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also grateful to Dr. Milan Randonjić for contributing to the success of the lecture in the winter

term 2020/2021 by supervising the exercises. The corresponding problem sets are available at

the homepage

http://www-user.rhrk.uni-kl.de/~apelster/Vorlesungen/WS2021/qft.html



Contents

1 Introduction 1

1.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Non-Relativistic Quantum Many-Body Theory . . . . . . . . . . . . . . . . . . . 2

1.3 Relativistic Fields and Their Quantization . . . . . . . . . . . . . . . . . . . . . 4

1.4 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Non-Relativistic Quantum Many-Body Theory 7

2 Identical Particles 9

2.1 Distinguishable Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Bosons and Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Non-Interacting Identical Particles . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Second Quantization 21

3.1 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Creation and Annihilation Operators for Bosons . . . . . . . . . . . . . . . . . . 25

3.3 Schrödinger Equation for Interacting Bosons . . . . . . . . . . . . . . . . . . . . 26

3.4 Field Operators in Heisenberg Picture . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Creation and Annihilation Operators for Fermions . . . . . . . . . . . . . . . . . 31

3.6 Occupation Number Representation . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Canonical Field Quantization for Bosons 37

4.1 Action of Schrödinger Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Functional Derivative: Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Functional Derivative: Application . . . . . . . . . . . . . . . . . . . . . . . . . 40
v



vi CONTENTS

4.4 Euler-Lagrange Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Hamilton Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Poisson Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Canonical Field Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Canonical Field Quantization for Fermions 49

5.1 Grassmann Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Grassmann Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 Grassmann Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.3 Differentiation and Integration . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.4 Complex Grassmann Numbers . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.5 Grassmann Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Lagrange Field Theory for Fermions . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Hamilton Field Theory for Fermions . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Poisson Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Canonical Field Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

II Free Relativistic Fields and Their Quantization 61

6 Poincaré Group 63
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Chapter 1

Introduction

This lecture provides a hands-on insight into quantum electrodynamics, which represents an

important building block of the standard model of elementary particles physics. To this end

we proceed in three steps. At first, we introduce the concept of second quantization, which

allows to deal with an arbitrary number of quantum particles, by the example of non-relativistic

many-body theory. Then we discuss the relativistic wave equations as representations of the

Poincaré symmetry of space-time. And, ultimately, we work out how to perturbatively calcu-

late scattering cross sections of fundamental quantum electrodynamic processes by using the

technique of Feynman diagrams.

1.1 Standard Model

The standard model of elementary particle physics describes quite successfully the basic struc-

ture of matter and three of the overall four fundamental interactions. All its predictions agree

precisely with all experimental measurements performed so far within the respective error bars.

The basic concept of the standard model is local gauge invariance. This means that the physics

does not change provided that the particle wave functions acquire local phase factors, which

change continuously from space-time point to space-time point. This represents a quite hard

restriction. Free massive particles do not fulfill this condition, as their wave functions only

allow for a global change of the phase factors. But if we postulate to have in addition for

massive particles also an invariance with respect to a local change of their phase factors, we

can deduce how these massive particles interact. Within such a local gauge theory it turns out

that the interaction between the massive particles is mediated by an exchange of gauge bosons,

which represent the quantized excitations of the corresponding gauge fields. In this way the

three interactions of the standard model can be classified as is summarized in Tab. 1.1.

The first and by far most successful theory of fundamental interactions is quantum electro-

dynamics. Its U(1) gauge theory was later on extended to the description of the other two

interactions of the standard model, which lead to the electroweak theory, unifying both the
1



2 CHAPTER 1. INTRODUCTION

interaction gauge symmetry gauge bosons

electromagnetic U(1) photon

weak SU(2) intermediate vector bosons

strong SU(3) gluon

Table 1.1: Overview of the three types of interactions of the standard model of elementary

particle physics together with their gauge symmetries and gauge bosons.

