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Introduction

Motivated to generalize Artin’s Approximation Theorem (cf. [2]) to excellent
Henselian rings the third author developed a powerful tool, the General Néron
Desingularization (cf. [14]). This result was discussed and used later by many other
authors (cf. [1], [20], [19]). The proof of the Desingularization was not constructive.
In this paper we want to give an algorithm to compute Néron Desingularization for
an important special case. We begin recalling some standard definitions.

A ring morphism u : A→ A′ of Noetherian rings has regular fibers if for all prime
ideals P ∈ SpecA the ring A′/PA′ is a regular ring, i.e. its localizations are regular
local rings. It has geometrically regular fibers if for all prime ideals P ∈ SpecA and
all finite field extensions K of the fraction field of A/P the ring K ⊗A/P A′/PA′ is
regular.

A flat morphism of Noetherian rings u is regular if its fibers are geometrically
regular. If u is regular of finite type then u is called smooth. A localization of a
smooth algebra is called essentially smooth. A Henselian Noetherian local ring A is
excellent if the completion map A→ Â is regular.

Theorem 1. (General Néron Desingularization, Popescu [14], [15], André [1], Swan
[20], Spivakovsky [19]) Let u : A → A′ be a regular morphism of Noetherian rings
and B an A-algebra of finite type. Then any A-morphism v : B → A′ factors through
a smooth A-algebra C, that is v is a composite A-morphism B → C → A′.

Constructive General Néron Desingularization for the case when the rings A and
A′ are one-dimensional local rings, is given in [12], [10] and [7], the two dimensional
case is partially done in [11]. The purpose of this paper is to find a constructive
proof for the case when rings A and A′ are of dimension m and the smooth locus
of B → A′ is big. We proceed using induction on the dimension of rings, with the
induction step given in Proposition 3. In the Section 2 we prove a uniform General
Néron Desingularization for m-dimensional local Cohen-Macaulay rings and some
consequences of it. We also give an algorithm to find a uniform General Néron
Desingularization using Singular.
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1. Constructive Néron Desingularization

Let u : A → A′ be a flat morphism of Noetherian local rings of dimension m.
Suppose that the maximal ideal m of A generates the maximal ideal of A′, A′ is
Henselian and u is a regular morphism.

Let B = A[Y ]/I, Y = (Y1, . . . , Yn). If f = (f1, . . . , fr), r ≤ n is a system of
polynomials from I then we can define the ideal ∆f generated by all r× r-minors of
the Jacobian matrix (∂fi/∂Yj). After Elkik [4] let HB/A be the radical of the ideal∑

f ((f) : I)∆fB, where the sum is taken over all systems of polynomials f from I
with r ≤ n. HB/A defines the non smooth locus of B over A. B is standard smooth
over A if there exists f in I as above such that B = ((f) : I)∆fB.

The aim of this section is to give an algorithmic proof of the following theorem.

Theorem 2. Any A-morphism v : B → A′ such that v(HB/AA
′) is mA′-primary

factors through a standard smooth A-algebra B′.

To prove the above theorem we need the following proposition.

Proposition 3. Let A and A′ be Noetherian local rings of dimension m and u :
A → A′ be a regular morphism. Suppose that A′ is Henselian. Let B = A[Y ]/I,
Y = (Y1, . . . , Yn), f = (f1, . . . , fr), r ≤ n be a system of polynomials from I as above,
(Mj)j∈[q] some r×r-minors 1 of the Jacobian matrix (∂fi/∂Yj′), (Nj)j∈[q] ∈ ((f) : I)
and set P :=

∑q
j=1 NjMj. Let v : B → A′ be an A-morphism. Suppose that

(1) there exist an element d ∈ A such that d ≡ P modulo I and
(2) there exist a smooth A-algebra D and an A-morphism ω : D → A′ such that

Im v ⊂ Imω + d2e+1A′ and for Ā = A/(d2e+1) (defining e by (0 :A de) =
(0 :A d

e+1)) the map v̄ = Ā⊗Av : B̄ = B/d2e+1B → Ā′ = A′/d2e+1A′ factors
through D̄ = D/d2e+1D.

Then there exist a B-algebra B′ which is standard smooth over A such that v factors
through B′.

Proof. Let δ : B ⊗A D ∼= D[Y ]/ID[Y ] → A′ be the A-morphism given by b ⊗ λ →
v(b)ω(λ). First we show that δ factors through a special B⊗AD-algebra E of finite
type.

Let the map B̄ → D̄ is given by Y → y′+d2e+1D. Thus I(y′) ≡ 0 modulo d2e+1D.
Since v̄ factors through ω̄ we see that ω̄(y′ + d2e+1D) = ȳ. Set ỹ = ω(y′). We get
y − ỹ = v(Y )− ỹ ∈ d2e+1A′n, let us say y − ỹ = de+1ν for ν ∈ deA′n.

