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ABSTRACT
In this paper we present first steps in using signature-based Gröb-
ner basis algorithms like Faugère’s F5 or GVW for computation
over Euclidean rings. We present problems appearing when having
to deal with coefficients and zero divisors and give practical solu-
tion techniques. A hybrid algorithm is presented trying to combine
the advantages of signature-based and non-signature-based Gröb-
ner basis computation. For some examples speedups are achieved
due to faster finding good reducers with the hybrid technique.
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1. INTRODUCTION
In 1965 [1, 4], Buchberger initiated the theory of Gröbner bases

by which many fundamental problems in mathematics, science and
engineering can be solved algorithmically. Specifically he intro-
duced some key structural theory, and based on this theory, pro-
posed the first algorithm for computing Gröbner bases. Buchberger’s
algorithm introduced the concept of critical pairs and repeatedly
carries out a certain polynomial operation (called reduction).

Many of those reductions would be determined as “useless” (i.e.
no contribution to the output of the algorithm), but only a posteriori,
that is, after an (often expensive) reduction process. Thus intensive
research was carried out, starting with Buchberger, to avoid the
useless reductions via a priori criteria, see, for example, [2, 3, 11].

In [9] Faugère presented the F5 algorithm which uses signatures
in order to detected redundant computations in advance. For regular
sequences as input F5 does not compute any zero reduction at all.
Over the years many new variants of signature-based Gröbner basis
algorithms have been presented, we refer to [6] for a survey on this
class of algorithms. All these algorithms have in common that they
compute Gröbner bases in polynomial rings over fields.

Assuming the integers as ground ring, Gröbner basis compu-
tations change in the way that one wants to compute a so-called
strong Gröbner bases. Such a basis is achieved by not only handling
usual critical pairs consisting of S-polynomials, but also so-called
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GCD-polynomials (see for example [14, 13]). In 1988, Kandri-
Rody and Kapur gave first algorithms for computing Gröbner bases
over Euclidean domains [12].

Here we generalize signature-based Gröbner basis algorithms to
computation over Euclidean rings, in particular, the integers. In
Section 2 we introduce basics and notation. Sections 3 – 6 discuss
problems and possible solutions when computing over Euclidean
rings. In particular, we present the problem of signature drops and
how to keep them at a minimum. Moreover, techniques for improv-
ing coefficient growth and other computational overhead are given.
In Section 7 we show how signature-based computation can be ef-
ficiently used as a prereduction step for a classical Gröbner basis
computation over Euclidean rings and give experimental results in
Section 8. Section 9 covers problems over rings with zero divisors.

2. BASIC NOTATIONS
We use notation corresponding to [6]: Let R be an Euclidean

ring. Besides Section 9 we assume that R has no zero divisors.
A polynomial f “

ř

v avxv ..“
řfinite

vPNn av1,...,vn

śn
i“1 xvi

i in n vari-
ables x1, . . . ,xn over R is a finite R-linear combination of terms
av1,...,vn

śn
i“1 xvi

i such that v P Nn and av P R. The polynomial ring
P ..“ Rrxs ..“ Rrx1, . . . ,xns in n variables over R is the set of
all polynomials over R together with the usual addition and mul-
tiplication. For f “

ř

v avxv ‰ 0 P P we define the degree of
f by degp f q :“ maxtv1 ` ¨¨ ¨ ` vn | av ‰ 0u. For f “ 0 we set
degp f q :“ ´1. For m ą 0 we denote by Pm a free R-module and
let e1, . . . ,em be the standard basis (unit vectors) in Pm. A module
element α P Pm can be written as a finite sum α “

řfinite
aPP aei. The

elements aei are the module terms of α . A module monomial is an
element of Pm with exactly one term. A module monomial with
coefficient 1 is monic. Neither module monomials nor terms of
module elements are necessarily monic. Let α » β for α,β P Pm

if α “ aβ for some non-zero a P R.
Let p f1, . . . , fmq P P be a finite sequence of polynomials. We de-

fine a module homomorphism π : Pm Ñ P by ei ÞÑ fi for all 1 ď

i ď m. We use the shorthand notation α ..“ πpαq P P for α P Pm.
An element α P Pm with α “ 0 is called a syzygy. The module of
all syzygies (of p f1, . . . , fmq) is denoted syzpp f1, . . . , fmqq.

Let ă denote two different orders — one for P and one for Pm:
1. ă for P is a monomial order, which is a well-order on the

set of monomials in P such that a ă b implies ca ă cb for
all monomials a,b,c P P .

2. ă for Pm is a module monomial order, which is a well-order
on the set of module monomials in Pm such that α ă β
implies cα ă cβ for all module monomials α,β P Pm and
monomials c P P .

CONVENTION 1. In this paper we restrict ourselves to the po-



sition-over-term order on Pm: Let ă be a monomial order on P
and let aei,be j be two module monomials in Pm. Then we define
ăpot via

aei ăpot be j if and only if either i ă j or i “ j and a ă b.

Moreover, if not otherwise noted, we assume ă to denote the degree
reverse lexicographical order on P .

Given such a (module) monomial order ă we can highlight the
maximal terms of elements in P or Pm w.r.t. ă: For f P P z t0u,
ltp f q is the lead term, lmp f q the lead monomial, and lcp f q the
lead coefficient of f . For any set F Ă P we define the lead ideal
LpFq “ xltp f q | f P Fy; for an ideal I Ă P , LpIq is defined as the
ideal of lead terms of all elements of I. For α P Pm z t0u we denote
the maximal term w.r.t. ă by spαq, the signature of α . We also
define signatures of polynomials: For f P P , sp f q is a signature
of f , given by the signature of the corresponding module element
α P Pm mapping to f : sp f q “ spαq “ spαq. Note that whereas
spαq is uniquely defined, sp f q is not since there exist different
module elements with different signatures that map to f .