Figure 1.1: Due to the presence of the vacuum the scattering of two electrons also involves the

creation and annihilation of virtual electrons and positrons.

eletrodynamic and weak interactions, as well as quantum chromodynamics, the quantum the-

ory of the strong interaction. Furthermore, quantum electrodynamics is the theory in all natural

sciences, whose predictions agree most precisely with experimental results. According to a com-

parison of Richard Feynman, its precision of 10 orders of magnitude corresponds to a resolution,

where the thickness of a single hair is resolvable by looking from the West to the East Coast

of America.

1.2 Non-Relativistic Quantum Many-Body Theory

Within a quantum electrodynamic scattering process not only real particles are involved. The

physical vacuum is not empty but, instead, consists of a sea of virtual particles, which are

also involved in a scattering process, see Fig. 1.1. Therefore, it is necessary to work out a

quantum mechanical formalism which is capable of describing an arbitrary number of particles.

The formalism of first quantization is not appropriate for that as there the number of particles

remains conserved. With the first quantization it is possible to calculate, for instance, for the

hydrogen atom the stationary energy states and the respective transition probabilities between

them. But the fundamental processes of the absorption of a photon and the corresponding

excitation of an electron as well as the later relaxation of the electron to the ground state
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bosons fermions

integer spin half-integer spin

particles mediating forces matter particles

Bose-Einstein statistics Fermi-Dirac statistics

symmetric many-body wave function anti-symmetric many-body wave function

Table 1.2: According to the spin-statistic theorem there exist with bosons and fermions two

kinds of indistinguishable particles.

spin 0 1/2 1 3/2 2

mass > 0 Higgs leptons, quarks intermediate vector bosons ∆ resonances

mass = 0 photon, gluon graviton

Table 1.3: Classification of elementary particles according to their spin and mass.

and the corresponding emission of a photon are not describable within the first quantization

formalism as they violate the particle number conservation.

The description of identical particles, which have exactly the same physical properties as, for

instance, mass, spin and charge, turns out to be problematic in the realm of quantum me-

chanics. In classical mechanics identical particles are distinguishable so that the trajectory of

each particle can always be identified. All experiments suggest, however, that this principle

of distiguishability can no longer be maintained in quantum mechanics. Due to the Heisen-

berg uncertainty relation the probability densities of identical particles overlap so that the

identification of a single particle is not possible. Despite of this fundamental principle of in-

distinguishability of identical particles in quantum mechanics one is nevertheless forced, due

to calculational purposes, to enumerate the particles. But this artificial particle enumeration

has to be performed in such a way that physically observable results turn out to be invariant

with respect to any change of this particle labeling. From this definition of indistinguishability

then follows that a many-particle wave function must obey special symmetry requirements. To

this end Wolfgang Pauli derived 1940 the spin-statistic theorem of relativistic quantum field

theory. By unifying the basic principles of special relativity with those of quantum mechanics

he showed that there are in three dimensions exactly two kinds of indistinguishable identical

particles, namely bosons and fermions. Their respective properties are summarized in Tab. 1.2.

It turns out that concrete calculations with (anti-)symmetric many-body wave functions are

quite cumbersome. Therefore, one has worked out a quite elegant formalism for quantum

many-body systems, which is capable of dealing with an arbitrary number of particles and is

called second quantization. In Part I of the lecture we work out the so-called canonical field

quantization which deals with creation and annihilation operators for particles. Note that the

Bose-Einstein and Fermi-Dirac statistics is automatically taken into account by defining appro-
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priate commutation relations for the creation and annihilation operators. Because of illustrative

purposes and in view of applications in the realm of solid-state physics we restrict ourselves in

Part I to elaborate this second quantization formalism in the realm of non-relativistic quantum

many-body theory. Thus, this amounts to quantize the first quantized Schrödinger theory,

which is possible to perform separately for both bosons and fermions.

1.3 Relativistic Fields and Their Quantization

In Part II we discuss at first the Poincaré group as the fundamental space-time symmetry in the

absence of gravity. By the concrete examples of rotations, boosts, and translations we introduce

the concepts of Lie groups and Lie algebras as well as their respective representations. In

particular, the Casimir operators of the Poincaré group are of importance, i.e. those operators

which commute with all generators of rotations, boosts, and translations. Namely, it turns

out that all states of relativistic quantum field theory can be classified with respect to the

eigenvalues of the Casimir operators of the Poincaré group, which are the spin and the mass of

the elementary particles, respectively, see Tab. 1.3.

