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(briefly MCM) module over R has a minimal free resolution of periodicity 2,
which is completely given by a matrix factorization (ϕ, ψ), ϕ, ψ being square
matrices over S such that ϕψ = ψϕ = f Idn, for a certain positive integer n.
Therefore, in order to describe the MCM R–modules, it is enough to describe
their matrix factorizations. In this paper we give the description, by matrix
factorizations, of the graded, rank 2, indecomposable, MCM modules over
K[x1, x2, x3, x4]/(x

3
1 + x3

2 + x3
3 + x3

4). Part of this study was done with the
help of the Computer Algebra System Singular [GPS].

The MCM modules over the hypersurface f3 = x3
1 + x3

2 + x3
3 were described

in [LPP] as 1–parameter families indexed by the points of the curve Z =
V (f3) ⊂ P2. This description is mainly based on Atiyah’s theory of the
vector bundles classification over elliptic curves, in particular over Z, and on
difficult computations made with the Computer Algebra System Singular.
The description depends on two discrete invariants — the rank and the degree
of the bundle — and on a continuous invariant — the points of the curve Z.

The classification of vector bundles is of great interest, in particular of ACM
bundles (i.e. those which correspond to MCM modules) over the singularities
of higher dimension. In the paper [EP], matrix factorizations which define
the graded MCM modules of rank 1 over f4 = x3

1 +x3
2 +x3

3 +x3
4 are described.

There is a finite number of such modules, which correspond to 27 lines, 27
pencils of quadrics and 72 nets of twisted cubic curves lying on the surface
Y = V (f4) ⊂ P3. From a geometrical point of view the problem is easy, but
the effective description of the matrix factorizations is difficult and Singular
has been intensively used.

In the present paper we continue this study for the graded MCM modules of
rank two. We obtain a general description of the MCM orientable modules
of rank two. They are given by skew–symmetric matrix factorizations (see
Theorem 6). The technique is based on the results of Herzog and Kühl (see
[HK]) concerning the so–called Bourbaki exact sequences. The matrix fac-
torizations of the graded, orientable, rank 2, 4–generated MCM modules are
parameter families indexed by the points of the surface Y , that is, two pa-
rameter families and some finite ones in bijection with rank 1 MCM modules
described in [EP] (see Theorem 8. Here an important fact is that two Goren-
stein ideals of codimension 2 define the same MCM module via the associated
Bourbaki sequence if and only if they belong to the same even linkage class).
We also describe the non–orientable MCM modules of rank 2 over f4. There
is a finite number of such modules, which correspond somehow to the rank
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1 modules described in [EP]. The graded MCM modules, non–orientable,
of rank 2 are 2–syzygy over f4 of some ideals of the form J/(f4), J being
an ideal of the polynomial ring S = K[x1, x2, x3, x4], (K is an algebraically
closed field of characteristic zero), with f4 ∈ J, dimS/J = 2, depthS/J = 1,
whose Betti numbers over S satisfy β1(J) = β0(J) + 1 and β2(J) = 1 (see
Lemma 11). This result has been essential in the description of the graded,
non–orientable MCM modules. The paper highlights bijections between the
classes of indecomposable, graded, non–orientable MCM modules of rank 2,
4 and 5–generated and the classes of rank 1, graded, MCM modules (see
Theorem 13 and Theorem 16). Consequently, there exists a bijection be-
tween the classes of indecomposable, graded, non–orientable MCM modules
of rank three, 5–generated and the classes of rank 1, graded, MCM mod-
ules (see Corollary 17). These results remind us of the theory of Atiyah
and give small hope that the non-orientable case behaves in the same way
for higher rank. We also show that there are no indecomposable, graded,
non–orientable MCM modules of rank 2 6–generated. Consequently, there
exist no indecomposable, graded, non–orientable MCM modules of rank four,
6-generated.

Until now, the description of graded rank 2 MCM modules is not too far from
the theory of Atiyah. But the description of graded, rank two, 6-generated
MCM modules is different (see Section 6) from what we expected, since a
part of them, given by Gorenstein ideals defined by 5 general points on Y ,
forms a 5-parameter family (see [Mig], [IK]). However, we believe that behind
these results there exists a nice theory of graded MCM modules over a cubic
hypersurface in four variables which waits to be discovered.

We express our thanks to A. Conca, R. Hartshorne, J. Herzog and G. Valla
for very helpful discussions on Section 6 and Theorem 6.

1 Preliminaries

Let Rn := K[x1, x2, . . . , xn]/(fn), where fn = x3
1 + x3

2 + . . . + x3
n and K is

an algebraic closed field of characteristic 0. Using the classification of vec-
tor bundles over elliptic curves obtained by Atiyah [At], Laza, Pfister and
Popescu [LPP] describe the matrix factorizations of the graded, indecompos-
able and reflexive modules over R3. They give canonical normal forms for the
matrix factorizations of all graded reflexive R3–modules of rank 1 (see Sec-
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tion 3 in [LPP]) and show effectively how we can produce the indecomposable
graded reflexive R3–modules of rank ≥ 2 using Singular (see Section 5 in
[LPP]). We recall from [LPP] the description of the rank 1, three-generated,
non–free, graded MCM R3–modules since we shall use it in the last section
of our paper. First we recall the notations. Let P0 = [−1 : 0 : 1] ∈ V (f3).
For each λ = [λ1 : λ2 : 1] ∈ V (f3), λ 6= P0, we set

αλ =

 0 x1 − λ1x3 x2 − λ2x3

x1 + x3 −x2 − λ2x3 −wx3

x2 wx3 (1− λ1)x3 − x1

 ,

where w =
λ2
2

λ1+1
and, if λ = [λ1 : 1 : 0] ∈ V (f3), we set

αλ =

 0 x1 − λ1x2 x3

x1 + x3 −λ1x1 λ1x1 + λ2
1x2

x2 x3 − x1 −x1

 .

Let βλ the adjoint matrix of αλ.

Theorem 1 ((3.7) in [LPP]). (αλ, βλ) is a matrix factorization for all
λ ∈ V (f3), λ 6= P0, and the set of 3–generated MCM graded R3–modules,

M0 = {Cokerαλ | λ ∈ V (f3), λ 6= P0}

has the following properties:

(i) All the modules from M0 have rank 1.

(ii) Each two different modules from M0 are not isomorphic.

(iii) Every 3–generated, rank 1, non–free, graded MCM R3–module is iso-
morphic with one module from M0.

Now we consider the case n = 4. In this case we do not have the support
of Atiyah classification. The complete description by matrix factorizations
of the rank 1, graded, indecomposable MCM modules over R4 was given in
[EP].

The aim of the present paper is to classify the rank 2, graded, indecomposable
MCM modules over R4. From now on, we shall denote R = R4, f = f4 and we
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preserve the hypothesis on K to be algebraically closed and of characteristic
zero.

Let M be a rank 2 MCM module over R, and let µ(M) be the minimal
number of generators of M . By Corollary 1.3 of [HK], we obtain that
µ(M) ∈ {3, 4, 5, 6}.
First of all we consider the 3–generated case. The description of the
rank 1 MCM R–modules is given in [EP]. We recall the notations. For
a, b, c, d, ε ∈ K such that a3 = b3 = c3 = d3 = −1, ε3 = 1, ε 6= 1, and
bcd = εa, we set

α(b, c, d, ε) =

 0 x1 − ax4 x2 − bx3

x1 − cx2 −b2x3 − abc2ε2x4 b2c2x3 − abcε2x4

x3 − dx4 c2x2 + bc2x3 + acx4 −x1 − cx2 − ax4


and

β(b, c, d, ε) = α(b, c, d, ε)t,

that is, the transpose of α(b, c, d, ε). Then each of the matrices α(b, c, d, ε)
and β(b, c, d, ε) forms with its adjoint, α(b, c, d, ε)∗, respectively β(b, c, d, ε)∗,
a matrix factorization of f .

For a, b, c ∈ K, distinct roots of −1, and ε as above, we set

η(a, b, c, ε) =

 0 x1 + x2 x3 − ax4

x1 + εx2 −x3 + cx4 0
x3 − bx4 0 −x1 − ε2x2


and

ϑ(a, b, c) =

 0 x1 + x3 x2 − ax4

x1 − a2bx3 −x2 + cx4 0
x2 − bx4 0 −x1 + ab2x3

 .

The matrices η(a, b, c, ε) and ϑ(a, b, c) form with their adjoint, η(a, b, c, ε)∗,
respectively ϑ(a, b, c)∗, a matrix factorization of f .

Theorem 2 ((3.4) in [EP]). Let

M = {Cokerα(b, c, d, ε), Coker β(b, c, d, ε) | b, c, d, ε ∈ K,
b3 = c3 = d3 = −1, bcd = εa, ε3 = 1, ε 6= 1}
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and

N = {Coker η(a, b, c, ε), Cokerϑ(a, b, c) | ε3 = 1, ε 6= 1

and (a, b, c) is a permutation of the roots of − 1}.

Then the sets M,N of rank 1, 3–generated, MCM graded R–modules have
the following properties:

(i) Every 3–generated, rank 1, indecomposable, graded MCM R–module is
isomorphic with one module from M∪N .

(ii) If M = Cokerα(b, c, d, ε) (or M = Coker β(b, c, d, ε)) belongs to M
and N ∈M, then N 'M if and only if N = Cokerα(bε, cε, dε, ε2) (or
N = Coker β(bε, cε, dε, ε2)).

(iii) Any two different modules from N are not isomorphic.

(iv) Any module of N is not isomorphic with some module of M.

The map M 7→ Ω1
R(M) is a bijection between the 3–generated, indecompos-

able, graded, MCM R–modules of rank two and the 3–generated, indecom-
posable, graded, MCM R–modules of rank 1. Thus, from the above theorem
we obtain the description of the rank 2, 3–generated, indecomposable, graded
MCM R–modules.

Theorem 3. Let

M∗ = {Cokerα(b, c, d, ε)∗, Coker β(b, c, d, ε)∗ | b, c, d, ε ∈ K,
b3 = c3 = d3 = −1, bcd = εa, ε3 = 1, ε 6= 1}

and

N ∗ = {Coker η(a, b, c, ε)∗, Cokerϑ(a, b, c)∗ | ε3 = 1, ε 6= 1

and (a, b, c) is a permutation of the roots of − 1 }.

Then the sets M∗,N ∗ of rank 2, 3–generated, MCM graded R–modules have
the following properties:

(i) Every 3–generated, rank 2, indecomposable, graded MCM R–module is
isomorphic with one module from M∗ ∪N ∗.
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(ii) If M = Cokerα(b, c, d, ε)∗ (or M = Coker β(b, c, d, ε)∗) belongs to M∗

and N ∈ M∗, then N ' M if and only if N = Cokerα(bε, cε, dε, ε2)∗

(or N = Coker β(bε, cε, dε, ε2)∗).

(iii) Any two different modules from N ∗ are not isomorphic.

(iv) Any module of N ∗ is not isomorphic with some module of M∗.

Corollary 4. There are 72 isomorphism classes of rank 2, indecomposable,
graded MCM modules over R with three generators.

2 Skew symmetric matrices and rank 2 ori-

entable MCM modules

Let ϕ = (aij)1≤i,j≤2s be a generic skew symmetric matrix, that is

aii = 0, aij = −aji, for all i, j = 1, . . . , 2s.

Then
det(ϕ) = pf(ϕ)2,

where pf(ϕ) denotes the Pfaffian of ϕ (see [Bo1, §5, no. 2] or [BH, (3.4)]).
Like determinants, Pfaffians can be developed along a row. Set ϕij the matrix

obtained from ϕ by deleting the ith and jth rows and columns. Then, for
all i = 1, . . . , 2s,

pf(ϕ) =
2s∑
j=1
j 6=i

(−1)i+jσ(i, j)aij pf(ϕij), (1)

where σ(i, j) denotes sign(j − i). Multiplying (1) by pf(ϕ), we obtain

det(ϕ) =
2s∑
j=1

aijbij, (2)

for bij = (−1)i+jσ(i, j) pf(ϕij) pf(ϕ) when i 6= j and bii = 0. Since ϕ is a
generic matrix we see from (2) that bij is exactly the algebraic complement
of aij and so the transpose matrix B of (bij) is the adjoint matrix of ϕ. Set

ψ =
1

pf(ϕ)
B.
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Then
ϕψ = ψϕ = pf(ϕ) Id2s,

as it is stated also in [[JP], §3].

Proposition 5. Let f = x3
1 + x3

2 + x3
3 + x3

4 and ϕ a skew symmetric matrix
over S = K[x1, x2, x3, x4] of order 4 or 6 such that detϕ = f 2, K being a
field. Then Cokerϕ is an MCM module over R := S/(f) of rank 2.

Proof. Let ψ be given for ϕ as above, that is the (i, j) entry of ψ is (−1)i+jσ(j, i) pf(ϕij).
As above we have

ϕψ = ψϕ = f · Idn, n = 4 or 6

because pf(ϕ) = f . Then (ϕ, ψ) is a matrix factorization which defines an
MCM R–module of rank 2.