We have Mj = detHj, where Hj is the matrix (∂fi/∂Yj′)i∈[r],j′∈[n] completed with
some (n− r) rows from 0, 1. Since d ≡ P modulo I we get P (y′) ≡ d modulo d2e+1

in D because I(y′) ≡ 0 modulo d2e+1D. Thus P (y′) = ds for some s ∈ D with
s ≡ 1 modulo d. Let G′j be the adjoint matrix of Hj and Gj = NjG

′
j. We have

GjHj = HjGj = MjNjIdn and so

dsIdn = P (y′)Idn =

q∑
j=1

Gj(y
′)Hj(y

′).

1We use the notation [q] = {1, . . . , q}.
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But Hj is the matrix (∂fi/∂Yj′)i∈[r],j′∈[n] completed with some (n− r) rows from
0, 1. Especially we obtain

(1) (∂f/∂Y )Gj = (MjNjIdr|0).

Then tj := Hj(y
′)ν ∈ deA′n satisfies

Gj(y
′)tj = Mj(y

′)Nj(y
′)ν = dsν

and so

s(y − ỹ) = de
q∑
j=1

ω(Gj(y
′))tj.

Let

(2) h = s(Y − y′)− de
q∑
j=1

Gj(y
′)Tj,

where Tj = (T1, . . . , Tr, Tj,r+1, . . . , Tj,n) are new variables. The kernel of the map
ϕ : D[Y, T ]→ A′ given by Y → y, Tj → tj contains h. Since

s(Y − y′) ≡ de
q∑
j=1

Gj(y
′)Tj modulo h

and
f(Y )− f(y′) ≡

∑
j′

(∂f/∂Yj′)((y
′)(Yj′ − y′j′)

modulo higher order terms in Yj′ − y′j′ , by Taylor’s formula we see that for p =
maxi deg fi we have

(3) spf(Y )− spf(y′) ≡
∑
j′

sp−1de(∂f/∂Yj′)(y
′)

q∑
j=1

Gjj′(y
′)Tjj′ + d2eQ

modulo h where Q ∈ T 2D[T ]r. We have f(y′) = de+1b for some b ∈ deDr. Then

(4) gi = spbi + spTi + de−1Qi, i ∈ [r]

is in the kernel of ϕ. Indeed, we have spfi = de+1gi modulo h because of (3) and
P (y′) = ds. Thus de+1ϕ(g) = de+1g(t) ∈ (h(y, t), f(y)) = (0) and g(t) ∈ deA′r and
so g(t) ∈ (0 :A′ de+1) ∩ deA′ = 0 because (0 :A′ de) = (0 :A′ de+1), the map u being
flat. Set E = D[Y, T ]/(I, g, h) and let ψ : E → A′ be the map induced by ϕ. Clearly,
v factors through ψ because v is the composed map B → B ⊗A D ∼= D[Y ]/I →
E

ψ−→ A′.
Now we show that there exist s′, s′′ ∈ E such that Ess′s′′ is standard smooth over

A and ψ factors through Ess′s′′ .
Note that the r×r-minor s′ of (∂g/∂T ) given by the first r-variables T is from srp+

(T ) ⊂ 1 + (d, T ) because Q ∈ (T )2. Then V = (D[Y, T ]/(h, g))ss′ is smooth over D.
We claim that I ⊂ (h, g)D[Y, T ]ss′s′′ for some other s′′ ∈ 1 + (d, T )D[Y, T ]. Indeed,
we have PI ⊂ (h, g)D[Y, T ]s and so P (y′ + s−1de

∑q
j=1Gj(y

′)Tj)I ⊂ (h, g)D[Y, T ]s.

Since P (y′ + s−1de
∑q

j=1Gj(y
′)Tj) ∈ P (y′) + de(T )D[Y, T ]s we get
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P (y′ + s−1de
∑q

j=1Gj(y
′)Tj) = ds′′ for some s′′ ∈ 1 + (T )D[Y, T ]s. It follows that

s′′I ⊂ ((h, g) : d)D[Y, T ]ss′ . Thus s′′IV ⊂ (0 :V d) ∩ deV = 0 because (0 :V
d) ∩ deV = 0, and V is flat over D and so over A. This shows our claim. It follows
that I ⊂ (h, g)D[Y, T ]ss′s′′ . Thus Ess′s′′ ∼= Vs′′ is a B-algebra which is also standard
smooth over D and A.