Thus, one can understand relativistic quantum field theory as the representation theory of the

Poincaré group. From this group-theoretical point of view we discuss in detail the examples of

both the Maxwell and the Dirac field. To this end we determine the respective free solutions

with their different helicity and polarization states. But instead of directly solving the respective

Maxwell and Dirac equation, we take group theory to our advantage. For the massless (massive)

spin 1 (1/2) particles we solve the underlying Maxwell (Dirac) equation in a particular reference

frame (the inertial frame) and rotate (boost) then the solution to an arbitrary reference (inertial)

frame. Afterwards, we second quantize the Maxwell as well as the Dirac theory and construct

their respective free propagators. Furthermore, we discuss the fundamental relations between

symmetries and conservation laws in terms of the seminal Noether theorem. As a concrete

example we deal with all conservation laws of quantum electrodynamics.

1.4 Quantum Electrodynamics

In Part III we finally turn to quantum electrodynamics. At first we derive the light-matter

interaction by postulating the aforementioned local gauge invariance. Based on the formalism

of second quantization we then perform a systematic perturbation theory around the free theory

and expand with respect to the light-matter interaction strength. In particular, we demonstrate

that, although using the non-covariant Coulomb gauge for the Maxwell field, we finally yield

covariant perturbative corrections, which can be graphically represented in terms of Feynman

diagrams. In order to construct all Feynman diagrams order by order we introduce a graphical

recursion relation, which is based on cutting the lines of Feynman diagrams of lower orders and
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Mott scattering e−Z – e−Z

Møller scattering e− – e−

Bhabha scattering e− – e+

Compton scattering e−γ – e−γ

Table 1.4: Examples of scattering processes in quantum electrodynamics.

gluing them together with new interaction vertices. Based on the Feynman diagrams we are

then able to calculate the cross sections for individual scattering processes, see the examples

mentioned in Tab. 1.4.

In lowest order the respective cross sections are generically finite, but in higher orders notorious

infinities appear. These infinities prevent to make any concrete quantitative prediction for an

experimental measurement of a cross section. In quantum electrodynamics it turns out that

these infinities can be systematically removed order by order with a so-called renormalization

scheme. In a first step one regularizes the infinite integrals, i.e. one introduces an additional

calculational degree of freedom in such a way that these integrals become finite. For instance,

one introduces an ultraviolet cut-off Λ in momentum space or one follows the notion of Gerard

’t Hooft and calculates the momentum integrals in D = 4 − ε dimensions. By construction

the infinities of the integrals then emerge in the limit Λ → ∞ or ε → 0. In a second step one

shows then that the infinities can be absorbed by the few parameters of the theory as the mass,

the coupling constant, and the fields. Depending on the available time we plan to perform this

renormalization scheme in quantum electrodynamics explicitly in the lowest perturbative order.

The general proof, that quantum electrodynamics is renormalizable to all orders of perturbation

theory, is due to Freeman Dyson.





Part I:

Non-Relativistic
Quantum Many-Body Theory

7





Chapter 2

Identical Particles

Here we deal with identical particles, thus they have exactly the same properties like mass, spin

or charge. From all experiments performed so far in the realm of quantum mechanics one can

deduce that such identical particles are indistinguishable. Nevertheless we start with describing

a quantum many-particle system in Section 2.1 as if their identical particles would be distin-

guishable. Based on that we investigate then in Section 2.2 the consequences for postulating

the indistinguishability of identical particles. Namely, it turns out in three spatial dimensions

that identical particles are either bosons or fermions, which are characterized by a symmetric

and anti-symmetric many-body wave function, respectively. We illustrate the corresponding

complications in concrete calculations by the illustrative example of non-interacting identical

particles in Section 2.3.