Theorem 6. Preserving the hypothesis of Proposition 5, the cokernel of a
homogeneous skew symmetric matrix over S of order 4 or 6 of determinant
f 2 defines a graded MCM R–module M of rank 2. Conversely, each non–free
graded orientable MCM R–module M of rank 2 is the cokernel of a map given
by a skew symmetric homogeneous matrix ϕ over S of order 4 or 6, whose
determinant is f 2 and ϕ together with ψ, defined above, form the matrix
factorization of M .

Proof. According to Herzog and Kühl [HK], M must be 4 or 6 minimally
generated. Suppose that M is 6–generated (the other case is similar). Then
M is the second syzygy over R of a Gorenstein ideal I ⊂ R of codimension
2, which is 5–generated by [HK]. Using the Buchsbaum–Eisenbud Theorem
(see e.g. [BH], (3,4)) there exists an exact sequence

0 −→ S(−5)
d3−→ S5(−3)

d2−→ S5(−2)
d1−→ S (3)

such that J = Im d1, I = J/(f), d2 is a skew symmetric homogeneous matrix,
d3 is the dual of d1, d3 = dt1, and

d1 =
(
pf

(
(d2)1

)
,− pf

(
(d2)2

)
, . . . , pf

(
(d2

)
5
)
)
,

where (d2)i denotes the 4 × 4 skew symmetric matrix obtained by deleting

the ith row and column of d2. ( We will see at the end of this proof that,
indeed, the entries of d2 are linear forms ).
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Since f ∈ J there exists v : S(−1) −→ S5 such that d1v = f (v is given
by linear forms). It is easy to see from (3) that I = J/(f) has the following
minimal resolution over S :

0 −→ S(−5)

(
d3
0

)
−−−→ S6(−3)

(d2,v)−−−→ S5(−2)
d̃1−→ I −→ 0.

As in [Ei], since fI = 0, there exists a map h : S5(−5) → S6(−3) such that
(d2, v)h = −f · Id5 and we obtain the following exact sequence

R6(−5)

(
h̄|−d̄3

0

)
−−−−−→ R6(−3)

(d̄2,v̄)−−−→ R5(−2)
d̄1−→ I −→ 0. (4)

On the other hand, ϕ =
(

d2 v
−vt 0

)
is a skew symmetric homogeneous matrix

of order 6. Let ψ given as above. By construction ψ has the form
(

c dt
1

−d1 0

)
and so (d2, v)

(
c

−d1
)

= −f · Id5 = pf(ϕ) Id5. Taking h =
(

c
−d1

)
above, we

obtain from (4) the following exact sequence:

R6(−6)
ϕ−→ R6(−5)

ψ−→ R6(−3)
(d̄2,v̄)−−−→ R5(−2)

d̄1−→ I −→ 0,

which gives
Cokerϕ ∼= Imψ = Ω2

R(I).

We have pf(ϕ) = −f and so det(ϕ) = f 2. Therefore the entries of ϕ are
linear forms and as a consequence, the entries of d2 are linear forms.

3 Orientable, rank 2, 4–generated MCM mod-

ules

Let K be an algebraically closed field of characteristic zero,
S = K[x1, x2, x3, x4], f = x3

1 + x3
2 + x3

3 + x3
4, and R = S/(f). Let M be a

graded, indecomposable, 4–generated MCM R–module of rank 2. After Her-
zog and Kühl [HK], M ∼= Ω2

R(I), where I is a graded 3–generated Gorenstein
ideal such that dimR/I = 1. Then I = J/(f), with J ⊂ S a graded, 3–
generated ideal containing f , f ∈ mJ by [HK]”. Let α1, α2, α3 be a minimal
system of homogeneous generators of J . Since dimS/J = 1, it follows that
α1, α2, α3 is a regular system of elements in S.
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Let u, a, b ∈ K with a3 = b3 = −1, u2 + u + 1 = 0 and σ = (i j s) be a
permutation of the set {2, 3, 4} with i < j. Set

wσ1 = x1 − axs, wσ2 = xi − bxj,
vσ1 = x2

1 + ax1xs + a2xs, vσ2 = x2
i + bxixj + b2x2

j .

then we have
f = wσ1vσ1 + wσ2vσ2.

Let λ = [λ1 : λ2 : λ3 : 1] be a point of the surface V (f) ⊂ P3. We set

piλ = xi − λix4, and qiλ = x2
i + λixix4 + λ2

ix
2
4, for 1 ≤ i ≤ 3.

Let λ = [λ1 : λ2 : 1 : 0] be a point of V (f). We set

piλ = xi − λix3, qiλ = x2
i + λixix3 + λ2

ix
2
3, for 1 ≤ i ≤ 2

and
p3λ = x4, q3λ = x2

4.

If λ = [λ1 : 1 : 0 : 0] ∈ V (f), we set

p1λ = x1 − λ1x2, q1λ = x2
1 + λ1x1x2 + λ2

1x
2
2

and
p2λ = x3, p3λ = x4, q2λ = x2

3, q3λ = x2
4.

In all cases we have

f =
3∑
i=1

piλqiλ.

Since f ∈ (α1, α2, α3) and eventually we are interested in Ω2
R(α1, α2, α3), we

may suppose that either αi is in the set {piλ, qiλ} for each 1 ≤ i ≤ 3, or αi
is in the set {wσi, vσi} for each 1 ≤ i ≤ 2 and β = α3 is a regular element in
R/(α1, α2).

Lemma 7. Let M be a graded, indecomposable, 4–generated MCM R–module
of rank 2. Then M is one of the following modules:

(1) Ω2
R(p1λ, p2λ, p3λ) or Ω2

R(q1λ, q2λ, q3λ), for some λ ∈ V (f),

(2) Ω2
R(wσ1, vσ2, β) or Ω2

R(wσ2, vσ1, β) for some a, b, σand β as above.
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Proof. Set
Iλ = (p1λ, p2λ, p3λ)

and

ϕλ =


0 p3λ −p2λ −q1λ

−p3λ 0 −p1λ q2λ
p2λ p1λ 0 q3λ
q1λ −q2λ −q3λ 0

 , ψλ =


0 −q3λ q2λ p1λ

q3λ 0 q1λ −p2λ

−q2λ −q1λ 0 −p3λ

−p1λ p2λ p3λ 0

 .

We have the following exact sequence:

R3(−5)⊕R(−6)
ϕλ−→ R4(−4)

ψλ−→ R3(−2)⊕R(−3)
A−→ R3(−1)

τ−→ Iλ −→ 0,

where τ = (−p1λ, p2λ, p3λ) and A are given by the first three rows of ϕλ.
Thus, Ω2(Iλ) ∼= Coker(ϕλ) and (ϕλ, ψλ) is a matrix factorization of Ω2(Iλ).
The ideals Iλ and (q1λ, q2λ, p3λ) belong to the same even linkage class since

Iλ ∼ (q1λ, p2λ, p3λ) ∼ (q1λ, q2λ, p3λ).

For the first link we consider the regular sequence {p1λq1λ, p2λ, p3λ} and for
the second one the sequence {q1λ, p2λq2λ, p3λ}. Similarly, one can see that
Iλ is evenly linked with the ideals (q1λ, p2λ, q3λ) and (p1λ, q2λ, q3λ). By [HK,
Theorem 2.1], we obtain that

Coker(ϕλ) ∼= Ω2
R(Iλ) ∼= Ω2

R(q1λ, q2λ, p3λ) ∼= Ω2
R(q1λ, p2λ, q3λ)

∼= Ω2
R(p1λ, q2λ, q3λ).

Analogously, we see that

Coker(ψλ) ∼= Ω2
R(q1λ, q2λ, q3λ) ∼= Ω2

R(p1λ, p2λ, q3λ) ∼= Ω2
R(p1λ, q2λ, p3λ)
∼= Ω2

R(q1λ, p2λ, p3λ).

Thus, the case when αi is one of the forms {piλ, qiλ} gives (1).

Now let σ, a, b as above and β ∈ S which is regular on R/(wσ1, vσ2). Set

Iσβ(a, b, u) = (wσ1, vσ2, β)

and

ϕσβ(a, b, u) =


0 wσ1 −vσ2 0

−wσ1 0 −β wσ2

vσ2 β 0 vσ1

0 −wσ2 −vσ1 0

 ,
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ψσβ(a, b, u) =


0 −vσ1 wσ2 β
vσ1 0 0 −vσ2

−wσ2 0 0 −wσ1

−β vσ2 wσ1 0

 .

We have the following exact sequence:

R4 ϕσβ(a,b,u)
−−−−−−→ R4 ψσβ(a,b,u)

−−−−−−→ R4 B−→ R3 τ ′−→ Iσβ(a, b, u) −→ 0 ,

where τ ′ = (−β, vσ2, wσ1) and B is the matrix given by the first three rows
of ϕσβ(a, b, u). Thus,

Ω2
R

(
Iσβ(a, b, u)

) ∼= Coker
(
ϕσβ(a, b, u)

)
.

As above, we see that

Ω2
R

(
Iσβ(a, b, u)

) ∼= Ω2
R(wσ2, vσ1, β)

and
Ω2
R(wσ1, wσ2, β) ∼= Ω2

R(vσ1, vσ2, β) ∼= Coker
(
ψσβ(a, b, u)

)
.

Thus, the case when αi is one of the forms {wσi, vσi} for i ≤ 2 gives (2).

Let
M =

{
Coker(ϕλ),Coker(ψλ) | λ ∈ V (f)

}
.

For a, b, σ as above, set

ϕσ(a, b, u) = ϕσ,xjxs(a, b, u), ψσ(a, b, u) = ψσ,xjxs(a, b, u),

that is, β = xjxs. Let

P =
{
Coker

(
ϕσ(a, b, u)

)
,Coker(ψσ(a, b, u)) | a, b, σ as above

}
.

Theorem 8. The set M∪Pcontains only non–isomorphic, indecomposable,
graded, orientable, 4–generated MCM R–modules of rank 2 and every in-
decomposable, graded, orientable, 4–generated MCM R–module of rank 2 is
isomorphic with one module of M∪P.

Proof. Applying Lemma 7, we must show in the case (2) that β can be taken
xjxs. Since vσ1 −wσ1(x1 + 2axs) = 3a2x2

s, adding in ϕσβ(a, b, u) multiples of
the last row to the second one and multiples of the first column to the third
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one, we may suppose the entry (2, 3) of the form γ+xsδ, with γ, δ depending
only on xj, xi. These transformations modify the entries (2, 2), (3, 3) which
are now possibly non–zero. Adding similar multiples of the last column to
the second one and multiples of the first row to the third one, we obtain
ϕσ,β(a, b, u) of the same type as before but with β = γ+xsδ. We may reduce
to consider δ 6∈ K. Indeed, if δ ∈ K, then, acting on the rows and columns
of ϕσβ(a, b, u), we obtain that M = Coker(ϕσβ(a, b, u)) is decomposable or
belongs to the set M. Now let δ be not constant. Similarly, adding in
ϕσβ(a, b, u) multiples of the first row to the second one and multiples of the
last column to the third one we may suppose that the entry (2, 3) has the form
εxjxs with ε ∈ K. These transformations modify the entries (2, 2), (3, 3).
After similar transformations, we obtain ϕσβ(a, b, u) of the same type as
before but with β = εxjxs. If ε = 0 we see that ϕσβ(a, b, u) is a direct
sum of two 2× 2–matrices, which contradicts the indecomposability of M =
Coker

(
ϕσβ(a, b, u)

)
. So ε 6= 0. Divide the second and the third column of

ϕσβ(a, b, u) with ε, and multiply the first and the last row of ϕσβ(a, b, u) with
ε. We reduce to the case ε = 1, that is β = xjxs.

Now we show that two different modules from M∪P are not isomorphic.
Note that the Fitting ideals of ϕλ (respectively ψλ) modulo (x1, . . . , x4)

2

have the form (p1λ, p2λ, p3λ) and the Fitting ideals of ϕσ(a, b, u) (respectively
ψσ(a, b, u)) modulo (x1, . . . , x4)

2 have the form (wσ1, wσ2) and these ideals
are all different. Thus,{

Coker(ϕλ) | λ ∈ V (f)} ∪ {Coker
(
ϕσ(a, b, u)

)
| σ, a, b as above

}
contains only non–isomorphic modules (similarly for ψ’s). It follows that, if
N,P ∈M∪P are isomorphic and different, then N ' Ω1

R(P ).

If N = Coker(ϕλ), for λ ∈ V (f), then this is not possible since the ide-
als (p1λ, p2λ, p3λ) and (q1λ, q2λ, q3λ) are not in the same even linkage class.
Indeed, by the proof of (1) in Lemma 7, (p1λ, p2λ, p3λ) is evenly linked with
(q1λ, q2λ, p3λ) and this last ideal is obviously directly linked with (q1λ, q2λ, q3λ).
If N = Coker

(
ϕσ(a, b, u)

)
for some σ, a, b, and N ' Ω1

R(N), then the ideals
(wσ1, vσ2, xjxs) and (wσ1, wσ2, xjxs) are evenly linked. But these ideals are
directly linked by the regular sequence {wσ1, vσ2wσ2, xjxs}, contradiction!