Our purpose is to compute a Gröbner basis G for a given ideal
I “ x f1, . . . , fmy Ă P . Working over a field there are many equiv-
alent definitions of how to obtain a canonical or normal form when
reducing a given polynomial by such a basis G. Working over more
general rings these definitions are no longer equivalent and over Eu-
clidean domains, like the integers, this, in particular, results in the
term of a strong Gröbner basis we define in the following:

Assuming that our coefficient ring R is an Euclidean domain we
can define a total order ă using the Euclidean norm of its elements:
Let a1,a2 P R, then

a1 ă a2 if | a1 |ă| a2 | .

For example, for the integers we can use the absolute value and
break ties via sign: 0 ă ´1 ă 1 ă ´2 ă 2 ă ´3 ă 3 ă . . .

The reduction process of two polynomials f and g in P depends
now on the uniqueness of the minimal remainder in the division
algorithm in R:

DEFINITION 1. We say that g top-reduces f if lmpgq | lmp f q

and if there exist a,b P R such that lcp f q “ a lcpgq ` b such that
a ‰ 0, which coincides with b ă lcp f q. The top-reduction of f by g
is then given by

f ´ a
lmp f q

lmpgq
g.

So top-reduction takes place if the reduced polynomial will have
either a smaller lead mononmial or a smaller lead coefficient. Re-
laxing the reduction of the lead term to any term of f , we say that
g reduces f . In general, we speak of the reduction of a polynomial
f w.r.t. a finite set F Ă P .

The result of such a reduction might not be unique, this is exactly
the property Gröbner bases deliver:

DEFINITION 2. A finite set G Ă P is called a Gröbner basis
for an ideal I w.r.t. ă if G Ă I and LpGq “ LpIq. Furthermore, G
is called a strong Gröbner basis1 if for any f P Izt0u there exists a
g P G such that ltpgq | ltp f q.

Clearly, assuming the field case, any Gröbner basis is a strong
Gröbner basis. But in our setting with R being an Euclidean ring
one has to check the coefficients, too, as explained in Definition 1.
1Note that in the area of signature-based algorithms the notion of a
strong Gröbner basis is sometimes also used in a different manner,
see, for example, [10, 6].

EXAMPLE 1. Let R “ Z{6 and I “ xxy P Rrxs. Clearly, G :“
t2x,3xu is a Gröbner basis for I, but it is not a strong Gröbner
basis for I since 2x ∤ x and 3x ∤ x.

From Example 1 it is clear that using the usual Buchberger algo-
rithm as in the field case will not compute a strong Gröbner basis.
Luckily, we can fix this via taking care of two different types of
S-polynomials.

DEFINITION 3. Let f ,g P P . We assume w.l.o.g. that lcp f q ă

lcpgq. Let t “ lcmplmp f q , lmpgqq, t f “ t
lmp f q

, and.tg “ t
lmpgq

.
1. Let a “ lcmplcp f q , lcpgqq, a f “ a

lcpgq
, and ag “ a

lcp f q
. The

S-polynomial of f and g is denoted

spolp f ,gq “ a f t f f ´ agtgg.

2. Let b “ gcdplcp f q , lcpgqq . Choose b f ,bg P R such that
b “ b f lcp f q ` bglcpgq.2 The GCD-polynomial of f and g
is denoted

gpolp f ,gq “ b f t f f ` bgtgg.

REMARK 1. In the field case spolp f ,gq “ gpolp f ,gq (after a
possible normalization of the coefficients). Furthermore, if lcp f q |

lcpgq then b f “ 1 and bg “ 0, thus gpolp f ,gq is just a power prod-
uct multiple of f .

Given an ideal I Ă P a strong Gröbner basis for I can now be
computed using Buchberger’s algorithm taking care not only of S-
polynomials but also GCD-polynomials. We refer, for example,
to [13] for more details.

Computing with signature-based Gröbner basis algorithms we
have to take care of the signatures. For this we have to redefine the
essential structures, i.e. reduction, S- and GCD-polynomials.

DEFINITION 4 (s-REDUCTION). Let α,β P Pm. We say that

β top-s-reduces α if β reduces α and spαq ą s

ˆ

a lmpαq

lmpβq
β
˙

where

lcpαq “ alc
´

β
¯

` b and a ‰ 0. As above, we relax this definition
to an s-reduction on any term of α . In the same way we speak of
the s-reductionof α w.r.t. to finite set M Ă Pm.

This concept generalizes to the notion of S-pairs and GCD-pairs.

DEFINITION 5. Let α,β P Pm. We assume that lcpαq ă lc
´

β
¯

.

Let t “ lcm
´

lmpαq , lm
´

β
¯¯

, tα “ t
lmpαq

, and tβ “ t
lmpβq

.

1. Let a “ lcm
´

lcpαq , lc
´

β
¯¯

, aα “ a
lcpβq

, and aβ “ a
lcpαq

.

The S-pair of α and β is denoted

spairpα,β q “ aα tα α ´ aβ tβ β .

2. Let b “ gcd
´

lcpαq , lc
´

β
¯¯

such that b “ bα lcpαq`bβ lc
´

β
¯

.

The GCD-pair of α and β is denoted

gpairpα,β q “ bα tα α ` bβ tβ β .