2.1 Distinguishable Particles

A many-body system of identical nonrelativistic particles of mass M is classically described by

the Lagrange function

L(x1, . . . ,xn; ẋ1, . . . , ẋn) =
n∑

ν=1

M

2
ẋ2
ν − V (x1, . . . ,xn) . (2.1)

The n-particle potential V (x1, . . . ,xn) is usually additive in both the 1-particle potentials V1(xν)

and the 2-particle potentials V2(xν − xµ):

V (x1, . . . ,xn) =
n∑

ν=1

V1(xν) +
1

2

n∑

ν=1

n∑

µ=1

V2(xν − xµ) . (2.2)

Note that the latter must obey the symmetry

V2(xν − xµ) = V2(xµ − xν) (2.3)

due to the Newton axiom ”action = - reactio”. The Euler-Lagrange equations

∂L

∂xν
− d

dt

∂L

∂ẋν
= 0 (2.4)

9



10 CHAPTER 2. IDENTICAL PARTICLES

corresponding to the Lagrange function (2.1), (2.2) lead to the Newton equations of motion:

M ẍν = −∂V1(xν)

∂xν
−

n∑

µ=1

∂V2(xν − xµ)

∂xν
. (2.5)

The transition to the Hamilton formalism is implemented by introducing the canonically con-

jugated momenta

pν =
∂L

∂ẋν
= M ẋν (2.6)

and by performing the Legendre transformation

H(p1, . . . ,pn; x1, . . . ,xn) =
n∑

ν=1

pνẋν − L(x1, . . . ,xn; ẋ1, . . . , ẋn) (2.7)

which yields the Hamilton function

H(p1, . . . ,pn; x1, . . . ,xn) =
n∑

ν=1

p2
ν

2M
+

n∑

ν=1

V1(xν) +
1

2

n∑

ν=1

n∑

µ=1

V2(xν − xµ) . (2.8)

The corresponding Hamilton equations

ẋν =
∂H

∂pν
=

pν
M

, (2.9)

ṗν = − ∂H
∂xν

= −∂V1(xν)

∂xν
−

n∑

µ=1

∂V2(xν − xµ)

∂xν
(2.10)

turn out to be equivalent to the Newton equations of motion (2.5).

The transition from classical mechanics to quantum mechanics is achieved by assigning opera-

tors to observables:

xν → x̂ν , pν → p̂ν , H(p1, . . . ,pn; x1, . . . ,xn)→ H(p̂1, . . . , p̂n; x̂1, . . . , x̂n) . (2.11)

In order to obey the Heisenberg uncertainty relation, we postulate here the following canonical

commutation relations

[
x̂jν , x̂kµ

]
− =

[
p̂jν , p̂kµ

]
− = 0 ,

[
p̂jν , x̂kµ

]
− =

h̄

i
δjk δνµ , (2.12)

where the commutator between two quantum mechanical operators Â and B̂ is defined by

[
Â, B̂

]
− = ÂB̂ − B̂Â . (2.13)

The time evolution of a quantum mechanical state vector |ψ(t)〉 is described by the Schrödinger

equation:

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 . (2.14)
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In order to convert this representation independent formulation of quantum mechanics to the

spatial representation, one chooses as a basis the eigenstates |x1, . . . ,xn〉 of the coordinate

operators x̂ν . They fulfill the eigenvalue problem

x̂ν |x1, . . . ,xn〉 = xν |x1, . . . ,xn〉 (2.15)

as well as the orthonormality relation

〈x1, . . . ,xn|x′1, . . . ,x′n〉 = δ(x1 − x′1) · . . . · δ(xn − x′n) (2.16)

and the completeness relation
∫
d3x1 · . . . ·

∫
d3xn |x1, . . . ,xn〉〈x1, . . . ,xn| = 1 . (2.17)

The spatial representation of the momentum operators p̂ν is given by the Jordan rule:

〈x1, . . . ,xn|p̂ν =
h̄

i

∂

∂xν
〈x1, . . . ,xn| . (2.18)

Evolving the quantum mechanical state vector |ψ(t)〉 with respect to this basis yields due to

the completeness relation (2.17)

|ψ(t)〉 =

∫
d3x1 · . . . ·

∫
d3xn ψ(x1, . . . ,xn; t) |x1, . . . ,xn〉 , (2.19)

where the expansion coefficients represent the n-particle wave function

ψ(x1, . . . ,xn; t) = 〈x1, . . . ,xn|ψ(t)〉 . (2.20)