It remains to show that M∪ P contains only indecomposable modules. If
N ∈ M, let us say N = Coker(ϕλ) for λ = [λ1 : λ2 : λ3 : 1], we see that

12



N/x4N is exactly the module corresponding to the matrix
0 x3 −x2 −x2

1

−x3 0 −x1 x2
2

x2 x1 0 x2
3

x2
1 −x2

2 −x2
3 0


whose cokernel is the special module M2 (see [LPP] for the special module of
rank 2 which corresponds to the special bundle from Atiyah classification).
Thus, N/x4N is indecomposable and, by Nakayama’s Lemma, N is indecom-
posable. Now let N ∈ P , N = Coker

(
ψσ(a, b, u)

)
. By the permutation of the

rows and the columns of ψσ(a, b, u), we may suppose that it has the form:
wσ1 −vσ2 xjxs 0
wσ2 vσ1 0 xjxs
0 0 vσ1 vσ2

0 0 −wσ2 wσ1

 .

Suppose N is decomposable. Then ψσ(a, b, u) is equivalent with a direct
sum of two matrices of order 2 A1, A2. Let B1, B2 be the submatrices of
the ψσ(a, b, u) given by the first two lines and columns, respectively the last
two lines and columns. Certainly A1, A2, B1, B2 define some maximal Cohen-
Macaulay modules of rank one N1, N2, T1, T2, and due to the particular form
of ψσ(a, b, u) we have the following exact sequence

0 → T1 → N1 ⊕N2 = N → T2 → 0.

Note that ψσ(a, b, u) is modulo xj or xs the sum of B1, B2. Thus Ti/xjTi ∼=
Ni/xjNi for i = 1, 2 and similarly for xs. Since we have the whole description
of rank one maximal Cohen-Macaulay modules we can see that Ai is equiv-
alent with Bi modulo xj and modulo xs only when Ai is equivalent with Bi.
Thus Ti ∼= Ni for i = 1, 2 and so N ∼= T1⊕T2. By a subtle result of Miyata (
[Mi] ) this happens only if the above exact sequence splits. This means that
there exist two matrices A,B of order two such that

xjxs · Id2 =

(
wσ1 −vσ2

wσ2 vσ1

)
A+B

(
vσ1 vσ2

−wσ2 wσ1

)
,

which is impossible.

13



Remarks 9. (1) There exists a bijection between

P1 =
{
Coker

(
ϕσ(a, b, u)

)
| σ, a, b

}
and the 2–generated, non–free, MCM R–modules, which remind us
of Atiyah’s classification. Thus, P1 contains 27 modules corresponding
to 27 lines and 27 pencils of conics of V (f).
Similarly, P2 =

{
Coker

(
ψσ(a, b, u)

)
| σ, a, b

}
contains 27 modules.

(2) M is a kind of “blowing up” of M2,Ω
1
R(M2) from [LPP] (see the proof

of Theorem 8). Note also that M consists of two classes of modules
parameterized by the points of V (f), which is also in Atiyah’s idea.

(3) The matrices ϕ defining the modules of M∪P are skew symmetric as
our Theorem 6 predicted.

4 Non–orientable, rank 2, 4–generated MCM

modules

Let M be a graded non–orientable, rank 2, MCM R–module, without free
direct summands. We should like to express M as a 2–syzygy of an ideal I,
M ∼= Ω2

R(I), with µ(M) = µ(I)+1 (this is known in orientable case by [HK],
see here Section 3).

The following proposition can be found in [B, Korollar 2].

Proposition 10. Let (A,m) be a Noetherian normal local domain with
dimA ≥ 2 and N a finite torsion–free A–module. Then there exists a finite
free submodule F ⊂ N such that N/F is isomorphic with an ideal of A and
the canonical map F/mF → N/mN is injective.

Applying Proposition 10, we obtain the following exact sequence:

0 → R −→M −→ I −→ 0 (5)

for an ideal I ⊂ R, which induces an exact sequence

0 −→ K = R/m −→M/mM −→ I/mI −→ 0.

14



Thus µ(M) = µ(I) + 1.

As we know in the orientable case to obtain MCM R–modules of rank 2 we
must choose I such that Ext1

R(I, R) is a cyclic R–module or, more precisely,
such that R/I is Gorenstein. In the non–orientable case one can also show
that Ext1

R(I, R) must be a cyclic R–module, but this is not very helpful since
it is hard to check this condition for arbitrary I. Below we shall state an
easier condition.

Let J ⊂ S = K[X1, . . . , X4] be an ideal such that f ∈ mJ and I = J/(f).

Lemma 11. Let

0 −→ Ss3
d3−→ Ss2

d2−→ Ss1
d1−→ J −→ 0

be a minimal free S–resolution of an ideal J with depth S/J = 1.

If rank Ω2
R

(
J/(f)

)
= 2 and µ

(
Ω2
R

(
J/(f)

))
= µ(I) + 1 then s1 = s2 ≤ 5 and

s3 = 1.

Proof. As in the proof of Theorem 6, we obtain a minimal free resolution of
I = J/(f) over S in the following way:

Let v : S → Ss1 be an S–linear map such that jd1v = f IdS, where j : J → S

is the inclusion. Let d̃1 be the composite map Ss1
d1−→ J → J/(f) = I. Then

the following sequence

0 −→ Ss3

(
d3
0

)
−→ Ss2+1 (d2,v)−−−→ Ss1

d̄1−→ I −→ 0

is exact and forms a minimal free resolution of I over S. Since

f · Ss1 ⊂ Im(d2, v),

there exists an S–linear map h : Ss1 → Ss2+1 such that

(d2, v)h = f IdSs1

and we obtain the following exact sequence

Rs3+s1

(
h̄

∣∣d̄3
0

)
−−−−→ Rs2+1 (d̄2,v̄)−−−→ Rs1 d̄1−→ I −→ 0,
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which is part of a minimal free R–resolution of I. Thus, M = Ω2
R(I) is

the image of the first map above and so s1 + s3 = s2 + 1 = s1 + 1 because
µ(M) = µ

(
Ω1
R(M)

)
= µ(I)+1 by hypothesis. It follows that s3 = 1, s1 = s2.

As µ(M) ≤ 3 rankRM = 6 we obtain s1 ≤ 5.

Let detN be the corresponding class of the bidual (∧nN)∗∗, n = rankN ,
in Cl(R) for a torsion free R–module N . Since det is an additive function,
we obtain det(M) = 0 if and only if det(I) = 0. Thus, M is non–orientable
if and only if I is non–orientable, that is, codim(J) ≤ 1 for all ideals J ⊂
R isomorphic with I, according to [HK]. Since M has rank 2, we obtain
codim(I) = 1. Thus, dimR/I = 2 and, from (5), we obtain depthR/I = 1,
that is, R/I is not Cohen–Macaulay. Also from (5) we obtain Ω2

R(M) '
Ω2
R(I) and so M ' Ω2

R(I).

Proposition 12. Each graded, non–orientable, rank 2, s–generated MCM
R–module is the second syzygy Ω2

R(I) of an (s − 1)–generated graded ideal
I ⊂ R with depthR/I = 1 and dimR/I = 2.

As in Section 3, let u, a, b ∈ K, with

a3 = b3 = −1, u2 + u+ 1 = 0,

σ = (i j s) be a permutation of the set {2, 3, 4} with i < j and set

wσ1 = x1 − axs, wσ2 = xi − bxj,
vσ1 = x2

1 + ax1xs + a2x2
s, vσ2 = x2

i + bxixj + b2x2
j .

We have
vσ1 = v′σ1v

′′
σ1, vσ2 = v′σ2v

′′
σ2

for
v′σ1 = x1 − uaxs, v′′σ1 = x1 + (1 + u)axs,
v′σ2 = xi − ubxj, v′′σ2 = xi + (1 + u)bxj.
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Set
I1σ(a, b, u) = (xsv

′
σ2, vσ2, wσ1),

I2σ(a, b, u) = (xjv
′′
σ1, vσ1, wσ2),

I3σ(a, b, u) = (xsv
′′
σ2, vσ2, vσ1),

I4σ(a, b, u) = (xjv
′
σ1, vσ1, vσ2),

I5σ(a, b, u) = (xsv
′′
σ2, vσ2, wσ1),

I6σ(a, b, u) = (xjv
′
σ1, vσ1, wσ2),

I7σ(a, b, u) = (xsv
′
σ2, vσ2, vσ1),

I8σ(a, b, u) = (xjv
′′
σ1, vσ2, vσ1)

Set

ϕ1σ(a, b, u) =


wσ1 −wσ2 0 xs
vσ2 vσ1 xsv

′
σ2 0

0 0 wσ1 −v′′σ2

0 0 −wσ2v
′
σ2 −vσ1

 ,

ϕ2σ(a, b, u) =


wσ1 −wσ2 0 −xj
vσ2 vσ1 xjv

′′
σ1 0

0 0 wσ2 −v′σ1

0 0 −wσ1v
′′
σ1 −vσ2

 ,

ψ3σ(a, b, u) =


wσ1 −wσ2 −xs 0
vσ2 vσ1 0 −xsv′′σ2

0 0 −v′σ2 wσ1

0 0 −vσ1 −wσ2v
′′
σ2

 ,

ψ4σ(a, b, u) =


wσ1 −wσ2 xj 0
vσ1 vσ2 0 −xjv′σ1

0 0 −v′′σ1 wσ2

0 0 −vσ2 −wσ1v
′
σ1

 ,

ϕ3σ(a, b, u) =


vσ1 wσ2 0 −xs
−vσ2 wσ1 xsv

′′
σ2 0

0 0 −wσ2v
′′
σ2 −wσ1

0 0 vσ1 −v′σ2

 ,
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ϕ4σ(a, b, u) =


vσ1 wσ2 xjv

′
σ1 0

−vσ2 wσ1 0 −xj
0 0 −wσ1v

′
σ1 −wσ2

0 0 vσ2 0− v′′σ1

 ,

ψ1σ(a, b, u) =


vσ1 wσ2 0 xs
−vσ2 wσ1 −xsv′σ2 0

0 0 vσ1 −v′′σ2

0 0 −wσ2v
′
σ2 −wσ1

 ,

ψ2σ(a, b, u) =


vσ1 wσ2 0 xj
−vσ2 wσ1 −xjv′′σ1 0

0 0 vσ2 −v′σ1

0 0 −wσ1v
′′
σ1 −wσ2

 .

Theorem 13. (1) For each 1 ≤ t ≤ 4, the pair
(
ϕtσ(a, b, u), ψtσ(a, b, u)

)
forms a matrix factorization of Ω2

R

(
Itσ(a, b, u)

)
.

(2) The set

N =
{
Coker

(
ϕtσ(a, b, u)

)
, Coker

(
ψtσ(a, b, u)

)
| 1 ≤ t ≤ 4, σ, a, b, u

}
contains only graded, indecomposable, non–orientable, 4–generated MCM
R–modules of rank 2.

(3) Every indecomposable, graded, non–orientable, 4–generated MCM mod-
ule over R of rank 2 is isomorphic with one module of N .

(4) The modules of N are pairwise isomorphic. In particular, there exist
216 isomorphism classes of indecomposable, graded, non–orientable, 4–
generated MCM modules over R of rank 2.

Proof. (1) It is easy to check that

ϕtσ(a, b, u) · ψtσ(a, b, u) = f · Id4

and the following sequence is exact:

R(−6)4 ϕ1σ(a,b,u)−−−−−→ R(−5)2 ⊗R(−4)2 ψ1σ(a,b,u)−−−−−→ R(−3)4 A1−→ R(−2)2 ⊗R(−1)

−→ I1σ(a, b, u) −→ 0,
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where A1 is the 3 × 4−matrix formed by the first three rows of ϕ1σ(a, b, u).
Thus, (1) holds for t = 1, the other cases being similar.

(2) Clearly I1σ(a, b, u) ⊂ (v′σ2, wσ1) and so dimR/I1σ(a, b, u) = 2. As xs is
zero–divisor in R/I1σ(a, b, u) we see that depthR/I1σ(a, b, u) = 1 and, by
Proposition 12, Ω2

R(I) is non–orientable, 4–generated of rank 2. Note that
the module Coker

(
ϕ1σ(a, b, u)

)
, as in the last part of the proof of Theorem

8, is indecomposable because there exist no two matrices A,B of order two
such that(

0 xs
xsv

′
σ2 0

)
=

(
wσ1 −wσ2

vσ2 vσ1

)
A+B

(
wσ1 −v′′σ2

−wσ2v
′
σ2 −vσ1

)
.

Similarly, the cases t > 1 follows.

(3) Now let M be an indecomposable, graded, non–orientable, 4–generated
MCM R–module of rank 2. By Proposition 12, there exists a graded ideal
I ⊂ R with dimR/I = 2, depthR/I = 1, which is 3–generated and such that
M ' Ω2

R(I). Then I = J/(f) with J ⊂ S = K[x1, x2, x3, x4] is a 3–generated
ideal containing f . We have still f ∈ mJ , though we are not in the orientable
case (see [EP1] for details). Let α1, α2, α3 be a minimal system of homoge-
neous generators of J . If f does not belong to the ideal generated by two
αt, then, as in Section 3, f =

∑3
t=1 ptqt and, after a renumbering, we may

suppose that αt is necessarily either pt or qt, for all 1 ≤ t ≤ 3. Then α1, α2, α3

is a regular system of elements in S and so R/I = S/J is Cohen–Macaulay
which is false.