REMARK 2. The term S-pair and GCD-pair are used in or-
der to distinguish these elements from S-polynomials and GCD-
polynomials for module elements. Note that S-pairs and GCD-
pairs get their coefficient and monomial multipliers from the poly-
nomial lead data, not the module lead data. By construction, it fol-
lows that spairpα,β q “ spol

´

α,β
¯

and gpairpα,β q “ gpol
´

α,β
¯

.

Note that in the field case spairpα,β q coincides with gpairpα,β q

(after a possible normalization of the coefficients).
2Since R is an Euclidean ring the extended gcd always exists.



Now, in order to compute polynomial Gröbner bases using sig-
natures we can use a slightly modified version of Buchberger’s al-
gorithm. Here we state the main differences, and refer to [6] for
further details:

1. All initial generators of I “ x f1, . . . , fmy get a signature, i.e.
we define the projection from Pm Ñ P via setting ei “

fi for all i P t1, . . . ,mu. With this we fix a signature to the
polynomials.

2. We generate S-pairs and GCD-pairs, but store only the poly-
nomial part plus its corresponding signature:

spairpα,β q ùñ spol
´

α,β
¯

and spspairpα,β qq ,

gpairpα,β q ùñ gpol
´

α,β
¯

and spgpairpα,β qq .

3. We choose from the pair set the element of smallest signature
w.r.t. the given monomial order ă.

4. Once an S-polynomial or GCD-polynomial is chosen, we s-
reduce it w.r.t. the intermediate Gröbner basis.

REMARK & CONVENTION 3. Over fields signature-based al-
gorithms can correctly compute Gröbner bases by chosing any S-
pair from the pair set, not necessarily the one with smallest signa-
ture, see, for example, Theorem 2.4 in [10]. Choosing new S-pairs
by minimal signature ensures that the algorithm handles elements
by increasing signature w.r.t. ă. In the following, we show that this
property no longer holds over Euclidean rings when handling S-
pairs and GCD-pairs, generalizing the concept of s-reduction(see
Definition 4). In order not to mix up out-of-order pair selection and
the new results presented in the following, we focus on signature-
based algorithms always choosing the next pair by minimal possi-
ble signature.

REMARK 4. Note that we use notation from [6] and give a
clean theoretical description from the module point of view. Still,
the algorithms and their implementations are handling polynomial
data without the overhead of computations in the module at all.
This introduces a limitation to the main steps of the computation:
We must ensure not to lose the information stored in the signature
since we do not have access to the full module representation and
cannot recover it again. Clearly, in a practical implementation we
only store the polynomials and their corresponding signatures, i.e.
the lead terms of the module representation. In the following we of-
ten use the full module representation since it makes proofs easier.

EXAMPLE 2. Let I “ x f1, f2y Ă Zrx,ys with f1 “ 5y2, f2 “

6xy`4y2 `2x. We illustrate how the first polynomials are added to
the Gröbner basis. The first step is to add the polynomials f1 “ e1
and f2 “ e2 to the intermediate basis G. Next we generate

spairpe2,e1q “ 5ye2 ´ 6xe1,
gpairpe2,e1q “ ye2 ´ xe1.

Since spgpairpe2,e1qq “ ye2 ă 5ye2 “ spspairpe2,e1qq we first s-
reduce gpairpe2,e1q and add the new element f3 :“ xy2 ` 4y3 ` 2y
to G corresponding to α :“ ye2 ´ xe1 P Pm.

Next we generate new pairs: Note that the GCD-polynomials
are useless since the lead coefficients are multiples (lcpαq “ 1, see
Remark 1). So we are left with the two S-pairs:

spairpα,e1q “ 5α ´ xe1 “ 5ye2 ´ 5xe1 ´ xe1 “ 5ye2 ´ 6xe1,
spairpα,e2q “ 6α ´ ye2 “ 6ye2 ´ 6xe1 ´ ye2 “ 5ye2 ´ 6xe1.

Note that these two S-pairs correspond to the same element in
Pm, thus we have found some ambiguity that we might want to
solve using some of the known signature-based criteria we intro-
duce in the next chapter.

The crucial point of the above example is that the signature of
spairpα,e2q is no longer 6ye2 “ maxătsp6αq ,spye2qu. When
constructing the S-pair we see that the signature drops to 5ye2.

3. DETECTING USELESS ELEMENTS
Until now signatures are only a small structure we added to Buch-

berger’s algorithm, but we do not exploit them at all. Algorithms
like F5 or GVW are well-known for detecting nearly all reductions
to zero in advance, see, for example, [9, 10, 6]. There are two
signature-based criteria, the syzygy criterion and the rewrite cri-
terion. Both have the same underlying idea working over fields:
When computing a Gröbner basis the algorithm computes new el-
ements by increasing signature and thus reaches at some point a
given signature T P Pm. Assume that G Ă Pm denotes the set
such that tα | α P G u is the intermediate Gröbner basis and H P

Pm is the intermediate syzygy module.3

LEMMA 5 (SYZYGY AND REWRITE CRITERION). In a signa-
ture-based Gröbner basis computation over a field by increasing
signatures we need to handle, for each signature T P Pm, exactly
one tα P Pm from the set

RT “ ttα | α P G YH , t a term and sptαq “ T u .

PROOF. See, for example, Lemma 6.1 and Lemma 6.2 in [6].

So the statement of both, the syzygy and the rewrite criterion, boils
down to the following: We have to choose only one such tα for
each signature T out of RT to be further reduced. All other ele-
ments are useless and can be removed.

1. If α P H , then tα is a syzygy and we can skip this signature
T (syzygy criterion).

2. If α P G but tα is not part of any S-polynomial then we can
also skip this signature T and go on with the next one (rewrite
criterion).