Multiplying (2.14) from the left with the bra-vector 〈x1, . . . ,xn| leads for the n-particle wave

function (2.20) to the n-particle Schrödinger equation

ih̄
∂

∂t
ψ(x1, . . . ,xn; t) = Ĥψ(x1, . . . ,xn; t) . (2.21)

Here the spatial representation of the Hamilton operator Ĥ follows due to (2.11), (2.15), and

(2.18) from the Hamilton function H as follows:

Ĥ = H

(
h̄

i

∂

∂x1

, . . . ,
h̄

i

∂

∂xn
; x1, . . . ,xn

)
. (2.22)

In case of the standard Hamilton function (2.8) we get

Ĥ =
n∑

ν=1

{
− h̄2

2M
∆ν + V1(xν)

}
+

1

2

n∑

ν=1

n∑

µ=1

V2(xν − xµ) . (2.23)

As we have assumed here that both the 1- and the 2-particle potential V1 and V2 do not explicitly

depend on time, one can perform for the n-particle wave function the separation ansatz

ψ(x1, . . . ,xn; t) = ψE(x1, . . . ,xn) e−iEt/h̄ . (2.24)

This reduces the time-dependent Schrödinger equation (2.21) to the time-independent Schrödinger

equation:

ĤψE(x1, . . . ,xn) = EψE(x1, . . . ,xn) , (2.25)

where E denotes the energy eigenvalue.
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2.2 Bosons and Fermions

The quantum mechanical laws summarized in the last section are only valid for identical par-

ticles, which are assumed to be distinguishable. But experimentally it has turned out that

identical particles always happen to behave in the same way so that no objective measurement

allows to distinguish one from the other. Thus, in the realm of quantum many-body theory

the fundamental principle of the indistinguishability of identical particles has to be taken into

account.

Physically relevant are only expectation values of observables. The principle of the indistin-

guishability of identical particles means in this context concretely that the expectation value

of any operator Â must not change when the enumeration of two particles is swapped within

the n-particle wave function:
∫
d3x1 · . . . ·

∫
d3xn ψ

∗(x1, . . . ,xj, . . . ,xk, . . . ,xn)Â ψ(x1, . . . ,xj, . . . ,xk, . . . ,xn)

=

∫
d3x1 · . . . ·

∫
d3xn ψ

∗(x1, . . . ,xk, . . . ,xj, . . . ,xn)Â ψ(x1, . . . ,xk, . . . ,xj, . . . ,xn) . (2.26)

From this definition of indistinguishability of identical particles we now derive various charac-

teristic properties for both the operators Â and the n-particle wave functions ψ(x1, . . . ,xn).

Note that restricting the equality of expectation values (2.26) to just two particles is not a

principle limitation as any permutation P̂ can always be represented as a certain product of

transpositions P̂jk

P̂ =
∏

P̂jk . (2.27)

Here the action of P̂jk is defined by exchanging the particle coordinates j and k in the n-particle

wave function:

P̂jkψ(x1, . . . ,xj, . . . ,xk, . . . ,xn) = ψ(x1, . . . ,xk, . . . ,xj, . . . ,xn) . (2.28)

From (2.28) it is self-evident that the transposition P̂jk is involutoric, i.e. applying it twice

yields back the original n-particle wave function:

P̂jk P̂jk = 1 =⇒ P̂jk = P̂−1
jk . (2.29)

With the help of the transposition operator P̂jk the defining equation (2.26) of the indistin-

guishability of identical particles can be converted from the spatial representation into the

representation-free formulation:

〈ψ|Â|ψ〉 = 〈P̂jkψ|Â|P̂jkψ〉 = 〈ψ|P̂ †jkÂP̂jk|ψ〉 . (2.30)

From the straight-forward decomposition

〈φ|Â|ψ〉 =
1

4

[
〈φ+ ψ|Â|φ+ ψ〉 − 〈φ− ψ|Â|φ− ψ〉

−i〈φ+ iψ|Â|φ+ iψ〉+ i〈φ− iψ|Â|φ− iψ〉
]
, (2.31)
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which takes advantage from the sesquilinearity property