Thus, we may suppose f ∈ (α1, α2). Then there exist a, b ∈ K with a3 = b3 =
−1, and σ = (i j s) a permutation of the set σ = {2, 3, 4}, i < j, such that
αt is necessarily either wσt or vσt, for t = 1, 2. If α1 = wσ1, α2 = wσ2, then
R/(α1, α2) is a domain and α1, α2, α3 must be a regular system of elements
in S and so, again, R/I = S/J is Cohen–Macaulay, contradiction!

We have the following cases:

Case I: α1 = wσ1

Then α2 must be vσ2 and we have

(α1, α2) = (v′σ2, wσ1) ∩ (v′′σ2, wσ1).

It follows that a zero–divisor of R/(α1, α2) must be either in (v′σ2, wσ1) or
in (v′′σ2, wσ1). As we know, α3 is a zero–divisor in R/(α1, α2) and so α3 ∈
(v′σ2, wσ1) or α3 ∈ (v′′σ2, wσ1).
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I(a) Suppose
α3 ∈ (v′σ2, wσ1).

Subtracting from α3 a multiple of wσ1, we may take α3 = v′σ2β for a form β
of S. Note that the matrices

ϕ =


0 wσ1 −v′′σ2 0

−wσ1 0 −β wσ2

vσ2 βv′σ2 0 vσ1

0 −wσ2v
′
σ2 −vσ1 0

 ,

ψ =


0 −vσ1 wσ2 β
vσ1 0 0 −v′′σ2

−wσ2v
′
σ2 0 0 −wσ1

−βv′σ2 vσ2 wσ1 0


give the following exact sequence:

−→ R4 ϕ−→ R4 ψ−→ R4 B1−→ R3 −→ I −→ 0,

where B1 is given by the first three rows of ϕ. Thus. (ϕ, ψ) is a matrix
factorization of Ω2

R(I) ' M . Adding in ϕ multiples of the first row to the
second one and adding multiples of the fourth column to the third one,
we may suppose that the entry (2, 3) of ϕ depends only on x1, xs. These
transformations modify also the entries (2, 2) and (3, 3), which are now not
zero. Adding similar multiples of the first column to the second one and of
the fourth row to the third one, we obtain ϕ of the same type as before but
with β depending only on x1, xs. Since vσ1 −wσ1(x1 + 2axs) = 3ax2

s, adding
in ϕ multiples of the first column to the third one and multiples of the fourth
row to the second row, we may suppose that the entry (2, 3) has the form
λxs for some λ ∈ K. These transformations modify also the entries (3, 3)
and (2, 2), which are now not zero. Adding similar multiples of the first row
to the third one and of the fourth column to the second column, we obtain ϕ
of the same type as before but with β = λxs. If λ = 0, then, clearly, ϕ is the
direct sum of two 2–matrices which contradicts that M is indecomposable.
So. λ 6= 0. Now we divide the second and the third column of ϕ by λ and
multiply the first and the fourth row by λ. The new ϕ is as before but with
λ = 1, that is ϕ = ϕ1σ(a, b, u).

I(b) Suppose
α3 ∈ (v′′σ2, wσ1).

20



Then we may take α3 = v′′σ2β, for a form β. With a similar proof as above,
we obtain M ' Coker

(
ψ3σ(a, b, u)

)
.

Case II: α2 = wσ2.

Then α1 = vσ1. It follows that (α1, α2) = (v′σ1, wσ2) ∩ (v′′σ1, wσ2). We have
the following two subcases:

II(a) α3 ∈ (v′σ1, wσ2). We may suppose α3 = v′σ1β, for a form β and we
obtain that M ' Coker

(
ψ4σ(a, b, u)

)
.

II(b) α3 ∈ (v′′σ1, wσ2). In this subcase we may take α3 = v′′σ1β, for a form β
and we obtain that M ' Coker

(
ϕ2σ(a, b, u)

)
.

Case III: α1 = vσ1, α2 = vσ2.

Then (α1, α2) = (v′σ1, v
′
σ2)∩(v′σ1, v

′′
σ2)∩(v′′σ1, v

′
σ2)∩(v′′σ1, v

′′
σ2). We proceed as in

the above cases, taking α3 from one prime ideal of the above decomposition
of

(
α1, α2)

)
, let us say α3 ∈ (v′σ1, v

′
σ2), that is α3 = v′σ1β + v′σ2γ for some

β, γ ∈ S. Suppose that one cannot reduce the problem to the case β = 0 or
γ = 0, this implies, for example, that v′σ1 does not divide γ and v′σ2 does not
divide β. Then Ω1

S

(
(α1, α2, α3)

)
⊂ S3 contains the columns of the following

matrix  vσ2 α3 0 v′′σ2β
−vσ1 0 α3 v′′σ1γ

0 −vσ1 −vσ2 −v′′σ1v
′′
σ2


and we can see that µ(Ω1

S

(
(α1, α2, α3)

)
≥ 4, which contradicts Lemma 11.

Thus we may suppose, let us say α3 = v′σ1β, where β is not a multiple
of v′′σ1. Now we may proceed as in the above cases and we obtain, in order,
M ' Coker

(
ϕ4σ(a, b, u)

)
, M ' Coker

(
ϕ3σ(a, b, u)

)
, M ' Coker

(
ψ1σ(a, b, u)

)
,

and M ' Coker
(
ψ2σ(a, b, u)

)
.

(4) The matrices

ϕtσ(a, b, u), ψtσ(a, b, u), 1 ≤ t ≤ 4, σ, a, b, u,

are equivalent in pairs. Namely:

ϕ1σ(a, b, u) ∼ ψ3σ(a, b, u
2), ϕ2σ(a, b, u) ∼ ψ4σ(a, b, u

2),

ϕ3σ(a, b, u) ∼ ψ1σ(a, b, u
2), ϕ4σ(a, b, u) ∼ ψ2σ(a, b, u

2).

We shall prove that the matrices of the set

N ′ =
{
ϕtσ(a, b, u), | 1 ≤ t ≤ 4, σ, a, b, u

}
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are pairwise non–equivalent. We shall consider the matrices which are ob-
tained from the matrices of N ′, reducing their entries modulo m2. If A,B ∈
N ′ are equivalent, then there exist P,Q, two invertible 4 × 4–matrices with
the entries in K[x1, x2, x3, x4] such that PA = BQ. Let Ã and B̃ be the ma-
trices obtained from A, respectively B, by reducing modulo m2 their entries.
From the equality PA = BQ, we obtain that there exist two invertible scalar
matrices P̃ , Q̃ ∈M4(K) such that P̃ Ã = B̃Q̃. This means that the matrices

Ã, B̃ are also equivalent by some scalar invertible matrices. We construct
the “reduced” matrices ϕ̃tσ(a, b, u) and for all t. We see that the matrices
ϕ̃1σ(a, b, u), ϕ̃2σ(a, b, u), have the entries of the rows 2 and 4 zero and the rest
of the matrices have the entries of the columns 1 and 3 zero. First, we choose
two matrices Ã, B̃, one of them with the rows 2 and 4 zero and the other
with the columns 1 and 3 zero. Suppose that Ã ∼ B̃. It results that there
are two invertible scalar 4× 4–matrices U, V such that

Ã U = V B̃.

From this equality we obtain that the rows 2 and 4 in the matrix V B̃ are
zero. Looking at the two possibilities to choose the matrix B̃, we see that
the non–zero elements of the columns 2 and 4 in B̃ are linear independent.
From the above equality we get that V is not invertible.

Hence, we could find two equivalent matrices in the set N ′ only if both have
the rows 2 and 4 zero or the columns 1 and 3 zero. It is clear that we may
reduce the study of the equivalent matrices Ã = ϕ̃1σ(a, b, u), B̃ = ϕ̃2σ(a, b, u),
which have the rows 2 and 4 zero. Let U, V ∈M4×4(K) be invertible matrices

such that Ã U = V B̃. We may transform the reduced matrices Ã, B̃ such
that the last two rows are zero. Let

Ã =

(
A1 A2

0 0

)
, B̃ =

(
B1 B2

0 0

)
, U =

(
U1 U2

U3 U4

)
, V =

(
V1 V2

V3 V4

)
,

be the decomposition of our matrices in 2 × 2 blocks. Comparing the ele-
ments in the above equality, we obtain contradiction with the fact that U is
invertible.

In the same way we check that if ϕ̃1σ(a, b, u) and ϕ̃1τ (n, p, v) are different,
then they are not equivalent.

Let M(σ, a, b), M ′(τ, n, p) be two rank one MCM-modules corresponding to
lines and N(σ, a, b), N ′(τ, n, p) be two rank one MCM-modules corresponding
to conics (that is Coker

(
ϕσ(a, b)

)
, Coker

(
ψσ(a, b)

)
by [EP]).
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Remark 14. There exists an indecomposable extension in Ext1
R(M(σ, a, b),

M ′(τ, n, p)) only if σ = τ . In this case, for fixed M(σ, a, b) there exists 4
non–orientable MCM–modules, which are extensions E of the form

0 →M ′
i → E →M(σ, a, b) → 0 .

for some M ′
i , i = 1, 2 of type M ′(σ, n, p). So we have 4 × 27 non–orientable

MCM–modules. Similarly, taking now extensions F of the form

0 → Ni → F → N(σ, a, b) → 0, i = 1, 2

we obtain another 4× 27 non–orientable MCM–modules. Thus all are 216 =
8× 27.

5 Non–orientable, rank 2, 5–generated MCM

modules

As in Section 3, let u, a, b ∈ K, with

a3 = b3 = −1, u2 + u+ 1 = 0,

σ = (i j s) be a permutation of the set {2, 3, 4} with i < j and set

wσ1 = x1 − axs, wσ2 = xi − bxj,
vσ1 = x2

1 + ax1xs + a2x2
s, vσ2 = x2

i + bxixj + b2x2
j .

We have
vσ1 = v′σ1v

′′
σ1, vσ2 = v′σ2v

′′
σ2

for
v′σ1 = x1 − uaxs, v′′σ1 = x1 + (1 + u)axs,
v′σ2 = xi − ubxj, v′′σ2 = xi + (1 + u)bxj.

Consider the following ideals:
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Set

J1σ(a, b, u) = (vσ1, vσ2, v
′
σ1v

′
σ2, v

′′
σ1v

′′
σ2),

J2σ(a, b, u) = (vσ1, vσ2, v
′
σ1v

′
σ2, v

′′
σ1v

′
σ2),

J3σ(a, b, u) = (vσ1, vσ2, v
′
σ1v

′
σ2, v

′′
σ1(v

′
σ2 + v′′σ2)),

J4σ(a, b, u) = (vσ1, vσ2, v
′
σ1v

′′
σ2, v

′′
σ1v

′
σ2),

J5σ(a, b, u) = (vσ1, vσ2, v
′
σ1v

′′
σ2, v

′′
σ1v

′′
σ2),

J6σ(a, b, u) = (vσ1, vσ2, v
′
σ1v

′′
σ2, v

′′
σ1(v

′
σ2 + v′′σ2)),

J7σ(a, b, u) = (wσ1v
′
σ1, vσ2, v

′
σ1v

′
σ2, wσ1v

′′
σ2),

J8σ(a, b, u) = (wσ1v
′
σ1, vσ2, v

′
σ1v

′
σ2, wσ1v

′
σ2),

J9σ(a, b, u) = (wσ1v
′
σ1, vσ2, v

′
σ1v

′
σ2, wσ1(v

′
σ2 + v′′σ2)),

J10σ(a, b, u) = (wσ1v
′
σ1, vσ2, v

′
σ1v

′′
σ2, wσ1v

′
σ2),

J11σ(a, b, u) = (wσ1v
′
σ1, vσ2, v

′
σ1v

′′
σ2, wσ1v

′′
σ2),

J12σ(a, b, u) = (wσ1v
′
σ1, vσ2, v

′
σ1v

′′
σ2, wσ1(v

′
σ2 + v′′σ2)),

and denote by J the set of these ideals.