The main idea is now to choose a so-called rewrite order on RT
and to handle only the minimal element w.r.t. this rewrite order.
For more details see [6]. The correctness of this statement relies on
the fact that we generate new elements by increasing signature, i.e.
there is no drop in the signature during our Gröbner basis computa-
tion. Whereas the problem is not essential for the syzygy criterion
(we already have α “ 0, so there cannot be any further reductions
of tα), it is crucial for the rewrite criterion: If tα P G but not part
of an S-pair we only know that tα is the “best reduced” element for
signature T if there do not appear S-pairs with signatures ă T in
the upcoming steps of the algorithm. Otherwise we might be able
to further reduce tα without changing sptαq. This is only a mi-
nor restriction over fields, but it becomes a problem over Euclidean
rings:

Assume a reduction step over a field, α ´ tβ for α,β P Pm,
t P P which was not allowed due to sptβ q ą spαq. If α is added
to G and new S-pairs are constructed, also

spairpα,β q “ tβ ´ α

is generated. Clearly, spspairpα,β qq “ sptβ q ą spαq. Sadly this
does no longer hold over Euclidean rings:

THEOREM 6. Computing signature-based Gröbner bases over
Euclidean rings we cannot guarantee an order of operations by
increasing signatures.

3H represents the information of zero reductions until this point of
the algorithm. Thus, it is dual to G which represents the non-zero
reductions.



PROOF. Assume that we always take the next S-pair by small-
est possible signature. We give now an example of the generation
of a new S-pair that has a signature smaller than the last element
handled by the algorithm:

As above, assume a reduction step α ´ctβ for α,β P Pm, t P P
a monomial and c P R, which was not allowed due to spctβ q ą

spαq. If α is added to G , in particular spairpα,β q “ ctβ ´ α is
generated. Since α P G and the reduction with ctβ in the previous
step did explicitly not take place due to a higher signature, both α
and ctβ are both not detected by the syzygy or the rewrite criterion.
So the above S-pair is really constructed. Let spαq “ atα ei and
spβ q “ btβ ei for a,b P R, tα , tβ P P . If a ă bc and t “ tα

tβ
P P

then spαq ă spctβ q and spspairpα,β qq “ pcb ´ aqtα ei. Clearly, it
is possible that cb ´ a ă a, thus spairpα,β q can introduce a new
element to G that has a signature smaller than spαq.

What follows is that we can still apply the syzygy criterion, but
no longer the rewrite criterion over Euclidean rings:

COROLLARY 7. In a signature-based Gröbner basis computa-
tion over Euclidean rings we can remove all S-pairs in a given sig-
nature T if there exists a syzygy γ P H such that spγq | T . Applying
Lemma 5 we can no longer guarantee the correctness of the com-
putation.

PROOF. For a syzygy γ P H it holds that γ “ 0, thus no fur-
ther reduction can be applied. So the situation from the proof of
Theorem 6 cannot arise.

4. REDUCED INTERMEDIATE BASES
Over fields Eder and Perry have presented in [7] the idea of in-

terreducing intermediate bases when using signature-based algo-
rithms with ăpot.

TECHNIQUE 8 (F5C). Let us assume that we want to com-
pute a Gröbner basis of the ideal I “ x f1, . . . , fmy Ă P w.r.t. ăpot.
The algorithm handles elements by increasing module position, so
we assume that the algorithm has finished all elements of index i
and wants to go on with elements of index i ` 1:

1. Usually the signature-based algorithm does not compute a
reduced intermediate Gröbner basis Gi up to the given mod-
ule position i.

2. So one can reduce Gi with the drawback of losing the sig-
nature information; by construction, reductions that are not
s-reductions are done in this step. We end up with Gi “

tg1, . . . ,gku.
3. Afterwards we interpret xGi Y fi`1y as the new input ideal

of the algorithm, i.e. s
`

g j
˘

“ e j for all j “ 1, . . . ,k and
sp fi`1q “ ek`1.

4. We also reconstruct all possible trivial syzygies as a starting
point for the syzygy criterion.

In general, this attempt gives a speedup up to 20 ´ 30% and de-
creases the overall memory usage of the signature-based algorithm.

Since the above explained steps do not depend on the underlying
ring or field structure, we can apply this technique to the Euclidean
ring case, too. Luckily, the benefits are even bigger there: The
number of polynomials decreases enormously, but also coefficient
swell is often cut down. We illustrate this by the following small
example:

EXAMPLE 3. Let I “ x f1, f2, f3y Ă Zrxs with f1 “ 4x4, f2 “

4x3 ` 2x2 ` 4x, and f3 “ 14x5 ` 3x. Computing a Gröbner basis
for I using a signature-based algorithm we first get an intermediate
basis G2 “ tg1, . . . ,g11u for x f1, f2y:

Polynomials Signatures

g1 = f1 “ 4x4 e1

g2 = f2 “ 4x3 ` 2x2 ` 4x e2

g3 = 2x3 ` 4x2 xe2

g4 = 6x2 ´ 4x 2xe2

g5 = ´4x2 ´ 8x 2x2e2

g6 = ´16x2 2x2e2

g7 = ´10x2 ´ 4x 2x2e2

g8 = 2x2 ´ 12x 2x2e2

g9 = ´14x2 ´ 12x 4x2e2

g10 = ´2x2 ´ 20x 4x2e2

g11 = ´32x 6x2e2

Starting with the next element f3 with signature e3 we have to deal
with all possible pairs. Instead, we apply Technique 8 and reduce
G2 to:

Polynomials (New) Signatures

g1 = 2x2 ´ 12x e1

g2 = ´32x e2

Here we have adjusted the corresponding signatures such that we
can assume xg1,g2, f3y as input for the algorithm at module posi-
tion 3. As the last step we have to remove the old syzygies (their sig-
natures are no longer valid) and to reconstruct new known syzygies,
namely the trivial ones g1e2 ´ g2e1, g1e3 ´ g3e1, and g2e3 ´ g3e2.