As ω(s) ≡ 1 modulo d and ψ(s′), ψ(s′′) ≡ 1 modulo (d, t), d, t ∈ mA′ we see
that ω(s), ψ(s′), ψ(s′′) are invertible because A′ is local. Thus ψ (and so v) factors
through the standard smooth A-algebra B′ = Ess′s′′ . �

Proof of Theorem 2
We choose γ1, γ2, . . . , γm ∈ v(HB/A)A′ ∩ A such that γk for k ∈ [m] is a system

of parameters in A, and γk =
∑q

i=1 v(bi)z
(k)
i , where z

(k)
i ∈ A′, bi ∈ HB/A. Set

B0 = B[Z(1), . . . , Z(m)]/(f (1), . . . , f (m)), where f (k) = −γk +
∑q

i=1 biZ
(k)
i ∈ B[Z(k)],

Z(k) = (Z
(k)
1 , . . . , Z

(k)
q ), and let v0 : B0 → A′ be the map of B-algebras given by

Z(k) → z(k). Changing B by B0 we may suppose that γk ∈ HB/A.
As in [10] we need the following lemma.

Lemma 4. (1) ([13, Lemma 3.4]) Let B1 be the symmetric algebra SB(I/I2) of
I/I2 over2 B. Then HB/AB1 ⊂ HB1/A and (ΩB1/A)γ is free over (B1)γ for
any γ ∈ HB/A.

(2) ([20, Proposition 4.6]) Suppose that (ΩB/A)γ is free over Bγ. Let I ′ =
(I, Y ′) ⊂ A[Y, Y ′], Y ′ = (Y ′1 , . . . , Y

′
n). Then (I ′/I ′2)γ is free over Bγ.

(3) ([16, Corollary 5.10]) Suppose that (I/I2)γ is free over Bγ. Then a power of
γ is in ((g) : I)∆g for some g = (g1, . . . gr), r ≤ n in I.

Using (1) of Lemma 4 we reduce our proof to the case when ΩBγk/A
for all k ∈ [m]

are free over Bγk respectively.
Let B1 be given by Lemma 1. The inclusion B ⊂ B1 has a retraction w which

maps I/I2 to zero. For the reduction we change B, v by B1, vw.
Using (2) of Lemma 4 we may reduce to the case when (I/I2)γk is free over Bγk

for all k ∈ [m].
Since ΩBγk/A

is free over Bγk we see using Lemma 2 that changing I with (I, Y ′) ⊂
A[Y, Y ′] we may suppose that (I/I2)γk is free over Bγk .

Now using Using (3) of Lemma 4 we will reduce further to the case when a power

of γk is in ((f (k)) : I)∆f (k) for some f (k) = (f
(k)
1 , . . . f

(k)
rk ), rk ≤ n from I.

We reduced to the case when (I/I2)γk is free over Bγk . Then it is enough to use
Lemma 3.

Replacing B1 by B we may assume that a power dk of γk for all k ∈ [m] has the

form dk ≡ Pk =
∑qk

i=1 M
(k)
i L

(k)
i modulo I, for some rk×rk minors M

(k)
i of (∂f (k)/∂Y )

and L
(k)
i ∈ ((f (k)) : I).

The Jacobian matrix (∂f (k)/∂Y ) can be completed with (n − rk) rows from An

obtaining a square n matrix H
(k)
i such that detH

(k)
i = M

(k)
i .

2Let M b e a finitely represented B-module and Bm (aij)−−−→ Bn → M → 0 a presentation then

SB(M) = B[T1, . . . , Tn]/J with J = ({
n∑

i=1

aijTi}j=1,...,m).
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This is easy using just the integers 0, 1. Set d = dm, f = f (m), r = rm, q = qm,

Mi = M
(m)
i , Ni = N

(m)
i , Ā = A/d2e+1, B̄ = Ā⊗AB, Ā′ = A′/(d2e+1A′), v̄ = Ā⊗A v.

Then we have d ≡
∑

jMjNj modulo I. Now we will use the induction on m.

Case I: m = 0

If m = 0 then A and A′ are Artinian local rings and u : A → A′ is a regular
morphism. Then we are done by Corollary 3.3 [13].

Case II: m > 0

Suppose by the induction hypothesis that we have a standard smooth Ā-algebra
D̄ ∼= (Ā[Z]/(ḡ))h̄M̄ , for Z = (Z1, . . . , Zp), ḡ = (ḡ1, . . . , ḡq) with q ≤ p, h̄ ∈ Ā[Z] and

M̄ a q × q-minor of ( ∂ḡ
∂Z

), such that the map v̄ : B̄ → Ā′ factors through D̄, let us

say v̄ is the composite map B̄ → D̄
ω̄−→ Ā′.