Set:

ρ1σ(a, b, u) =


0 wσ1 −v′σ2 −v′′σ2 0
v′σ1 wσ2 0 0 −v′′σ2v

′′
σ1

−v′′σ2 0 v′′σ1 0 0
0 0 0 v′σ1 vσ2

0 0 0 −wσ2 wσ1v
′′
σ1

 ,

ω1σ(a, b, u) =


−wσ2v

′′
σ1 wσ1v

′′
σ1 −wσ2v

′
σ2 0 v′′σ2v

′′
σ1

vσ1 vσ2 v′σ1v
′
σ2 v′′σ2v

′′
σ1 0

−wσ2v
′′
σ2 wσ1v

′′
σ2 wσ1v

′
σ1 0 (v′′σ2)

2

0 0 0 wσ1v
′′
σ1 −vσ2

0 0 0 wσ2 v′σ1

 ,

ρ2σ(a, b, u) =


0 wσ1 −v′σ2 0 0
v′σ1 wσ2 0 0 −v′′σ1v

′
σ2

−v′′σ2 0 v′′σ1 −v′′σ1 0
0 0 0 v′σ1 vσ2

0 0 0 −wσ2 wσ1v
′′
σ1

 ,
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ω2σ(a, b, u) =


−wσ2v

′′
σ1 wσ1v

′′
σ1 −wσ2v

′
σ2 0 v′′σ1v

′
σ2

vσ1 vσ2 v′σ1v
′
σ2 v′σ2v

′′
σ1 0

−wσ2v
′′
σ2 wσ1v

′′
σ2 wσ1v

′
σ1 v′′σ1wσ1 0

0 0 0 wσ1v
′′
σ1 −vσ2

0 0 0 wσ2 v′σ1

 ,

ρ3σ(a, b, u) =


0 wσ1 −v′σ2 −v′′σ2 0
v′σ1 wσ2 0 0 −v′′σ1(v

′
σ2 + v′′σ2)

−v′′σ2 0 v′′σ1 −v′′σ1 0
0 0 0 v′σ1 vσ2

0 0 0 −wσ2 wσ1v
′′
σ1

 ,

ω3σ(a, b, u) =


−wσ2v

′′
σ1 wσ1v

′′
σ1 −wσ2v

′
σ2 0 v′′σ1(v

′
σ2 + v′′σ2)

vσ1 vσ2 v′σ1v
′
σ2 v′′σ1(v

′
σ2 + v′′σ2) 0

−wσ2v
′′
σ2 wσ1v

′′
σ2 wσ1v

′
σ1 v′′σ1wσ1 (v′′σ2)

2

0 0 0 wσ1v
′′
σ1 −vσ2

0 0 0 wσ2 v′σ1

 .

Replacing v′σ2 by v′′σ2 and conversely, we get other three pairs of matrices,
ρiσ(a, b, u), ωiσ(a, b, u), i = 4, 5, 6. Next, replacing wσ1 by v′′σ1 and conversely,
we get other three pairs of matrices, ρiσ(a, b, u), ωiσ(a, b, u), i = 7, 8, 9, and,
finally, performing the both changes, we get the pairs of matrices
ρiσ(a, b, u), ωiσ(a, b, u), i = 10, 11, 12.

Now let us consider the following ideals:
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T1σ(a, b, u) = (wσ2v
′′
σ1, vσ1, wσ2v

′
σ2, xsv

′′
σ1),

T2σ(a, b, u) = (wσ2v
′′
σ1, vσ1, wσ2v

′
σ2, xjv

′′
σ1),

T3σ(a, b, u) = (wσ2v
′′
σ1, vσ1, wσ2v

′
σ2, (xj + xs)v

′′
σ1),

T4σ(a, b, u) = (wσ2v
′′
σ1, vσ1, wσ2v

′′
σ2, xsv

′′
σ1),

T5σ(a, b, u) = (wσ2v
′′
σ1, vσ1, wσ2v

′′
σ2, xjv

′′
σ1),

T6σ(a, b, u) = (wσ2v
′′
σ1, vσ1, wσ2v

′′
σ2, (xj + xs)v

′′
σ1),

T7σ(a, b, u) = (wσ2wσ1, wσ1v
′
σ1, wσ2v

′
σ2, xswσ1),

T8σ(a, b, u) = (wσ2wσ1, wσ1v
′
σ1, wσ2v

′
σ2, xjwσ1),

T9σ(a, b, u) = (wσ2wσ1, wσ1v
′
σ1, wσ2v

′
σ2, (xj + xs)wσ1),

T10σ(a, b, u) = (wσ2wσ1, wσ1v
′
σ1, wσ2v

′′
σ2, xswσ1),

T11σ(a, b, u) = (wσ2wσ1, wσ1v
′
σ1, wσ2v

′′
σ2, xjwσ1),

T12σ(a, b, u) = (wσ2wσ1, wσ1v
′
σ1, wσ2v

′′
σ2, (xj + xs)wσ1),

We denote by T the set of these ideals and set:

µ1σ(a, b, u) =


0 −v′σ1 v′σ2 0 −xs
wσ1 wσ2 0 xs 0
−v′′σ2 0 v′′σ1 0 0

0 0 0 v′σ1 −wσ2

0 0 0 vσ2 wσ1v
′′
σ1

 ,

ν1σ(a, b, u) =


wσ2v

′′
σ1 vσ1 wσ2v

′
σ2 −xsv′′σ1 0

−v′′σ1wσ1 vσ2 −v′σ2wσ1 0 −xs
wσ2v

′′
σ2 v′σ1v

′′
σ2 −wσ1v

′
σ1 −xsv′′σ2 0

0 0 0 wσ1v
′′
σ1 wσ2

0 0 0 −vσ2 v′σ1

 ,

µ2σ(a, b, u) =


0 −v′σ1 v′σ2 0 −xj
wσ1 wσ2 0 xj 0
−v′′σ2 0 v′′σ1 0 0

0 0 0 v′σ1 −wσ2

0 0 0 vσ2 wσ1v
′′
σ1

 ,
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ν2σ(a, b, u) =


wσ2v

′′
σ1 vσ1 wσ2v

′
σ2 −xjv′′σ1 0

−v′′σ1wσ1 vσ2 −v′σ2wσ1 0 −xj
wσ2v

′′
σ2 v′σ1v

′′
σ2 −wσ1v

′
σ1 −xjv′′σ2 0

0 0 0 wσ1v
′′
σ1 wσ2

0 0 0 −vσ2 v′σ1

 ,

µ3σ(a, b, u) =


0 −v′σ1 v′σ2 0 −(xj + xs)
wσ1 wσ2 0 xj + xs 0
−v′′σ2 0 v′′σ1 0 0

0 0 0 v′σ1 −wσ2

0 0 0 vσ2 wσ1v
′′
σ1

 ,

ν3σ(a, b, u) =


wσ2v

′′
σ1 vσ1 wσ2v

′
σ2 −(xj + xs)v

′′
σ1 0

−v′′σ1wσ1 vσ2 −v′σ2wσ1 0 −(xj + xs)
wσ2v

′′
σ2 v′σ1v

′′
σ2 −wσ1v

′
σ1 −(xj + xs)v

′′
σ2 0

0 0 0 wσ1v
′′
σ1 wσ2

0 0 0 −vσ2 v′σ1

 ,

Replacing v′′σ2 by v′σ2 and conversely, we get other three pairs of matrices,
µiσ(a, b, u), νiσ(a, b, u), i = 4, 5, 6. Next, replacing wσ1 by v′′σ1 and conversely,
we get other three pairs of matrices, µiσ(a, b, u), νiσ(a, b, u), i = 7, 8, 9, and,
finally, performing the both changes, we get the pairs of matrices
µiσ(a, b, u), νiσ(a, b, u), i = 10, 11, 12.

Clearly, the pair of matrices (ρiσ(a, b, u), ωıσ(a, b, u)) forms a matrix factoriza-
tion of Ω2

R(Jiσ(a, b, u)/(f)) for 1 ≤ i ≤ 12, and the pair (µiσ(a, b, u), νiσ(a, b, u))
forms a matrix factorization of Ω2

R(Tiσ(a, b, u)/(f)) for 1 ≤ i ≤ 12.

Lemma 15. Let M be a graded non–orientable, rank 2, 5–generated MCM
R–module, without free direct summands. Then there exists an ideal J ∈
J ∪ T such that f ∈ J and M ∼= Ω2

(
J/(f)

)
or M∗ ∼= Ω2

(
J/(f)

)
, where M∗

is the dual of M . Conversely, for every J ∈ J ∪T , the module Ω2
(
J/(f)

)
is

a non–orientable, rank two, 5–generated MCM R–module without free direct
summands.

Proof. The second statement follows easily, as we already have the matrix
factorizations above of those ideals. Let M be as above. As in the beginning
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of Section 4 we see that M ∼= Ω2
(
J/(f)

)
, for J an ideal of S containing f ,

with µ(J) = 4, dim S/J = 2, depth S/J=1 and µ
(
Ω1
S(J)

)
= 5. We may also

suppose J = (α1, α2, α3, α4) with f ∈ (α1, α2), where αt is necessarily either
wσt or vσt for t = 1, 2 for some a, b and a certain permutation σ as above.
Clearly we cannot have, simultaneously, αt = wσt because then (α1, α2) is a
prime ideal and one cannot find α3, α4 zero divisors, as we need. We treat
the following cases:

Case I: α1 = wσ1

Then we have α2 = vσ2 and (α1, α2) is the intersection of the prime ideals
(v′σ2, wσ1), (v′′σ2, wσ1). Since α3, α4 must be zero divisors in S/(α3, α4) we have
the following possibilities:

(I1) α3 = v′σ2β, α4 = v′σ2γ, (I2) α3 = v′′σ2β,α4 = v′′σ2γ,
(I3) α3 = v′σ2β, α4 = v′′σ2γ, (I4) α3 = v′′σ2β, α4 = v′σ2γ,

for some homogeneous β, γ from m = (x1, x2, x3, x4). In the first case we see
that the relations given by the columns of the following matrix:

vσ2 α3 α4 0 0
−wσ1 0 0 γ β

0 −wσ1 0 0 −v′′σ2

0 0 −wσ1 −v′′σ2 0

 ,

are elements in Ω1
S(J) ⊂ S4. Clearly these columns are part of the minimal

system of generators of Ω1
S(J) because wσ1, v

′′
σ2 form a regular system in S.

The subcase (I2) is similar, this contradicts Lemma 11.

Suppose now (I3) holds. Then the relations given by the columns of the
following matrix 

vσ2 v′σ2β v′′σ2β 0 0
−wσ1 0 0 β γ

0 −wσ1 0 −v′′σ2 0
0 0 −wσ1 0 −v′σ2

 ,

are part of a minimal set of generators of Ω1
S(J) (note that wσ1, v

′′
σ2, v

′
σ2 form

a regular system in S). Contradiction! Case (I4) is similar.

Case II: α1 = vσ1, α2 = vσ2

Since (α1, α2) = (v′σ1, v
′
σ2)∩ (v′σ1, v

′′
σ2)∩ (v′′σ1, v

′′
σ2)∩ (v′′σ1, v

′
σ2), we see that the

zero divisors of S/(α1, α2) must be in one of the prime ideals of the above
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decomposition. Suppose α3 ∈ (v′σ1, v
′
σ2). If α3 = β1v

′
σ1 + β2v

′
σ2 then, as in

the proof of Case III of Proposition 13, we see that there are at least four
minimal relations between first three α. Then all α have at least five minimal
relations. Contradiction! Thus, α3 as well α4 are multiples of one v′σt, v

′′
σt. So

we have the following possibilities:

(II1) α3 = v′σ1β, α4 = v′σ1γ, (II2) α3 = v′′σ1β, α4 = v′′σ1γ,
(II3) α3 = v′σ2β, α4 = v′σ2γ, (II4) α3 = v′′σ2β, α4 = v′′σ2γ,
(II5) α3 = v′σ1β, α4 = v′′σ1γ, (II6) α3 = v′σ1β, α4 = v′′σ2γ,
(II7) α3 = v′σ2β, α4 = v′′σ1γ, (II8) α3 = v′σ2β, α4 = v′′σ2γ,
(II9) α3 = v′σ1β, α4 = v′σ2γ, (II10) α3 = v′′σ1β, α4 = v′′σ2γ.

Subcase: α3 = v′σ1β, α4 = v′σ1γ, (vσ2v
′′
σ1, γ)

∼= 1, (vσ2v
′′
σ1, β) ∼= 1

We see that the relations given by the columns of the following matrix
vσ2 β γ 0 0
−vσ1 0 0 α3 α4

0 −v′′σ1 0 −vσ2 0
0 0 −v′′σ1 0 −vσ2

 ,

are part of a minimal system of generators of Ω1
S(J), which must be false.

Indeed, it is easy to see that the last four columns are part of a minimal
system of generators of Ω1

S(J). If the first column belongs to the module
generated by the last four, then there exist λ1, λ2, λ3, λ4 ∈ S such that:

vσ2 = λ1β + λ2γ,
−vσ1 = λ3v

′
σ1β + λ4v

′′
σ1γ,

0 = λ1v
′′
σ1 + λ3vσ2,

0 = λ2v
′′
σ1 + λ4vσ2.

It follows that vσ2 | λ1 and vσ2 | λ2 and so we obtain 1 ∈ (β, γ). Contradic-
tion! If (vσ2v

′′
σ1, β) 6∼= 1, then we are in the subcase (II5), (II6), . . . . In the

same way we treat (II2), (II3), (II4).

Subcase: α3 = v′σ1β, α4 = v′′σ1γ

We see that the relations given by the columns of the following matrix
vσ2 β γ 0 0
−vσ1 0 0 α3 α4

0 −v′′σ1 0 −vσ2 0
0 0 −v′σ1 0 −vσ2

 ,
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are elements in Ω1
S(J). The columns two and three, together with the last

two columns divided by (β, vσ2), respectively (γ, vσ2), are part of a minimal
system of generators. Since µ

(
Ω1
S(J)

)
= 4, we see that the first column is a

linear combination of the others, as above. Thus, there exist λ1, λ2, λ3, λ4 ∈ S
such that:

vσ2 = λ1β + λ2γ,
−vσ1 = λ3v

′
σ1β/(β, vσ2) + λ4v

′′
σ1γ/(γ, vσ2),

0 = λ1v
′′
σ1 + λ3vσ2/(β, vσ2),

0 = λ2v
′
σ1 + λ4vσ2/(γ, vσ2).