REMARK 9. Syzygies found during the computations often tend
to have bigger coefficients, thus even the removing of these old syzy-
gies and replacing them with the new ones can have a benefit: We
might have less syzygies to test when applying the syzygy criterion,
but the new ones have the smallest possible coefficients w.r.t. ă, a
fact that should not be underestimated when computing over Eu-
clidean rings.

5. GCD-PAIR REPLACEMENTS
Another optimisation for computation over Euclidean rings is to

exploit the GCD-pairs as much as possible since, in general, they
help to keep the coefficient growth at a low. Due to the restriction
of the signatures we have to adjust our GCD-pair handling a bit.

First we prove that we can replace an element to be reduced by a
corresponding GCD-pair in a specific setting:

LEMMA 10. In a signature-based algorithm over Euclidean rings
we can exchange any element α P G by gpairpα,β q if β P G such
that

gpairpα,β q “ p˘1qα ` ctβ and spgpairpα,β qq “ p˘1qspαq

for some constant c P R and some monomial t P P . Such a special
GCD-pair is called a replacement GCD-pair (for α).

PROOF. Since the signature stays the same under module mul-
tiplication with a unit it is clear that there is no s-reduction sup-
pressed that would be allowed when keeping α P G . W.l.o.g. we
assume that gpairpα,β q “ α ´ ctβ and spgpairpα,β qq “ spαq.
Let δ be the S-pair between α and some γ P G and let δ 1 denote
the S-pair between gpairpα,β q and γ:

δ “ cα tα α ´ cγ tγ γ,
δ 1 “ c1

α t1
α gpairpα,β q ´ c1

γ t1
γ γ.



for some constants cα ,c1
α ,cγ ,c1

γ P R and monomials tα , t1
α , tγ , t

1
γ P

P . By construction of gpairpα,β q “ α `ctβ we can identify tα “

t1
α and tγ “ t1

γ . Moreover, by the definition of a GCD-pair we know
that there exists d P R such that d “ cα

c1
α

“
cγ
c1

γ
. But then it holds that

dδ 1 “ cα tα α ` dctβ ´ cγ tγ γ “ δ ` dctβ .

So if we assume that δ 1 reduces to zero, then clearly dδ 1 does so,
too. Since β P G it then follows that also δ reduces to zero.

Analogously one can proof the situation for δ and δ 1 being GCD-
pairs and not S-pairs.

REMARK 11. Note that as mentioned in Remark 4 we only have
the signatures, i.e. the lead terms of the module representations
available during practical computation. Thus we have to ensure in
Lemma 10 that spαq “ ˘spgpairpα,β qq since we cannot recover
any cancellation of the signatures.

Lemma 10 now enables us to optimize the s-reduction in a signature-
based algorithm. There are three situations where we should look
for a replacement of an element α by a fitting gpairpα,β q:

TECHNIQUE 12.
1. Assume that the algorithm has chosen the next pair γ being

some spairpα,β q or gpairpα,β q for some elements α,β P G .
Before starting the s-reduction of γ w.r.t. the intermediate
basis we try to find a replacement GCD-pair for γ .

2. After the s-reduction of an element γ we try to replace it by
a replacement GCD-pair. If so, we try to further reduce this
replacement GCD-pair.

3. By Theorem 6 we cannot guarantee that the computation are
done by increasing signature, thus it can happen that an ele-
ment γ newly added to G generates a replacement GCD-pair
for some other element α already in G . In this situation we
remove α and all pairs generated with α and generate new
pairs with the replacement GCD-pair.

We illustrate the usage of this technique by a small example.

EXAMPLE 4. Let I “ x f1, f2y ĂZrx,ys with f1 “ 28y2 and f2 “

16x2 ` 7xy. In the first steps of signature-based Gröbner basis al-
gorithm, handling the next pair by minimal signature, the following
elements are generated:

Polynomials Signatures

g1 = f1 “ 28y2 e1

g2 = f2 “ 16x2 ` 7xy e2

g3 = gpolpg1,g2q “ 4x2y2 ` 14xy3 2y2e2

g4 = spolpg1,g2q “ 21xy3 7y2e2

g5 = gpolpg4,g1q “ ´7xy3 7y2e2

g6 = spolpg1,g3q “ 14xy3 14y2e2

g7 = gpolpg4,g3q “ x2y3 7xy2e2

g8 = gpolpg2,g6q “ ´2x2y3 14xy2e2

g9 = gpolpg4,g2q “ ´x2y3 21xy2e2

Without Technique 12 g4 is added to the intermediate basis and
corresponding pairs are generated (highlighted gray). These ele-
ments are all useless due to g5 which represents the polynomial of
the replacement GCD-pair for g4. With Technique 12 enabled, g4
is not added to the intermediate basis, but only g5 and new pairs
are generated with g5.

Note that Example 4 also shows one drawback of signature-
based computations over Euclidean rings: In a usual Buchberger al-
gorithm only g7 would be generated, due to the signature-conserving
s-reductions we end up with g7, g8 and g9 since we cannot recover
a cancellation of the signatures during the reduction process.