Now let g ∈ A[Z]q be a lifting of ḡ and M the q × q-minor of ( ∂g
∂Z

) corresponding

M̄ . Take h ∈ A[Z] such that h lifts h̄. Then D ∼= (A[Z]/(g))hM is a standard
smooth A-algebra and by the Implicit Function Theorem the map ω̄ can be lifted to
ω : D → A′ since A′ is Henselian. It follows that Im v ⊂ Imω + d2e+1A′. Applying
Proposition 3 we get a B-algebra C smooth over A such that v factors through C,
B → C → A′.

2. A uniform Néron Desingularization

Let u : A→ A′ be a regular morphism of Cohen-Macaulay local rings of dimension
m. Suppose that the maximal ideal m of A generates the maximal ideal of A′, A′ is
Henselian and A, A′ have the same completions.

Let B = A[Y ]/I, Y = (Y1, . . . , Yn), and for i ∈ [m] let f (i) = (f
(i)
1 , . . . , f

(i)
ri ), ri ≤ n

be a system of polynomials from I. Let Mi be an ri × ri-minor of the Jacobian
matrix (∂f (i)/∂Y ) and Ni ∈ ((f (i)) : I), Pi = NiMi. Let v : B → A′/m3k+cA′ be an
A-morphism for some k, c ∈ N. Suppose that v(N1M1, . . . , NmMm)A′/m3k+cA′ ⊃
mkA′/m3k+cA′. Let y′ ∈ An be a lifting of v(Y ) to A and let di = Pi(y

′). Then
(d1, . . . , dm)A′/m3k+cA′ ⊃ mkA′/m3k+cA′. Note that mk ⊂ (d1, . . . , dm)A + m3k+c ⊂
(d1, . . . , dm)A + m3(3k+c)+c ⊂ . . .. Thus mk ⊂ (d1, . . . , dm)A and it follows that
(d1, . . . , dm)A′ ⊃ mkA′ . Since A is Cohen-Macaulay we get d = {d1, . . . , dm} regular
sequence in A. Note that (d1, . . . , dm) is the ideal corresponding to v(P1, . . . , Pm)A′

by the isomorphism A/m3k+c ∼= A′/m3k+cA′.

Theorem 5. There exists a B-algebra C which is standard smooth over A with the
following properties.

(1) Every A-morphism v′ : B → A′ with v′ ≡ v modulo (d3
1, . . . , d

3
m)A′ factors

through C.
(2) Every A-morphism v′ : B → A′ with v′ ≡ v modulo m3kA′ factors through

C.
5



(3) There exists an A-morphism w : C → A′ which makes the following diagram
commutative

B

��

// C
w // A′

��
A/m3k+c // A/mc // A′/mcA′

Proof. Let v′ : B → A′ be an A-morphism with v′ ≡ v modulo (d3
1, . . . , d

3
m)A′. We

apply induction on m.

Case I: m = 1

If m = 1 then A and A′ are Noetherian local rings of dimension 1 and u : A→ A′

is a regular morphism. Then we are done by Theorem 2 [7], with e = 1.

Case II: m > 1

Now let Ā = A/(d3
1, . . . , d

3
m−1), and consider the map v̄′ = Ā⊗Av′ : B̄ = Ā⊗AB →

Ā′ = Ā⊗AA′. By the induction hypothesis there exists a standard smooth algebra
D̄ ∼= (Ā[Z]/(ḡ))h̄M̄ , for Z = (Z1, . . . , Zp), ḡ = (ḡ1, . . . , ḡq) with q ≤ p, h̄ ∈ Ā[Z]

and M̄ a q × q-minor of ( ∂ḡ
∂Z

), such that the map v̄′ factors through D̄, say v̄′ is the

composite map B̄ → D̄
ω̄′
−→ A′.

Now let g ∈ A[Z]q be a lifting of ḡ and M the q × q-minor of ( ∂g
∂Z

) corresponding

M̄ . Take h ∈ A[Z] such that h lifts h̄. Then D ∼= (A[Z]/(g))hM is a standard
smooth A-algebra and by the Implicit Function Theorem the map ω̄′ can be lifted
to ω′ : D → A′ since A′ is Henselian. It follows that Im v′ ⊂ Imω′+d3

mA
′. Applying

Proposition 3 (with e = 1) we get a B-algebra C standard smooth over A such that
v′ factors through C. This proves (1) which obviously implies (2).