It follows that vσ2/(β, vσ2)|λ1 and vσ2/(γ, vσ2)|λ2 and so we obtain 1 ∈ (β, γ),
which is false, as above, if (β, vσ2) ∼= 1, (γ, vσ2) ∼= 1. Clearly β, γ cannot be
multiples of vσ2 because otherwise J is only 3–generated. The analysis of the
possibilities (β, vσ2) = v′σ2 and (β, vσ2) = v′′σ2 will lead to the conclusion that
J ∈ J . In this way one can discuss all the above cases.

Theorem 16. Let

E1 = {Coker
(
ρiσ(a, b, u)

)
, Coker

(
µiσ(a, b, u)

)
) | σ, a, b, u, i = 1, 6},

E2 be the set of the duals of the modules from the set E1, and E = E1 ∪ E2.

(1) The set E contains only indecomposable, graded, non–orientable, 5–
generated MCM R–modules of rank 2.

(2) Every indecomposable, graded, non–orientable, 5–generated MCM mod-
ule over R of rank 2 is isomorphic with one module of E.

(3) There are 648 isomorphism classes of indecomposable, graded, non–
orientable MCM modules over R of rank 2, with five generators.

Proof. (1) For the proof of indecomposability we may proceed as in the
last part of the proof of Theorem 8. For example, let N be the mod-
ule Coker

(
ρ1σ(a, b, u)

)
and suppose that it decomposes. Then ρ1σ(a, b, u)

is equivalent with a direct sum of two matrices: A1, of order three and A2,
of order two. Let B1, B2 be the submatrices of ρ1σ(a, b, u) given by the first
three lines and columns, respectively the last two lines and columns. Cer-
tainly A1, A2, B1, B2 define some maximal Cohen-Macaulay modules of rank
one that we denote, respectively, by N1, N2, T1, T2, and due to the particular
form of ρ1σ(a, b, u) we have the following exact sequence
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0 → T1 → N1 ⊕N2 = N → T2 → 0.

Since ρ1σ(a, b, u) is modulo xj the sum of B1, B2, Ti/xjTi ∼= Ni/xjNi for
i = 1, 2. Looking at the description of rank one maximal Cohen-Macaulay
modules we can see that Ai is equivalent with Bi modulo xj only when Ai is
equivalent with Bi. Thus Ti ∼= Ni for i = 1, 2 and so N ∼= T1 ⊕ T2. By [Mi],
this happens only if the above exact sequence splits, that is impossible.
(2) It is enough to observe that the matrices

ρiσ(a, b, u), a, b, u, σ, i = 1, 12

and
µiσ(a, b, u), a, b, u, σ, i = 1, 12,

are pairwise equivalent. Indeed, one may show that

ρ7σ(a, b, u) ∼ ρ4σ(a, b, u), ρ8σ(a, b, u) ∼ ρ5σ(a, b, u), ρ9σ(a, b, u) ∼ ρ6σ(a, b, u),

and

ρ10σ(a, b, u) ∼ ρ1σ(a, b, u), ρ11σ(a, b, u) ∼ ρ2σ(a, b, u), ρ12σ(a, b, u) ∼ ρ3σ(a, b, u).

One may find, in each case, a pair of some permutations matrices Ui, Vi such
that

Uiρiσ(a, b, u) = ρ(i−3)σ(au, b, u)Vi, i = 7, 8, 9,

and
Uiρiσ(a, b, u) = ρ(i−9)σ(au, b, u)Vi, i = 10, 11, 12.

In a similar way one may group in pairs the matrices µiσ(a, b, u).
(3) It is a laborious task to prove the that the modules of the list E are pair-
wise non–isomorphic. One can use the following procedure in SINGULAR:

LIB"matrix.lib";

option(redSB);

proc isomorph5(matrix X, matrix Y)

{

matrix U[5][5]=u(1..25);

matrix V[5][5]=v(1..25);

matrix C=U*X-Y*V;
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ideal I=flatten(C);

ideal J=det(U)-1,det(V)-1;

for (int j=1;j<=size(I);j++)

{

J=J+transpose(coef(I[j],x(1)*x(2)*x(3)*x(4)))[2];

}

ideal K=std(J);

return(K);

}

Corollary 17. Let

F1 = {Coker
(
ωiσ(a, b, u)

)
, Coker

(
νiσ(a, b, u)

)
| σ, a, b, u, i = 1, 6},

F2 be the set of the duals of the modules from the set F1, and F = F1 ∪ F2.

(1) The set F contains only indecomposable, graded, non–orientable, 5–
generated MCM R–modules of rank 3.

(2) Every indecomposable, graded, non–orientable, 5–generated MCM mod-
ule over R of rank 3 is isomorphic with one module of F .

(3) There are 648 isomorphism classes of indecomposable, graded, non–
orientable MCM modules over R of rank 3, with 5 generators.

Proof. The map M 7→ Ω1
R(M) is a bijection between the 5–generated, in-

decomposable, graded, MCM R–modules of rank 2 and the 5–generated,
indecomposable, graded, MCM R–modules of rank 3.

Remark 18. For each 2-gen MCM module M (line or conic) there exist two
non-isomorphic 3-gen MCM modules P1, P2 and 3 non-isomorphic extensions
for each:

0 → Pi → Eij →M → 0,

i = 1, 2, j = 1, 2, 3. So there are 6× 54 MCM of type Eij. Taking the duals
we get another 6× 54 MCM. Thus all are 648 = 12× 54.

Lemma 19. There exist no graded, indecomposable, non–orientable, rank 2,
6–generated MCM modules.
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Proof. Suppose there exist such MCM module M . Then M ∼= Ω2
R

(
J/(f)

)
for

a certain 5–generated ideal J = (α1, α2, α3, α4, α5) of S as hinted at in the
first part of Section 4. Then any four elements from the αt must generate an
ideal J ′′ in J ∪ T because, otherwise, µ(Ω1

S

(
J ′′/(f)

)
> 4 and so, obviously

µ(Ω1
S(J/(f)) > 5. So we may suppose αt = vσt for t = 1, 2 and after some

permutations α3 = v′σ1v
′′
σ2. Set J ′ = (α1, α2, α3). If (J ′, α4) ∈ J . and

(J ′, α5) ∈ J then there are 4 minimal relations of (J ′, α4) and 4 minimal
relations of (J ′, α5) over S, among them at least 6 minimal relations of J
over S which contradicts Lemma 11. In the same way we treat the other
cases.

Corollary 20. There exist no indecomposable, graded, non–orientable, rank
4, 6–generated MCM modules.

6 Orientable, rank 2, 6–generated MCM mod-

ules

Let S = K[x1, x2, x3, x4], and R = S/(f), f = x3
1 + x3

2 + x3
3 + x3

4.

We have proved that a non–free graded orientable 6–generated MCM R–
module corresponds to a skew symmetric homogeneous matrix over S of
order 6, whose determinant is f 2.

Let Λ be such a matrix. Notice that Λ has linear entries and the matrix
Λ := Λ|x4=0, obtained from Λ by restricting the entries to x4 = 0, is a
homogeneous matrix over S3 = K[x1, x2, x3], whose determinant is f 2

3 , where
f3 = x3

1 + x3
2 + x3

3. Therefore, CokerΛ defines a graded rank 2, 6–generated
MCM over R3 = S3/(f3). These modules were explicitly described in [LPP].

Lemma 21. Let M be a non–free graded orientable 6–generated MCM mod-
ule over R. Then the restriction of M to the curve defined by f = x4 = 0
splits into a direct sum of a 3–generated MCM of rank 1 and its dual.
Especially, there exists λ ∈ V (f3) r {P0} and a skew symmetric matrix
Γ ∈ M6×6(K), such that M is the cokernel of a map given by the matrix

Λ = x4 · Γ +
(

0 −αt
λ

αλ 0

)
.

(The same notations as in [LPP] and in Preliminaries.)
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Proof. Let Λ1 be a skew symmetric homogeneous matrix over S, correspond-
ing to M , and denote Λ1 = Λ1|x4=0. Suppose that the MCM S3–module cor-
responding to Λ1 is indecomposable. Then we can generate it as described in
Theorem 4.2 and Lemma 5.4 from [LPP]. Denote with D the matrix which
we obtain by this means.

Since D ∼ Λ1, and Λ1 is skew symmetric, there exist two invertible matrices
U, V ∈ M6×6(K) such that U · D · V + (U · D · V )t = 0. Therefore, there
exists T ∈M6×6(K) an invertible matrix such that T ·D+(TD)t = 0. (Take
T = (V t)−1 · U .)

With the help of Singular, we find that, in fact, there is no invertible matrix
T such that T ·D is skew symmetric. Therefore, the module corresponding
to Λ1 should decompose.

//First, we generate the matrix D

LIB"matrix.lib";

option(redSB);

proc reflexivHull(matrix M)

{

module N=mres(transpose(M),3)[3];

N=prune(transpose(N));

return(matrix(N));

}

proc tensorCM(matrix Phi, matrix Psi)

{

int s=nrows(Phi);

int q=nrows(Psi);

matrix A=tensor(unitmat(s),Psi);

matrix B=tensor(Phi,unitmat(q));

matrix R=concat(A,B,U);

return(reflexivHull(R));

}

proc M2(ideal I)

{

matrix A=syz(transpose(mres(I,3)[3]));
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return(transpose(A));

}

ring R=0,(x(1..3)),(c,dp);

qring S=std(x(1)^3+x(2)^3+x(3)^3);

ideal I=maxideal(1);

matrix C=M2(I);

ring R1=(0,a),(x(1..3),e,b),lp;

ideal I=x(1)^3+x(2)^3+x(3)^3,(a-1)^3+b3+1,e*b+a2-3*a+3,e*a-b2;

qring S1=std(I);

matrix B[3][3]= 0, x(1)-(a-1)*x(3), x(2)-b*x(3),

x(1)+x(3), -x(2)-x(3)*b, -x(3)*e,

x(2), x(3)*e, -x (1)+(-a+2)*x(3);

matrix C=imap(S,C); matrix D=tensorCM(C,B);

//We check the existence of the invertible matrix T

ring R2=0,(x(1..3),a,e,b,t(1..36)),dp;

ideal I=x(1)^3+x(2)^3+x(3)^3,(a-1)^3+b3+1,e*b+a2-3*a+3,e*a-b2;

qring S2=std(I);

matrix D=imap(S1,D);

matrix T[6][6]=t(1..36);

matrix A=T*D+transpose(T*D); ideal I=flatten(A);

ideal I1=transpose(coeffs(I,x(1)))[2];

ideal I2=transpose(coeffs(I,x(2)))[2];

ideal I3=transpose(coeffs(I,x(3)))[2];

ideal J=I1+I2+I3+ideal(det(T)-1);

ideal L=std(J);

L;

L[1]=1

//Therefore, there does not exist an invertible matrix T such

that T ·D skew symmetric.

So, after some linear transformations, Λ1 decomposes into two matrices of
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order three and rank 1 with determinant f3 = x3
1 +x3

2 +x3
3, which correspond

to two points λ1, λ2 in V (f3) r {P0}, P0 = [−1 : 0 : 1]. Let us denote them
by A and B. We can consider A = αλ1 , B = αλ2 .

Since Λ1 is skew symmetric, there exists an invertible matrix U ∈M6×6(K)

such that U ·( A 0
0 B ) is skew symmetric. Therefore, if we consider U =

(
U1 U2
U3 U4

)
,

we have the following equalities:
U1 · A+ (U1 · A)t = 0
U4 ·B + (U4 ·B)t = 0
U2 ·B + At · U t

3 = 0
U3 · A+ Bt · U t

2 = 0

So U1 · αλ1 and U4 · αλ2 are skew symmetric, so they have only zeros on the
main diagonal. Since the entries of the second and third line and column of
αλ1 and αλ2 are linearly independent, we easily obtain that U1 = U4 = 0.
Therefore, U2 and U3 are invertible matrices and B = −U−1

2 · At · U t
3.

We have obtained Λ1 ∼
(
αλ1

0

0 αt
λ1

)
∼

(
0 −αt

λ1
αλ1

0

)
.

Therefore, there exists Γ ∈M6×6(K) skew symmetric, and λ ∈ V (f3)r{P0}
such that Λ1 ∼ Λ = x4 · Γ +

(
0 −αt

λ
αλ 0

)
. We can write Γ =

(
Γ1 −Γt

2
Γ2 Γ3

)
,

Γi ∈M3×3(K), i = 1, 2, 3, Γ1 and Γ3 skew symmetric.

Remark 22 (Notation). For any λ = [a : b : c] ∈ V (f3) r {P0} there exists
a unique point in V (f3) r {P0} which we denote as λt, such that αtλ ∼ αλt .
We find λt = [c : b : a].2

For λ = [a : b : 1] we denote with Uλ and Vλ two invertible matrices such
that Uλ · αtλ = αλt · Vλ.

If a 6= 0, then we can take Uλ =

(
b2 b(a+1) −(a+1)2

−(a+1)2 b2 −b(a+1)

b(a+1) (a+1)2 b2

)
and Vλ = U t

λ.