6. HANDLING SIGNATURE DROPS
As we have seen in the last example of the previous section,

signature-based computation with the restriction to s-reductions of-
ten introduce a computational overhead. On the other hand, we
have seen in Section 3 that drops of the signature might occur even
when applying only s-reductions. Assuming a pair cα tα α ´ cβ tβ β
over a field the signature would be

max
␣

cα tα spαq ,cβ tβ spβ q
(

where we can normalize these elements (so we can assume cα “

cβ “ 1) which leads to tα spαq ‰ tβ spβ q by Lemma 5. Over Eu-
clidean rings, on the other hand, the corresponding signature is
given via

lt
`

cα tα spαq ´ cβ tβ spβ q
˘

.

Thus we might end up with a smaller signature that, see, for exam-
ple, spairpα,e2q in Example 2 in Section 2. As we cannot control
this behaviour due to Theorem 6 we can try to relax the concept of
s-reductions a bit:

TECHNIQUE 13. In the following we present a customized ver-
sion of s-reduction will be called optimistic s-reduction. Assume
that a signature-based Gröbner basis algorithm taking the next pair
from the pair set by minimal possible signature starts to s-reduce
the pair given by α

1. We s-reduce α w.r.t. the current basis.
2. If there exists a reducer β such that there exist c P R and

t P P with ct lt
´

β
¯

“ ltpαq and spα ´ ctβ q ă spαq then we
start a usual reduction without taking care of the signatures
anymore. If no such reducer β exists then we go on and add
α to the intermediate Gröbner basis.

3. If this secondary reduction ends with 0, then α was useless
and we can go on with the s-reduction of the next pair out of
the pair set. If this reduction would not end with 0 then we
have to stop the algorithm, since we cannot track signatures
correctly from this step onwards.

Technique 13 tries to mimic the situation of signature drops that
we have to handle while building new pairs also in the context of
s-reductions. It is optimistic in the sense that the corresponding
reduction might end up with zero and we can keep the signature-
based algorithm and the stability of the signatures alive. Note that
the secondary reduction part only kicks in if there exists a reducer
β such that the signature drops. If there exist reducers with higher
signatures, then the signature-based algorithm adds α to the inter-
mediate basis as usual. The core idea is to detect those situations in
which the overhead when computing over Euclidean rings is intro-
duced.

In our experimental results we have seen that keeping the signa-
tures stable, i.e. not introducing a signature drop at all, is the most
important factor for the efficiency of signature-based Gröbner basis
algorithms over Euclidean rings.

Assume the signature-based Gröbner basis algorithm handles el-
ements by increasing module position, so we assume that the algo-
rithm currently handles elements of index i: When terminating the
algorithm due to a signature drop we can use Technique 8 again:



We intrerreduce the intermediate basis with the element that intro-
duced the signature drop,4 apply new signatures to the elements
and go on with the next step in the algorithm. Note that this time
we have to regenerate all pairs that existed when we terminated the
algorithm, i.e. all pairs with at least one generator that is coming
from an element with signature index i.

Elements that had signature index ă i already generated a Gröb-
ner basis of first i ´ 1 generators, thus we clearly do not have to
reconsider pairs where both generators had signature index ă i.

In general, one would assume to sort these new input elements
for the next incremental step by the monomial order given on P .
As it turns out, this might not be the best idea.

EXAMPLE 5. Consider the ideal I “ x f1, f2y generated by f1 “

5y3 ` 8y2 ` 6y and f2 “ 8x2y ` 9x2 in Zrx,ys. In the following we
give the first steps of a signature-based algorithm always taking the
next pair from the pair set by minimal possible signature.

Polynomials Signatures

g1 = f1 “ 5y3 ` 8y2 ` 6y e1

g2 = f2 “ 8x2y ` 9x2 e2

g3 = x2y3 ´ 6x2y2 ´ 18x2y 2y2e2

g4 = ´19x2y2 ` 54x2 5y2e2

g5 = 2x2y2 ´ 51x2y 10y2e2

g6 = ´x2y2 ´ 81x2y 15y2e2

g7 = 171x2y ` 432x2 40y2e2

g8 = ´213x2y 40y2e2

The next element considered in the algorithm is gpolpg4,g5q “

´x2y2 ´ 459x2y ` 54x2 with signature 95y2e2.
The only possible reducer in the intermediate basis is f6. Car-

rying out the reduction leads to the polynomial ´378x2y ` 54x2

which has decreased signature

95y2e2 ´ 15y2e2 “ 80y2e2.

Thus we reached a signature drop and we can further reduce the
above polynomial, taking signatures not into account, to a new el-
ement g9 “ ´165x2y ` 54x2. Since we cannot further reduce g9
with the intermediate basis, we have to terminate the algorithm,
add this polynomial and sort the intermediate basis.5 We end up
with the following new input f1, . . . , f9 for the signature-based al-
gorithm:

Sorted Polynomials New Signatures

f1 :“ g1 = 5y3 ` 8y2 ` 6y e1

f2 :“ g2 = 8x2y ` 9x2 e2

f3 :“ g8 = 213x2y e3

f4 :“ g9 = 165x2y ´ 54x2 e4

f5 :“ g7 = 171x2y ` 432x2 e5

f6 :“ g6 = x2y2 ` 81x2y e6

f7 :“ g5 = 2x2y2 ´ 51x2y e7

f8 :“ g4 = 19x2y2 ´ 54x2 e8

f9 :“ g3 = x2y3 ´ 6x2y2 ´ 18x2y e9

4If the signature drop happened during the generation of a new pair,
we have to add the polynomial corresponding to this pair here, too.
5For the sake of simplicity we do not interreduce the intermediate
basis in this example.

Clearly, g1 is added as first element in order to keep the incre-
mental nature of the computation itself stable. The other elements
g2 up to g9 are sorted by degree reverse lexicographical order.