Now for (3) take the map ŵ : C ∼= (D[Y, T ]/(I, g, h))ss′ → A′/mcA′ given by

(Y, T ) → (y′, 0). Then the composite map B → C
ŵ−→ A′/mcA′ is lifted by v. Since

C is standard smooth, we may lift ŵ to an A-morphism w : C → A′ by the Implicit
Function Theorem. Clearly, w makes the above diagram commutative. �

Example 6. (Rond) Let k be a field, A = k[[x]], x = (x1, x2, x3), B = A[Y ]/(f),
Y = (Y1, . . . , Y4), f = Y1Y2 − Y3Y4. Then ∆f = HB/A = (Y ). Let p ∈ N and set
y′1 = xp1, y′2 = xp2, y′3 = x1x2 − xp3. Then there exists y′4 ∈ A such that f(y′) ≡ 0

modulo (x)p
2
. It follows that d1 = xp1, d2 = xp2 and d3 = xp

2

3 belongs to ∆f (y
′)

because xp1x
p
2 − x

p2

3 = y′3(xp−1
1 xp−1

2 + xp−2
1 xp−2

2 xp3 + . . . xp
2

3 ). For k = 2p + p2 − 2 we
have (x)k ⊂ (d1, d2, d3) ⊂ HB/A(y′). If f(y′) ≡ 0 modulo (x)3k+p+1 then by Theorem
5 (3) we could get y ∈ A4 such that f(y) = 0 and y ≡ y′ modulo (x)p+1. But this is

not the case, since f(y′) ≡ 0 modulo (x)p
2

and we cannot apply the quoted theorem.
Thus it is not a surprise that [18, Remark 4.7] says that there exist no y ∈ A4 such
that f(y) = 0 and y ≡ y′ modulo (x)p+1.
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Corollary 7. (Elkik) Let (A,m) be a Cohen-Macaulay Henselian local ring of di-
mension m and B = A[Y ]/I, Y = (Y1, . . . , Yn) an A-algbra of finite type. Then
for every k ∈ N there exist two integers m0, p ∈ N such that if y′ ∈ An satisfies
mk ⊂ HB/A(y′) and I(y′) ≡ 0 modulo mm for some m > m0 then there exists y ∈ An
such that I(y) = 0 and y ≡ y′ modulo mm−p.

Proof. Suppose that A′ = A. In the notation of Theorem 5 given k set m0 = p = 3k
and suppose that y′ ∈ An satisfies mk ⊂ HB/A(y′) and I(y′) ≡ 0 modulo mm for
some m > m0. Let v : B → A/mm be given by Y → y′. Set c = m−p. By Theorem
5 there exists a smooth A-algebra C and a map w : C → A which makes the above
digram commutative. Let y be the image of Y by the composite map B → C

w−→ A.
Then I(y) = 0 and y ≡ y′ modulo mc = mm−p. �

Corollary 8. With the assumptions and notation of the Theorem 5, let ρ : B → C
be the structural algebra map. Then ρ induces bijections ρ∗ given by ρ∗(w) = w ◦ ρ,
between

(1) {w ∈ HomA(C,A′) : w◦ρ ≡ v modulo (d3
1, . . . , d

3
m)A′} and {v′ ∈ HomA(B,A′) :

v′ ≡ v modulo (d3
1, . . . , d

3
m)A′}

(2) {w ∈ HomA(C,A′) : w ◦ ρ ≡ v modulo m3kA′} and {v′ ∈ HomA(B,A′) : v′ ≡
v modulo m3kA′}

Proof. We will use induction on the dimension of A.

(1) Case I: m = 1

If m = 1 then A and A′ are Cohen-Macaulay local rings of dimension 1.
Then we are done by Corollary 8 [7].

(2) Case II: m > 1

By Theorem 5, (1), ρ∗ is surjective. Let Now let Ā = A/(d3
1, . . . , d

3
m−1),

and the map v̄′ = Ā⊗Av′ : B̄ = Ā⊗AB → Ā′ = Ā⊗AA′. By the induction
hypothesis there exists a standard smooth algebra D̄ such that the maps w̄
and w̄′ restricted to D̄ coincide. This implies that w |D and w′ |D lift the
same map w̄ |D̄. Thus w |D= w′ |D by uniqueness in the Implicit Function
Theorem.

By construction C = Ess′ , E = D[Y, T ]/(I, g, h) and Hm(y′)(w(Y ) −
w′(Y )) ≡ d2

m(w(T )− w′(T )) modulo h. Thus d2
m(w(T )− w′(T )) = 0 and so

w|E = w′|E because dm is regular in A′ since dm is regular in A and u is flat.
It follows that w = w′

(3) Apply Theorem 5 (2) for the surjectivity. The injectivity follows from above.