If a = 0, then we can take Uλ =

(
−b2 −b 1
−2b 1 b2

2b2 2b 1

)
and Vλ =

(
1 −2b 2b2

−b −b2 −1
−b −b2 2

)
.

Notice that λt = λ for λ = [1 : b : 1] ∈ V (f3), and λ 6= λt for all other
λ ∈ V (f3) r {P0}.

2If λ corresponds to the 3–generated rank 1 MCM N , then λt corresponds to its dual
N∨.
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Remark 23.
For any λ = [1 : b : 0] ∈ V (f3) r {P0} and any Λ = x4 · Γ +

(
0 −αt

λ
αλ 0

)
skew

symmetric with det Λ = f 2, we have λt = [0 : b : 1] in V (f3) r {P0} and

Λ′ = x4Γ
′ +

(
0 −αt

λt

αλt 0

)
skew symmetric with det Λ′ = f 2 such that Λ ∼ Λ′.

Indeed, take Λ′ = U · Λ · U t where U =
(

0 T1
T2 0

)
, T1 = 1√

3

(
b b2 0
0 1 −b2
2 0 1

)
and

T2 = 1√
3

(
−1 b b

2 b2 b2

−2b2 1 −2

)
.

Therefore, Coker Λ and Coker Λ′ define two isomorphic MCM modules. This
is the reason why we may only consider the case λ = [a : b : 1] ∈ V (f3)r{P0},
from now on.

Remark 24. Consider λ = [a : b : 1] ∈ V (f3)r{P0} and Λ = x4 ·Γ+
(

0 −αt
λ

αλ 0

)
as in Lemma 21. Then there exists Λ = x4 · Γ +

(
αλ 0
0 αλt

)
with det Λ = f 2

such that Λ ∼ Λ.

Indeed, consider Λ =
(

0 Id
−Uλ 0

)
· Λ ·

(
Id 0
0 V −1

λ

)
.

We obtain Γ =
(

Γ2 Γ3·V −1
λ

−Uλ·Γ1 Uλ·Γt
2·V

−1
λ

)
.

Lemma 25. Consider Λ = x4 · Γ +
(

0 −αt
λ

αλ 0

)
as above. Then the MCM

module M corresponding to Λ is indecomposable if and only if Γ1 6= 0 or
Γ3 6= 0.

Proof. Suppose M is indecomposable. If Γ1 = Γ3 = 0, then ( 0 Id
Id 0 ) · Λ =(

x4·Γ2+αλ 0
0 −x4·Γt

2−αt
λ

)
, so Λ decomposes after some linear transformation.

This contradicts the indecomposability of M = Coker Λ, so we must have
Γ1 6= 0 or Γ3 6= 0.

Now, let us suppose Γ1 6= 0 or Γ3 6= 0 and prove that M is indecomposable.

Suppose M decomposes. Then there exists a matrix
(
T1 0
0 T2

)
equivalent to Λ

with T1, T2 two matrices of order three and rank 1, with detT1 = detT2 = f
and T1|x4=0 = αλ1 , T2|x4=0 = αλ2 , where λ1, λ2 ∈ V (f3) r {P0}.

Since Λ is skew symmetric, after some linear transformations,
(
αλ1

0

0 αλ2

)
should also become skew symmetric. As we saw in the proof of Lemma 21,
this gives αλ2 ∼ αtλ1

, so λ2 = λt1.
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Using Remark 23, there exist U, V ∈M6×6(K) invertible matrices such that

U · Λ · V =
(
T1 0
0 T2

)
= x4 ·

(
N1 0
0 N2

)
+

(
αλ1

0

0 α
λt
1

)
.

Therefore,
U ·

(
αλ 0
0 αλt

)
=

(
αλ1 0
0 αλt

1

)
·V −1 (1)

U ·
(

Γ2 Γ3 · V −1
λ

−Uλ · Γ1 Uλ · Γt2 · V −1
λ

)
=

(
N1 0
0 N2

)
·V −1 (2) .

Let us consider U =
(
U1 U2
U3 U4

)
and V −1 =

(
V1 V2
V3 V4

)
with Ui, Vi ∈ M3×3(K),

i = 1, . . . , 4.

The first system of equations gives:
U1 · αλ = αλ1 · V1

U2 · αλt = αλ1 · V2

U3 · αλ = αλt
1
· V3

U4 · αλt = αλt
1
· V4

By comparing the coefficients of x1, x2, x3 on the left–hand side and right–
hand side of the above equalities, we obtain easily:

Ui = Vi = Ki · Id3 with Ki ∈ K, i = 1, . . . , 4 .

Moreover, if λ 6= λ1, then K1 = K4 = 0 and if λ 6= λt1, then K2 = K3 = 0.
Since U is invertible, we have λ = λ1 or λ = λt1.

We know that αλ1 = T1|x4=0 where T1 is a matrix of order three over S =
K[x1, x2, x3, x4] of rank 1 and with determinant f . So Coker T1 is a graded
3–generated rank 1 MCM R–module. In [EP], all the isomorphism classes of
such modules are given explicitly. We obtain αλ1 ∼ α|x4=0 or αλ1 ∼ αt|x4=0

or αλ1 ∼ η|x4=0 or αλ1 ∼ ν|x4=0.

With the help of computers, we obtain that none of the above matrices is
equivalent to α[1:`:1], therefore, λ1 6= λt1.

LIB"matrix.lib";
option(redSB);

ring r=0,(x(1..3),l,a,b,c,d,e,v(1..9),u(1..9)),dp;
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ideal I=x(1)^3+x(2)^3+x(3)^3,
l^3+2,
a3+1,b3+1,c3+1,d3+1,e2+e+1,bcd-e*a;

qring s=std(I);

proc isomorf(matrix X,matrix Y)
{

matrix U[3][3]=u(1..9);
matrix V[3][3]=v(1..9);
matrix C=U*X-Y*V;
ideal I=flatten(C);
ideal I1=transpose(coeffs(I,x(1)))[2];
ideal I2=transpose(coeffs(I,x(2)))[2];
ideal I3=transpose(coeffs(I,x(3)))[2];
ideal J=I1+I2+I3+ideal(det(U)-1,det(V)-1);
ideal L=std(J);
return(L);

}

matrix A[3][3]=0, x(1)-x(3), x(2)-l*x(3),
x(1)+x(3), -x(2)-l*x(3), -1/2*l^2*x(3),

x(2), 1/2*l^2*x(3), -x(1);

//This is the matrix corresponding to the point (1:l:1)

//We now write the matrices corresponding to the rank 1 3-
generated MCM modules, restricted to x(4)=0

matrix alpha[3][3]=0, x(1), -x(3)*b+x(2),
-x(2)*c+x(1), -x(3)*b^2, x(3)*b^2*c^2,

x(3), x(3)*b*c^2+x(2)*c^2, -x(2)*c-x(1);

matrix alphat=transpose(alpha);

matrix eta[3][3]=0,x(1)+x(2), x(3),
x(1)+e*x(2), -x(3), 0,

x(3), 0, -x(1)-e^2*x(2);

matrix nu[3][3]=0, x(1)+x(3), x(2),
x(1)-a^2*b*x(3), -x(2), 0,
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x(2), 0, -x(1)+a*b^2*x(3);

isomorf(alpha,A); L[1]=1
isomorf(alphat,A); L[1]=1
isomorf(eta,A); L[1]=1
isomorf(teta,A); L[1]=1

//Therefore none is isomorphic to α[1:`:1] and this means

λ1 6= λt1.

If λ = λ1 6= λt1 as a solution of the system (1), we obtain: U = V =(
K1·Id 0

0 K4·Id
)
, K1 ·K4 6= 0.

Replacing U and V in (2), we obtain:

{
K1 · Γ3 · Vλ = 0

K4 · Uλ · Γ1 = 0.

Since K1 6= 0, K4 6= 0 and Uλ, Vλ are invertible matrices, we obtain Γ1 =
Γ3 = 0, which is a contradiction to our hypothesis.

If λ = λt1 6= λ1, we obtain, as a solution of (1): U = V =
(

0 K2·Id
K3 Id 0

)
,

K2 ·K3 6= 0.

Replacing U and V in (2), we obtain:

{
K2 · Uλ · Γ1 = 0

K3 · Γ3 · Vλ = 0.
Therefore, we

must have again Γ1 = Γ3 = 0.

For each λ = [a : b : 1] ∈ V (f3)r {P0}, we define a family of skew symmetric
homogeneous indecomposable matrices of order six over S = K[x1, x2, x3, x4]
with determinant f 2:

Mλ :=

{
Λ(λ,Γ) = x4 · Γ+

(
0 −αtλ
αλ 0

)
, det Λ(λ,Γ) = f 2,

Γ =

(
Γ1 −Γt2
Γ2 Γ3

)
,

Γ1,Γ3 skew symmetric, Γ1 6= 0
or Γ3 6= 0

}
.

Notice that, as in the proof of Lemma 25, if Λ(λ,Γ) ∼ Λ(λ′,Γ′), then λ′ = λ or
λ′ = λt.

Lemma 26. Let λ = [a : b : 1] ∈ V (f3) r {P0} with a 6= 1.
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(1) Inside the family Mλ, two matrices, Λ and Λ′, are equivalent if and

only if there exists k ∈ K∗ such that Λ′ = Uk · Λ · U t
k, Uk =

(
k Id 0
0 1

k
Id

)
.

This condition means:


Γ′

2 = Γ2

Γ′
1 = k2 · Γ1

Γ′
3 = 1

k2 · Γ3.

(2) A matrix Λ from Mλ is equivalent to a matrix Λ′ from Mλ′, λ
′ 6= λ

if and only if λ′ = [1 : b : a] and Λ′ = Uk · Λ · U t
k, where k ∈ K∗ and

Uk =
(

0 k·U−1
λ

− 1
k
Uλ 0

)
.

Proof. We assume a 6= 0. The case a = 0 is treated similarly. Two matrices,
Λ = Λ(λ,Γ) and Λ′ = Λ(λ′,Γ′), are equivalent if and only if Λ and Λ

′
are

equivalent (see Remark 24).

If U and V are two invertible matrices such that U · Λ = Λ
′ · V , as in the

proof of Lemma 25, we obtain

U = V =

(
K1 Id K2 Id
K3 Id K4 Id

)
with K1 = K4 = 0 if λ 6= λ′ and

K2 = K3 = 0 if λ′ 6= λt .

Since U · Λ = Λ
′ · V , we have:(

0 Id
−Uλ′ 0

)−1

·U ·
(

0 Id
−Uλ 0

)
·Λ·

(
Id 0
0 V −1

λ

)
·U−1·

(
Id 0
0 V −1

λ′

)−1

= Λ′.

(∗)

(1) If λ = λ′ then λ′ 6= λt, so U =
(
K1 Id 0

0 K4 Id

)
with K1 6= 0, K4 6= 0. So

(∗) implies:
(
K4·Id 0

0 K1 Id

)
· Λ ·

(
1

K1
Id 0

0 1
K4

Id

)
= Λ′. For k =

√
K4

K1
and

Uk =
(
k Id 0
0 1

k
·Id

)
we have Λ′ = Uk · Λ · U t

k.

(2) If λ′ = λt then λ′ 6= λ, so U =
(

0 K2 Id
K3 Id 0

)
, K2 6= 0, K3 6= 0. Replacing

U in (∗) we obtain:

Λ′ =

(
0 −K3U

−1
λt

−K2Uλ 0

)
· Λ ·

(
0 1

K3
Vλt

1
K2
V −1
λ 0

)
.
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Since a 6= 0 and a 6= 1, Vλ = U t
λ, λ

t =
[

1
a

: 1
b

: 1
]
, Uλt = 1

a2 · Uλ,
Vλt = 1

a2U
t
λ (see Remark 22).

So Λ′ =
(

0 −K3a2U−1
λ

−K2Uλ 0

)
· Λ ·

(
0 1

K3
· 1
a2 ·Ut

λ

1
K2

(U−1
λ )t 0

)
=

(
0 kU−1

λ

− 1
k
Uλ 0

)
·

Λ ·
(

0 kU−1
λ

− 1
k
Uλ 0

)t
, where k2 = −a2 · K3

K2
.

In a similar way, we can prove the following lemma:

Lemma 27. Let λ = [1 : b : 1] ∈ V (f3) r {P0}.

(1) Inside the family Mλ, two matrices Λ and Λ′ are equivalent if and only
if Λ′ = T · Λ · T t, where

T =
(
K4·Id K3·U−1

λ
K2·Uλ K1·Id

)
, K1, K2, K3, K4 ∈ K such that K1K4−K2K3 = 1 .

(2) No λ ∈ V (f3) r {P0, [1 : b : 1]} exists, such that a matrix from Mλ is
equivalent to a matrix from M[1:b:1].

Now let us see “how large” the family Mλ is for a given λ in V (f3) r {P0}.
For Λ = Λ(λ,Γ) in Mλ, we denote:

Γ1 =

 0 a1 a2

−a1 0 a3

−a2 −a3 0

 , Γ2 =

 a7 a8 a9

a10 a11 a12

a13 a14 a15

 , Γ3 =

 0 a4 a5

−a4 0 a6

−a5 −a6 0

 .

The condition det Λ = f 2 provides 10 equations in the above 15 parameters.
Six of these equations are linear in the entries of Γ2 and form a linear system
of dimension three.