Remember that we have at the moment only a Gröbner basis
for xg1y namely tg1u. Thus we would start the next round of our
signature-based Gröbner basis algorithm in order to compute a
basis for xg1,g2y. We see that this would lead to exactly the same
computation as we have done already. We would get an infinite
loop, terminating and restarting always at the same step in the al-
gorithm.

From Example 5 we see that using the monomial order for re-
ordering the intermediate bases once terminating an incremental
step of a signature-based Gröbner basis algorithm due to a signa-
ture drop is not a good idea. Instead, it turns out that often it is the
best to move the element which introduced the signature drop to
the front.

EXAMPLE 6 (EXAMPLE 5 REVISITED). We have terminated
in the very same situation as in Example 5. This time we put g1
on the first position (from the previous incremental Gröbner basis
for xg1y). Next we put first g9, the element which introduced the
signature drop, afterwards the other remaining elements sorted by
the monomial order:

Sorted Polynomials New Signatures

f1 :“ g1 = 5y3 ` 8y2 ` 6y e1

f2 :“ g9 = 165x2y ´ 54x2 e2

f3 :“ g2 = 8x2y ` 9x2 e3

f4 :“ g8 = 213x2y e4

f5 :“ g7 = 171x2y ` 432x2 e5

f6 :“ g6 = x2y2 ` 81x2y e6

f7 :“ g5 = 2x2y2 ´ 51x2y e7

f8 :“ g4 = 19x2y2 ´ 54x2 e8

f9 :“ g3 = x2y3 ´ 6x2y2 ´ 18x2y e9

Restarting now the signature-based Gröbner basis computation
we first compute a basis for x f1, f2y:

Sorted Polynomials Signatures

g1 = f1 “ 5y3 ` 8y2 ` 6y e1

g2 = f2 “ 165x2y ´ 54x2 e2

g3 = ´318x2y2 ´ 198x2y y2e2

g4 = 3x2y2 ´ 4,230x2y 14y2e2

g5 = ´16,614x2y 55y2e2

g6 = 3x2y ´ 70,686x2 715y2e2

g7 = ´299,052x2 3,025y2e2

g8 = ´x2y3 ` 620x2y2 ` 17,954244x2 2y3e2

g9 = x2y3 ´ 8,468x2y2 ´ 141,372x2 28y3e2

At this point we are done with the computation of the Gröbner
basis for x f1, f2y, so we can apply Technique 8 and obtain an in-
termediate reduced basis. From this we go on computing the next
incremental step that results in



Polynomials Signatures

h1 = g7 “ 299,052x2 e1

h2 = g1 “ 5y3 ` 8y2 ` 6y e2

h3 = g6 “ 3x2y ´ 70,686x2 e3

h4 = x2y3 ´ 620x2y2 ´ 11,124x2 e4

h5 = ´x2y ` 212,067x2 e5

h6 = 266,463x2 3e5

h7 = 1,917x2 165e5

This computation is done without a signature drop, next interre-
duction leads to

Polynomials New Signatures

q1 = 1,917x2 e1

q2 = 5y3 ` 8y2 ` 6y e2

q3 = x2y ´ 1,197x2 e3

Going on with the next incremental steps, all further elements
s-reduce to zero, so

G “ tq1,q2,q3u

is the final Gröbner basis for I “ x5y3 ` 8y2 ` 6y,8x2y ` 9x2y.

Putting element that introduced the signature drop up front en-
sures termination of our algorithm, but in general it breaks the poly-
nomial monomial order for the next round of the signature-based
Gröbner basis algorithm. For computation over Euclidean rings we
have two choices:

1. Either we do not apply Technique 13. Then the computation
might introduce a huge overhead of elements added to the
intermediate basis since we do only allow s-reductions..

2. Or we apply Technique 13. Then we have to reorder the
intermediate basis in a way not depending on the monomial
order. Thus we might loose lower order elements that could
be helpful for faster s-reductions in the upcoming iterative
step of the algorithm.

7. HYBRID ALGORITHMS
In order to overcome the drawbacks of signature-based Gröbner

basis computation over Euclidean rings, we combine the advan-
tages (less zero reductions, getting new lead terms faster before
signature drops) with a not signature-based Gröbner basis compu-
tation.

In the following let SBA denote any signature-based Gröbner
basis algorithm that implements the techniques presented in this
paper, and let BBA denote the usual not signature-based Buch-
berger algorithm. We present a hybrid approach combining both
algorithms in Algorithm 1.

As input, HBA get besides the input ideal I and the monomial
order ă also an integer n. n limits the for loop in line 2: n gives
the number of calls to SBA if SBA has not finished with a Gröbner
basis for I, but terminated due to a signature drop (see Section 6).
In these situations SBA will return the intermediate (interreduced
and sorted w.r.t. the signature drop) basis G and the flag “done” is
set to false. If one of these SBA computations in line 3 terminates
with the final Gröbner basis for I, “done” is set to true and HBA
returns G. Otherwise, HBA goes on to line 8, and calls BBA with
the already intermediate basis G, precomputed by SBA.

So we ensure that we restart SBA at most n ´ 1 times before we
go on with a not signature-based Gröbner basis computation.