�

Corollary 9. With the assumptions and notation of the above Corollary, the fol-
lowing statements hold:

(1) If there exists an A-morphism ṽ : B → A′ with ṽ ≡ v modulo (d3
1, . . . , d

3
m)A′,

then there exists a unique A-morphism w̃ : C → A′ such that w̃ ◦ ρ = ṽ.
(2) If there exists an A-morphism ṽ : B → A′ with ṽ ≡ v modulo m3kA′, then

there exists a unique A-morphism w̃ : C → A′ such that w̃ ◦ ρ = ṽ.
7



For the proof take w̃ = ρ∗−1(ṽ), where ρ∗ is defined in the Corollary 8.
By construction, C has the form (D[T ]/(g))Mh, where M = det(∂gi/∂Tj)i,j∈[r] and
h = s′ ∈ A[T ] satisfies w̃(h) 6∈ mA′.

Lemma 10. There exist canonical bijections

(1) (d3
1, . . . , d

3
m)A′n−r → {w′ ∈ HomA(C,A′) : w′ ≡ w̃ modulo (d3

1, . . . , d
3
m)A′}.

(2) m3kA′n−r → {w′ ∈ HomA(C,A′) : w′ ≡ w̃ modulo m3kA′}.

Proof. Note that {w′ ∈ HomA(C,A′) : w′ ≡ w̃ modulo (d3
1, . . . , d

3
m)A′} is in bijection

with the set of all t ∈ A′n such that g(t) = 0 and t ≡ w̃(T ) modulo (d3
1, . . . , d

3
m)A′n.

Set V = (T1, . . . , Tr), Z = (Tr+1, . . . , Tn). Thus g(U,w′(Z)) = 0 has a unique
solution (namely U = w′(V )) in w̃(Z) + (d3

1, . . . , d
3
m)A′n−r by the Implicit Func-

tion Theorem. Consequently, w′(V ) is uniquely defined by w′(Z), that is by the
restriction w′ |A[Z].

Therefore, {w′ ∈ HomA(C,A′) : w′ ≡ w̃ modulo (d3
1, . . . , d

3
m)A′n} is in bijection

with {w′′ ∈ HomA(A[Z], A′) : w′′ ≡ w̃|A[Z] modulo (d3
1, . . . , d

3
m)A′n−r}, the latter

set being in bijection with w̃(Z) + (d3
1, . . . , d

3
m)A′n−r, that is with (d3

1, . . . , d
3
m)A′n−r.

The proof of (2) goes similarly. �

Theorem 11. With the assumptions and notation of Corollary 8 there exist canon-
ical bijections

(1)

(d3
1, . . . , d

3
m)A′n−r → {v′ ∈ HomA(B,A′) : v′ ≡ v modulo (d3

1, . . . , d
3
m)A′}.

(2)
m3kA′n−r → {v′ ∈ HomA(B,A′) : v′ ≡ v modulo m3kA′}.

For the proof apply Corollary 8 and the above lemma.

3. Algorithms

In this section we present the algorithms corresponding to the results of Sections
1 and 2. We will use in our algorithm for uniform desingularization the following
algorithm for the one dimensional case (cf. [7]):
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Algorithm 1 UniformNeronDesingularizationDim1

Input: A,B, v, k, f,N given by the following data. A = K[x](x)/J , J =
(h1, . . . , hp′), hi ∈ K[x], x = (x1, . . . , xt), dim(A) = 1, K a field. B =
A[Y ]/I, I = (g1, . . . , gl), gi ∈ K[x, Y ], Y = (Y1, . . . , Yn), integer k, c, f =
(f1, . . . , fr), fi ∈ I, v : B → A/mc

A defined by y′ ∈ K[x]n, N ∈ (f1, . . . , fr) : I.
Output: (D, π) given by the following data. D = (A[Z]/(g))hM a standard smooth

algebra, Z = (Z1, . . . , Zp), g = (g1, . . . , gq), q ≤ p, h ∈ A[Z], M a q × q
minor of (∂g/∂Z), π : B → D given by π(Y ) and factorizing v or the message
“y′, N, f1, . . . , fr are not well chosen.”

1: Compute M = det((∂fi/∂Yj)i,j∈[r]), P := NM and d := P (y′)
2: f := (f1, . . . , fr)
3: Compute e such that (0 :A d

e) = (0 :A d
e+1)

4: if I(y′) * (x)(2e+1)k + J or (x)k * (d) + J then
5: return “y′, N , (f1, . . . , fr) are not well chosen”
6: end if
7: Complete (∂fi/∂Yj)i≤r by (0|(Idn−r)) to obtain a square matrix H
8: Compute G′ the adjoint matrix of H and G := NG′

9: h = Y − y′ − deG(y′)T, T = (T1, . . . , Tn)
10: Write f(Y )− f(y′) =

∑
j d

e∂f/∂Yj(y
′)Gj(y

′)T + d2eQ

11: Write f(y′) = de+1a
12: for i = 1 to r do
13: gi = ai + Ti + de−1Qi

14: end for
15: E := A[Y, T ]/(I, g, h)
16: Compute s the r × r minor defined by the first r columns of (∂g/∂T )
17: Write P (y′ + deG(y′)T ) = ds′

18: return Ess′ .