(1) If b = 0 the solution of this system is:
a7 = −a12 · (a2 + 1)

a8 = a10 = a15 = 0

a9 = a11 − a13

a14 = a2 · a12 .
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(2) If b 6= 0, the system has the following solution:

a8 = − b
a+1

a7 + a15

a9 = − a−1
b(a+1)

a7 − a2

b2
· a15

a10 = b
a+1

· a7

a12 = − a2+3
(a+1)2

· a7 + b
a+1

a11 + 1−a
b(a+1)

a15

a13 = a−1
b(a+1)

· a7 + a11 + a2

b2
· a15

a14 = 2(1−a)
(a+1)2

· a7 − b
a+1

· a11 + a−1
b(a+1)

· a15 .

The other four equations are linear in the entries of Γ1 with coefficients in
K[a4, . . . , a15] and have dimension five:

LIB"matrix.lib";
option(redSB);

ring r=0,(x(4),x(1),x(2),x(3),e,a,b,a(1..15)),dp;
ideal ii=a3+b3+1,e*b+a2-a+1,e*a+e-b2;
qring s=std(ii);

matrix B[10][1];
B[1,1]=x(4)*a(1);
B[2,1]=x(4)*a(2);
B[3,1]=-x(4)*a(7);
B[4,1]=-x(4)*a(10)-(x(1)+x(3));
B[5,1]=x(4)*a(3);
B[6,1]=-x(4)*a(8)-(x(1)-a*x(3));
B[7,1]=-x(4)*a(11)+x(2)+b*x(3);
B[8,1]=-x(4)*a(9)-x(2)+b*x(3);
B[9,1]=-x(4)*a(12)+e*x(3);
B[10,1]=x(4)*a(4);

matrix V[1][5];
V[1,1]=-x(4)*a(13)-x(2);
V[1,2]=-x(4)*a(14)-e*x(3);
V[1,3]=-x(4)*a(15)+x(1)+(a-1)*x(3);
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V[1,4]=x(4)*a(5); V[1,5]=x(4)*a(6);

poly p1=B[5,1]*B[10,1]-B[6,1]*B[9,1]+B[7,1]*B[8,1];
poly p2=B[2,1]*B[10,1]-B[3,1]*B[9,1]+B[4,1]*B[8,1];
poly p3=B[1,1]*B[10,1]-B[3,1]*B[7,1]+B[4,1]*B[6,1];
poly p4=B[1,1]*B[9,1]-B[2,1]*B[7,1]+B[4,1]*B[5,1];
poly p5=B[1,1]*B[8,1]-B[2,1]*B[6,1]+B[3,1]*B[5,1];

poly g=V[1,1]*p1-V[1,2]*p2+V[1,3]*p3-V[1,4]*p4+V[1,5]*p5;
poly f=x(4)^3+x(1)^3+x(2)^3+x(3)^3; g=g-f;

//For our skew symmetric matrix the condition g=f is equivalent

//to det Λ = f 2.

matrix H=coef(g,x(4)*x(1)*x(2)*x(3));
for(int j=1;j<=13;j++)
{H[1,j]=0;}

ideal I=H; I=interred(I);

I[1]=a(9)-a(11)+a(13) I[2]=a(8)+a(10)-a(15) I[3]=a(7)+a(12)+a(14)
I[4]=a*a(10)-e*a(11)+b*a(12)+2*e*a(13)+2*b*a(14)-2*a*a(15)+a(10)

+a(15)
I[5]=2*e*a(10)+2*b*a(11)-2*a*a(12)-b*a(13)-a*a(14)-e*a(15)

+a(12)+2*a(14)
I[6]=a(3)*a(4)-a(2)*a(5)+a(1)*a(6)+a(11)^2+a(10)*a(12)-a(11)*a(13)

+a(13)^2-a(10)*a(14)-2*a(12)*a(15)-a(14)*a(15)
I[7]=a(1)*a(4)+a(3)*a(5)+a(2)*a(6)-a(10)^2+a(11)*a(12)+a(12)*a(13)

+2*a(11)*a(14)-a(13)*a(14)+a(10)*a(15)-a(15)^2
I[8]=2*e^2*a(12)+2*a*b*a(12)-3*b^2*a(13)+2*e^2*a(14)-a*b*a(14)

-3*e*b*a(15)-6*e*a(11)-b*a(12)+12*e*a(13)+2*b*a(14)-6*a*a(15)
I[9]=a(3)*a(5)*a(10)-a(2)*a(6)*a(10)-a(2)*a(5)*a(11)-a(1)*a(6)*a(11)

+a(1)*a(5)*a(12)+a(3)*a(6)*a(12)-a(2)*a(5)*a(13)
+2*a(1)*a(6)*a(13)+a(13)^3+a(2)*a(4)*a(14)+a(3)*a(6)*a(14)
+a(10)*a(11)*a(14)+a(12)^2*a(14)-2*a(10)*a(13)*a(14)
+a(12)*a(14)^2+a(3)*a(5)*a(15)+2*a(2)*a(6)*a(15)
+a(11)*a(14)*a(15)-2*a(13)*a(14)*a(15)-a(15)^3-1

I[10]=2*e*a(2)*a(4)-2*e*a(1)*a(5)+2*b*a(2)*a(5)-2*a*a(3)*a(5)
+2*b*a(1)*a(6)-4*a*a(2)*a(6)-2*b*a(11)^2+2*a*a(11)*a(12)
+2*e*a(12)^2+5*b*a(11)*a(13)-4*a*a(12)*a(13)-2*b*a(13)^2
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-2*b*a(10)*a(14)-a*a(11)*a(14)+2*a*a(13)*a(14)-2*e*a(14)^2
+3*e*a(11)*a(15)-6*e*a(13)*a(15)-2*b*a(14)*a(15)+6*a*a(15)^2
+4*a(3)*a(5)+2*a(2)*a(6)-a(11)*a(12)+2*a(12)*a(13)
+2*a(11)*a(14)-4*a(13)*a(14)-6*a(15)^2

ideal J=I[1],I[2],I[3],I[4],I[5],I[8];

//This is the ideal generated by the linear equations in the

//entries of Γ2.

ideal JJ=std(J); dim(JJ); 14

ideal J1=I[6],I[7],I[9],I[10];

//This is the ideal generated by the other four equations.

ideal JJ1=std(J1); dim(JJ1); 16

Let us summarize the results.

Let M be an indecomposable graded rank 2, 6–generated MCM and M the
restriction of M to the elliptic curve on our surface defined by f = x4 = 0.
Then M ∼= Nλ⊕N∨

λ for a suitable 3–generated rank 1 MCM Nλ = coker(αλ),
λ ∈ V (f, x4)r{[−1 : 0 : 1 : 0]} ∼= V (f3)r{[−1 : 0 : 1]} =: C. If λ = [a : b : c]
and λt := [c : b : a], thenN∨

λ
∼= Nλt , in particular, there exist skew–symmetric

3×3–matrices Γ1,Γ3 with constant entries not being zero simultaneously and

a 3× 3–matrix Γ2 such that M = coker(Λ) for Λ = x4

(
Γ1 −Γt

2
Γ2 Γ3

)
+

(
0 −αt

λ
αλ 0

)
,

Γ1 =
(

0 a1 a2
−a1 0 a3
−a2 −a3 0

)
, Γ3 =

(
0 a4 a5

−a4 0 a6
−a5 −a6 0

)
, Γ2 =

(
a7 a8 a9
a10 a11 a12
a13 a14 a15

)
and det(Λ) = f 2.

Let A15 be the 15–dimensional affine space with the coordinates (a1, . . . , a15)

and G be the subgroup of Sl2(K) generated by the matrices gk =
(

0 k
− 1

k
0

)
,

k ∈ K r {0}. Consider the action of G on A15: G × A15 → A15, (gk, a) →
a′ = (k2a1, k

2a2, k
2a3,

1
k2a4,

1
k2a5,

1
k2a6, a7, .., a15). Denote A = A15/G.

A point (λ; a) ∈ C×A corresponds to a matrix Λ = x4

(
Γ1 −Γt

2
Γ2 Γ3

)
+

(
0 −αt

λ
αλ 0

)
.

The group G acts on C × A in the following way: let (λ; a) ∈ C × A corre-

spond to Λ = x4

(
Γ1 −Γt

2
Γ2 Γ3

)
+

(
0 −αt

λ
αλ 0

)
, then gk(λ; a) = (λt; b), where (λt; b)
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corresponds to UkΛU
t
k. Let M ⊆ C × A be the G–invariant closed sub-

set defined by det(Λ) = f 2. Let π : M→ C be the canonical projection. If
λ = [1 : b : 1] with b3 = −2, then Sl2(K) acts on π−1(λ) via the representation

Sl2(K) →
{(

K1 Id K2U
−1
λ

K3Uλ K4 Id

)
, K1K4 −K2K3 = 1

}
,
(
K1 K2
K3 K4

)
7→

(
K1 Id K2U

−1
λ

K3Uλ K4 Id

)
.

Theorem 28. (1) Every indecomposable graded rank 2, 6–generated MCM
is represented by a point in M.

(2) Mr π−1({[1 : b : 1] | b3 = −2})/G is the moduli space of isomorphism
classes of indecomposable graded rank 2, 6–generated MCM M such that
the restriction to V (f, x4), M ∼= Nλ ⊕ N∨

λ for Nλ being not self–dual.
This moduli space is 5–dimensional.

(3) Sl2(K) acts on π−1({[1 : b : 1] | b3 = −2}) and π−1({[1 : b : 1] | b3 =
−2})/Sl2(K) is the moduli space of isomorphism classes of indecom-
posable graded rank 2, 6–generated MCM M such that the restriction
to V (f, x4), M ∼= Nλ ⊕Nλ for Nλ being self–dual.

Remark 29. It is well known that the ideal defining 5 general points in P3
K

(this means any four from them are not on a hyperplane) is Gorenstein
. Restricting to the 5 general points on the surface V (f) we get a family
of Gorenstein ideals whose isomorphism classes of 2-syzygies over R (they
are indecomposable, graded, rank 2, 6-generated MCM modules) form a 5-
parameter family (see [Mig], [IK]).

Here we give an example. Let [1 : 0 : 0 : −1], [1 : 0 : −1 : 0], [1 : −1 : 0 : 0],
[1 : −u : 0 : 0], [1 : −u : 1 : −u], u2 + u+ 1 = 0 be 5 general points on V (f)
and I the ideal defined by these points in R. I is generated by the following
quadratic forms: x2x4 + ux3x4, −ux2x3 + ux3x4, x1x4 + x2

4 − (1 − u)x3x4,
u(x1 + x3)x3 + 2x3x4, −x3x4− x2

1 + ux1x2− u2x2
2 + x2

3 + x2
4. Then the second

syzygy of I over R is the cokernel of a skew symmetric matrix A defined by
A[1, 1] = A[2, 2] = A[3, 3] = A[4, 4] = A[5, 5] = A[6, 6] = 0,
A[1, 2] = (−3u− 2)x3 + (2u− 1)x4 = −A[2, 1],
A[1, 3] = −ux1 + (−2u+ 1)x2 + (u+ 1)x3 + ux4 = −A[3, 1],
A[1, 4] = (u− 2)x1 − x2 + (−3u− 4)x3 + (2u− 1)x4 = −A[4, 1],
A[1, 5] = (u+ 1)x3 − ux4 = −A[5, 1],
A[1, 6] = −ux1 + (u+ 1)x2 + (1/7u+ 3/7)x3 + (−3/7u− 2/7)x4 = −A[6, 1],
A[2, 3] = (u− 2)x1 − x2 + x3 + (−u+ 2)x4 = −A[3, 2],
A[2, 4] = (3u+ 2)x1 + (2u+ 3)x2 + 4ux3 + x4 = −A[4, 2],
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A[2, 5] = (−3u− 1)x3 + (u− 2)x4 = −A[5, 2],
A[2, 6] = (−u− 2)x1 + (−u+ 1)x2 + (−u− 1)x3 + ux4 = −A[6, 2],
A[3, 4] = −3x3 = −A[4, 3],
A[3, 5] = (u+ 1)x3 = −A[5, 3],
A[3, 6] = (−6/7u− 4/7)x3 + x4 = −A[6, 3],
A[4, 5] = (−3u− 1)x3 = −A[5, 4],
A[4, 6] = −ux3 + ux4 = −A[6, 4],
A[5, 6] = −x1 − ux2 = −A[6, 5].

This matrix is equivalent to Λ(λ,Γ) = x4 · Γ +

(
0 −αtλ
αλ 0

)
for

λ = (0 : u+ 1 : 1) and Γ given by:
a1 = −4

3
u− 2

3
,

a2 = −u− 1,
a3 = 2

3
u+ 1

3
,

a4 = −1
4
u+ 1,

a5 = −u− 1
2
,

a6 = −3
2
u+ 3

4
,

a7 = −1
2
,

a8 = −1
2
u,

a9 = 1
2
u,

a10 = −1
2
u− 1

2
,

a11 = u+ 3
2
,

a12 = u+ 1,
a13 = 1

2
u+ 3

2
,

a14 = −u− 1
2
,

a15 = −u− 1
2
.
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