work somehow in this case. Let y′ ∈ An be an
element inducing v(Y + I). Then mρ ⊂ (((f) : I)∆f )(y′)) + m(e+1)(ρ+1)+c ⊂ (((f) : I)∆f )(y′)) +
m(e+1)(ρ+2)+2c ⊂ . . . by hypothesis. It follows that mρ ⊂ (((f) : I)∆f )(y′)).

As in Step 4 of Section 1 we may complete the Jacobian matrix (∂f/∂Y ) with n− r rows from
kn obtaining a square n matrix H with v(detH) 6∈ ∪p∈MinA′p

Set d = (detH)(y′). Next we follow the proof of Theorem 2 with D = A, s = 1, P = LdetH
and G such that

GH = HG = P Idn
and so

dIdn = P (y′)Idn = G(y′)H(y′).

Let
h = Y − y′ − deG(y′)T,

where T = (T1, . . . , Tn) are new variables. We have

f(Y )− f(y′) ≡ deP (y′)T + d2eQ

modulo h where Q ∈ T 2A[T ]r. But f(y′) ∈ m(e+1)(ρ+1)+cAr ⊂ d2mc+e−1Ar and we get f(y′) = d2b
for some b ∈ mcAr. Set gi = bi + Ti + de−1Qi, i ∈ [r] and E = A[Y, T ]/(I, h, g). We have an
A-morphism β : E → A/mc given by (Y, T ) → (y′, 0) because I(y′) ≡ 0 modulo mc, h(y′, 0) = 0
and g(0) = b ∈ mcAr.

As in the proof of Theorem 2 we see that I ⊂ (h, g)A[Y, T ]s′s′′ for some s′′ ∈ 1 + (d, T )A[Y, T ].
Indeed, we have PI ⊂ (h, g)A[Y, T ] and so P (y′ + deG(y′)T )I ⊂ (h, g)A[Y, T ]. Since P (y′ +
deG(y′)T ) ∈ P (y′) + de(T ) we get P (y′ + deG(y′)T ) = ds′′ for some s′′ ∈ 1 + (d, T )A[Y, T ].
It follows that s′′I ⊂ ((h, g) : d)A[Y, T ]s′ . On the other hand, I ≡ I(y′) modulo (de, h)A[Y, T ]
and I(y′) ⊂ meρ ⊂ deA. Set V = (A[Y, T ]/(h, g))s′ . Then s′′I ⊂ (0 :V d) ∩ deV = 0 because
(0 :A d) ∩ deA = 0 and the map A→ V is flat, which shows our claim.

Then Es′s′′ ∼= Vs′′ is a B-algebra which is also standard smooth over A and β extends to a map
β′ : Es′s′′ → A/mc as in the proof of Theorem 2. By the Implicit Function Theorem β′ can be
lifted to a map w : Es′s′′ → Â which coincides with β′ modulo mc. It follows that the composite
map v′, B → Es′s′′

w−→ Â works.

Corollary 15. In the assumptions of the above theorem, suppose that (A,m) is excellent Henselian.
Then there exists an A-morphism v′′ : B → A such that v′′ ≡ v modulo mc, that is v′′(Y + I) ≡
v(Y + I) modulo mc.

Proof. An excellent Henselian local ring (A,m) has the Artin approximation property by [12],
that is the solutions in A of a system of polynomial equations f over A are dense in the set of the
solutions of f in Â. By Theorem 14 we get an A-morphism v′ : B → Â such that v′ ≡ v modulo mc.
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Then there exists an A-morphism v′′ : B → A such that v′′ ≡ v′ ≡ v modulo mc by the Artin
approximation property.

Remark 16. If dimA > 1 then [17, Theorem 1.2] gives an example when there exist no linear
map ν as above (see also [18, Theorem 4.3, Remark 4.7] for different cases). Therefore, we believe
that the above corollary does not hold when dimA > 1 even it is restricted to some special B, v.

Theorem 17. Let (A,m) be a Noetherian local ring of dimension one, e ∈ N as in the beginning
of Section 2, B = A[Y ]/I, Y = (Y1, . . . , Yn) an A-algebra of finite type, ρ ∈ N and f = (f1, . . . , fr)
a system of polynomials from I. Suppose that A is excellent Henselian and there exists y′ ∈ An
such that I(y′) ≡ 0 modulo mρ and (((f) : I)∆f ))(y′) ⊃ mρ. Then the following statements are
equivalent:

(1) there exists y′′ ∈ An such that I(y′′) ≡ 0 modulo m(e+2)(ρ+1) and y′′ ≡ y′ modulo mρ,
(2) there exists y ∈ An such that I(y) = 0 and y ≡ y′ modulo mρ.

For the proof apply the above corollary and Theorem 14.
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