Next we present the algorithm for uniform desingularization for the higher dimen-
sional case.
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Algorithm 2 UniformNeronDesingularization

Input: A,B, v, k, f,N given by the following data. A = K[x](x)/J , J =
(h1, . . . , hp′), hi ∈ K[x], x = (x1, . . . , xt), dim(A) = m, K a field. B =
A[Y ]/I, I = (g1, . . . , gl), gi ∈ K[x, Y ], Y = (Y1, . . . , Yn), integer k, c, f =
(f1, . . . , fr), fi ∈ I, v : B → A/mc

A defined by ȳ ∈ K[x]n, for i ∈ [m],

f (i) = (f
(i)
1 , . . . , f

(i)
ri ), ri ≤ n, f

(i)
j ∈ I, Ni ∈ ((f (i)) : I), Mi an ri × ri minor

of (∂f (i)/∂Y ).
Output: D, π given by the following data. D = (A[Z]/(g))hM a standard smooth,

Z = (Z1, . . . , Zp), g = (g1, . . . , gq), q ≤ p, h ∈ A[Z], M a q × q minor of
(∂g/∂Z), π : B → D given by π(Y ) = y′ and factorizing v or the message
“y′, f (i), Ni are not well chosen.”

1: for i ∈ [m] do
2: Pi := MiNi; di := Pi(ȳ)
3: end for
4: if I(ȳ) * (x)3k + J or (x)k * (d1, . . . , dm) + J then
5: return ”ȳ, f (i), Ni are not well chosen.”
6: end if
7: if m = 1 then
8: return UniformNeronDesingularizationDim1(A,B, v, k, f (1), N1)
9: end if

10: Ā := A/(d3
1, . . . , d

3
m−1), v̄ := Ā⊗A v, B̄ := Ā⊗A B

11: (D̄, π̄) := UniformNeronDesingularization (Ā, B̄, v̄, k, f (m), Nm,Mm)
D̄ = (Ā[Z]/(ḡ))h̄M̄ , Z = (Z1, . . . , Zp), g = (g1, . . . , gq), gi ∈ K[x, Z]
ḡ = g mod (d3

1, . . . , d
3
m−1), h ∈ k[x, Z], h̄ = h mod (d3

1, . . . , d
3
m−1), M a q × q

minor of (∂g/∂Z), M̄ = M mod (d3
1, . . . , d

3
m−1), π̄(Y ) = y′

12: D := (A[Z]/(g))hM
13: Complete the Jacobian matrix associated to f (m) by rows of 0 and 1 to obtain

a square matrix Hm with det(Hm) = Mm

14: Compute G′m the adjoint matrix of Hm and Gm := NmG
′
m

15: P := MmNm, d := P (y′), f = f (m), r = rm
16: Write P (y′) = ds for some s ∈ D, s ≡ 1 mod d
17: h := s(Y − y′)− d

∑r
j=1 Gj(y

′)Tj, Tj = (T1, . . . , Tr, Tj,r+1, . . . , Tj,n)

18: p = max{deg(fi
(m))}

19: Write sp(f(Y )−f(y′)) ≡
∑

j′ s
p−1d(∂f/∂Yj′)(y

′)
∑q

j=1Gjj′(y
′)Tjj′ +d2Q mod h.

20: Write f(y′) = d2b, b ∈ dDr.
21: for i ∈ [r] do
22: gi := spbi + spTi +Qi.
23: end for
24: E := D[Y, T ]/(I, g, h).
25: Compute s′ the r × r-minor of (∂g/∂T ) given by the first r variables of T .
26: Compute s′′ such that P (y′ + s−1d

∑q
j=1Gj(y

′)Tj) = ds′′.