Algorithm 1 Hybrid algorithm HBA for computing Gröbner bases
over Euclidean rings

Input: Ideal I “ x f1, . . . , fmy Ă P , monomial order ă, integer n
Output: Gröbner basis G for I w.r.t. ă
1: G Ð t f1, . . . , fmu
2: for pk “ 1; k ă“ n; k ` `q do
3: pdone,Gq Ð SBApG,ăq
4: if pdoneq then
5: return G
6: end if
7: end for
8: G Ð BBApG,ăq
9: return G

REMARK 14. In all examples we tested we found that n “ 1
is the best choice. Usually, if a signature drop happens, it makes
no real sense to restart the signature-based computation since the
stability (in either signature order or polynomial lead term order)
is broken. For very few examples we found the nice behaviour of
Example 5 where SBA can finish the overall Gröbner basis com-
putation. In these examples SBA is much faster than BBA, but, at
the moment, we do not have a good heuristic for classifying these
examples.

8. TIMINGS
In this section we present timings for our hybrid algorithm HBA

compared to a usual Buchberger algorithm BBA. We implemented
HBA in the computer algebra system SINGULAR, see [5]. It is
available since version 4´1´0. We investigated random examples
over the integers. Note that due to Remark 14 HBA has nearly the
same running time as SINGULAR’s implementation of BBA called
STD. This is due to the fact that very often the signature drop oc-
curs quite early in the algorithm and we switch over to STD.

In Table 1 we present examples we found in which the HBA at-
tempt is sometimes a lot faster than a usual BBA algorithm. The
examples are available under [8]. All examples are chosen over the
integers with three variables and the degree reverse lexicographi-
cal order. The third column “STD/HBA” states the factor of the
running times. We also have examples with different number of
variables that behave in the same way, but since the complexity of
computation over the integers are increase hugely with the num-
ber of variables and terms, we restricted us here to the given set of
parameters.

All computation are done on an Intel Xeon X5460 compute server
with a 3.16GHz CPU and 64GB of RAM, the code itself is single-
threaded and not parallelized at the moment.

These examples show that there exists a benefit for hybrid signa-
ture-based computations, what is still open is how to classify these
examples. It seems that signature-based algorithms can be useful
for finding good reducers fast in special situations. On the other
hand, if they do not give any benefit like in Example 15 the over-
head of the first signature-based computation is rather small. We
see that the speedup achieved from a signature-based precomputa-
tion also varies by a huge factor.

9. FINITE RINGS & ZERO DIVISORS
In finite rings the computation of a strong Gröbner basis relies,

besides S-polynomials and GCD-polynomials, also on handling so-
called extended polynomials.

DEFINITION 6. Let R be a principal ideal ring.
1. For an element a P R the annihilator of a is defined by

Annpaq “ x0y : xay.



Examples STD HBA STD/ HBA

1 10.43 0.37 28.19
2 24.91 0.10 249.10
3 87.27 0.39 223.77
4 83.51 0.20 417.55
5 23,200.05 5,873.21 3.95
6 134.29 0.61 220.15
7 17,216.12 251.95 68.33
8 47.66 0.30 158.87
9 99.02 0.33 300.06

10 5,141.56 10.41 493.91
11 21,019.11 38.24 549.66
12 1,904.38 0.15 12,695.87
13 2,039.01 115.65 17.63
14 46.51 0.17 273.59
15 1,004.56 1,128.07 0.89
16 554.02 337.55 1.641

Table 1: STD vs. HBA (time in seconds)

2. For f P P the extended polynomial of f is defined by

epolp f q “ d ¨ f , d generator of Annplcp f qq .

Note that if R has no zero divisors then epolp f q “ 0 for all f P

P . Moreover, if Annplcp f qq ‰ H then it always holds that

epolp f q “ d ¨ f “ dp f ´ ltp f qq, d generator of Annplcp f qq .

Extended polynomials are necessary to ensure correctness when
computing strong Gröbner bases:

EXAMPLE 7. Let I “ x f y ĂZ10rx,ys where f “ 5x3 `5xy`3y.
Not assuming extended polynomials the resulting Gröbner basis
is just G “ t f u. Sadly, the lead ideal generated by G is only
LpGq “ x5x3y. Looking at the lead ideal generated by I it is clear
that, for example, ltp2 f q P LpIq where 2 f “ 6y P Z10rx,ys. Taking
the extended polynomial into account we see that Annplcp f qq “

Annp5q “ x2y and thus we consider epolp f q “ 2 f “ 6y in the al-
gorithm and add it to G.

The problem is that we have to consider the signatures of the
polynomials in pZkrxsqm which means that we can now also en-
counter signature drops if the corresponding coefficients are zero
divisors multiplied correspondingly. At the moment we do not have
a good solution for this problem. In general, HBA boils down to a
small signature-based precomputation (with a very early signature
drop) together with a usual BBA afterwards. The intermediate ba-
sis from SBA usually does not provide any benefit for the following
BBA computation. We often found that HBA is slower than BBA
due to the overhead of calling SBA first.

10. CONCLUSION
We presented a first generalization for signature-based algorithms

to compute Gröbner bases over Euclidean rings. We have shown
the problem of signature drops and have given several attempts to
handle this situation. Moreover, we have shown a range of ex-
amples for which a hybrid attempt of signature-based algorithms
combined with the ususal Buchberger algorithm can be computed
way faster then without signature-based precomputations. One im-
portant next task is to understand and classify these ideals, possibly
applying a heuristic to the computation.

Clearly, an F4-style algorithm besides the usual Buchberger al-
gorithm in SINGULAR, is one of the next steps in order to speed up
computations over Euclidean rings in general. Moreover, deeper in-
vestigations on SBA and HBA concerning different module mono-
mial orderings for the signatures and their effect on the signature
drops have to be done. Losing the incremental behaviour of the
algorithm might lead to new improvements for computations of
Gröbner bases over Euclidean rings. Furthermore, computations
over finite rings Zm (see Section 9) might benefit from this step,
too.
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