27: Define π : B → (D[Y, T ]/(I, g, h)ss′s′′ by π(Yi) = y′i.
28: return ((D[Y, T ]/(I, g, h)ss′s′′ , π).
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Algorithm 3 NeronDesingularization

Input: A, B, v, N given by the following data: A = k[x](x)/J , J = (h1, . . . , hq) ⊂ k[x],

x = (x1, . . . , xt), k a field, k′ = Q(k[U ]/J̄), J̄ = (a1, . . . , ar) ⊂ k[U ], U = (U1, . . . , Ut′)
separable over k, B = A[Y ]/I, I = (g1, . . . , gl) ⊂ k[x, Y ], Y = (Y1, . . . , Yn), v :
B → A′ ⊂ K[[x]]/JK[[x]] an A-morphism, given by ȳ = (ȳ1, . . . , ȳn) ∈ k[x, U ]n

approximations mod (x)N of v(Yi), K ⊃ k′ a field.
Output: (E, π) given by the following data: E = (A[Z]/L)hM standard smooth,

Z = (Z1, . . . , Zp), L = (b1, . . . , bq′) ⊂ k[x, Z], h ∈ k[x, Z], M q× q-minor of (∂bi/∂Zj),
π : B → E an A-morphism given by π(Y1) = y′1, . . . , π(Yn) = y′n factorizing v, i.e.
there exists ω : E → A′ with ωπ = v.

1: Compute w := (ai1 , . . . , aip), ρ a p× p-minor of (∂aiν/∂Uj) such that ρ 6∈ J̄ . Compute

τ ∈ (w) : J̄ such that k[U ]ρτ/(a1, . . . , ar) = k[U ]ρτ/(w), D := A[U ]ρτ/(w).
2: if If dim(A) = 0 then
3: compute f = (f1, . . . , fr) in I, N ∈ (f) : I and M an r× r-minor of (∂fi/∂Yj) such

that BNM is standard smooth, return ((D[Y ]/I)NM , Y ).
4: end if
5: Compute HB/A = (b1, .., bq) and γ1, .., γm ∈ HB/A(ȳ), system of parameters in A.
6: for j ∈ [m] do
7: write γj =

∑q
i=1 bi(ȳ)ȳn+i+(j−1)q mod (γ2

1 , ..., γ
2
m), ȳj ∈ k[x, U ].

8: end for
9: for j ∈ [m] do

10: gl+j := −γj +
∑q

i=1 biYn+i+(j−1)q;
11: end for
12: Y := (Y1, . . . , Yn+mq); ȳ = (ȳ1 . . . , ȳn+mq); I := (g1, . . . , gl+m); l := l+m; n := n+mq,

B := A[Y ]/I, γ := γm
13: B = SB(I/I2), v trivially extended. Write B := A[Y ]/I, Y = (Y1, . . . , Yn); Y :=

(Y,Z); I := (I, Z), B := A[Y ]/I, Z = (Z1, . . . , Zn), v trivially extended.
14: Compute f = (f1, . . . , fr) such that a power d of γ is in ((f) : I)∆f .
15: Compute e such that (0 : de) = (0 : de+1) and p := maxi{deg fi}.
16: Choose r× r-minors Mi of (∂f/∂Y ) and Ni ∈ ((f) : I) such that for P :=

∑
MiNi we

have d ≡ P mod I.
17: Complete the Jacobian submatrices of (∂f/∂Y ) corresponding to Mi by n− r rows of

0 and 1 to obtain square matrices Hi with detHi = Mi.
18: for j ∈ [m] do
19: compute G′j the adjoint matrix of Hj and Gj := NjG

′
j

20: end for
21: Ā := A/(d2e+1); B̄ := Ā⊗A B, v̄ := Ā⊗ v.
22: (Ē, π̄) =NeronDesingularization(Ā, B̄, v̄, N), Ē = (Ā[Z1, . . . , Zp]/L̄)hM standard

smooth, L = (b1, . . . , bq) ⊂ k[x, Z], L̄ = L mod d2e+1, h ∈ k[x, Z], M q × q-minor
of (∂b/∂Z), π̄ : B̄ → Ē factorization of v̄ given by y′ from k[x, Z]n.

23: D := A[Z]hM/L, write P (y′) = ds, f(y′) = de+1b, b ∈ deDr, s ∈ D, d|s− 1.
24: h := s(Y − y′)− de

∑q
i=1Gj(y

′)Tj , Tj = (T1, . . . , Tr, Tj,r+1, . . . , Tj,n).
25: Write sp(f(Y )− f(y′)) ≡

∑
j′ s

p−1de(∂f/∂Yj′)(y
′)
∑

j Gjj′(y
′)Tjj′ + deQ mod h.

26: for i ∈ [r] do
27: gi := spbi + spTi + de−1Qi.
28: end for
29: E := D[Y, T ]/(I, g, h).
30: Compute s′ the r × r-minor of (∂g/∂T ) given by the first r variables of T .
31: Compute s′′ such that P (y′ + s−1de

∑q
j=1Gj(y

′)Tj) = ds′′.

32: Define π : B → (D[Y, T ]/(I, g, h)ss′s′′ by π(Yi) = y′i.
33: return ((D[Y, T ]/(I, g, h)ss′s′′ , π).
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