〈φ|Â|iψ〉 = i〈φ|Â|ψ〉 , 〈iψ|Â|φ〉 = −i〈ψ|Â|φ〉 , (2.32)

follows then together with (2.30) a useful identity for any matrix element:

〈φ|Â|ψ〉 = 〈φ|P̂ †jkÂP̂jk|ψ〉 . (2.33)

Due to the arbitrariness of the states |φ〉 and |ψ〉 we thus conclude the operator identity

Â = P̂ †jkÂP̂jk . (2.34)

Evaluating (2.34) for the special case Â = P̂jk we read off due to (2.29) that the transposition

operator P̂jk turns out to be both hermitian

P̂jk = P̂ †jk (2.35)

and unitary

P̂−1
jk = P̂ †jk . (2.36)

Furthermore, we conclude from (2.34) and (2.36) that any operator Â commutes with a trans-

position P̂jk:

[
P̂jk, Â

]
−

= P̂jkÂ− ÂP̂jk = 0 . (2.37)

As the latter identity holds in particular for the Hamilton operator Â = Ĥ we know that there

exist states, which are at the same time eigenstates of both the Hamilton operator Ĥ and all

transposition operators P̂jk:

Ĥ|ψ〉 = E|ψ〉 , P̂jk|ψ〉 = pjk|ψ〉 . (2.38)

Due to the hermiticity (2.35) of the transposition operators P̂jk their respective eigenvalues pjk

must be real. And from the involutoric property (2.29) follows furthermore

p2
jk = 1 (2.39)

Thus, the eigenvalues of the transposition operators P̂jk are either pjk = 1 or pjk = −1. More-

over, it is reasonable that an n-particle wave function ψ(x1, . . . ,xn), which is an eigenfunction

of all transposition operators P̂jk, must always have one and the same eigenvalue. In order to

show this we consider the following identity:

P̂1jP̂2kP̂12P̂2kP̂1jψ(x1,x2, . . . ,xj, . . . ,xk, . . . ,xn)

= P̂1jP̂2kP̂12ψ(xj,xk, . . . ,x1, . . . ,x2, . . . ,xn)P̂1jP̂2kψ(xk,xj, . . . ,x1, . . . ,x2, . . . ,xn)

= ψ(x1,x2, . . . ,xk, . . . ,xj, . . . ,xn) = P̂jkψ(x1,x2, . . . ,xj, . . . ,xk, . . . ,xn) . (2.40)
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From this we conclude the operator identity:

P̂jk = P̂1jP̂2kP̂12P̂2kP̂1j , (2.41)

so we obtain for the corresponding eigenvalues due to (2.39)

pjk = (p1j)
2 (p2k)

2 p12 =⇒ pjk = p12 . (2.42)

Therefore, identical particle possess either a symmetric (ε = +1) or an anti-symmetric (ε = −1)

wave function with the property

P̂jk|ψε〉 = ε|ψε〉 . (2.43)

Using (2.35) and (2.43) we get that symmetric and anti-symmetric wave function are always

orthogonal with respect to each other:

〈ψ−|ψ+〉 = 〈ψ−|P̂jkψ+〉 = 〈ψ−|P̂ †jkψ+〉 = 〈P̂jkψ−|ψ+〉 = −〈ψ−|ψ+〉
=⇒ 〈ψ−|ψ+〉 = 0 . (2.44)

Furthermore, it turns out that identical particles maintain their symmetry character for all

times. To this end we state that the time evolution operator Û(t2, t1) transforms an initial

state of definite symmetry |ψε1(t1)〉 into a final state of definite symmetry |ψε2(t2)〉 via

|ψε2(t2)〉 = Û(t2, t1)|ψε1(t1)〉 . (2.45)

Thus, taking (2.37) and (2.43) into account we conclude

ε2|ψε2(t2)〉 = P̂jk|ψε2(t2)〉 = P̂jkÛ(t2, t1)|ψε1(t1)〉 = Û(t2, t1)P̂jk|ψε1(t1)〉 = ε1|ψε1(t2)〉
=⇒ ε1 = ε2 . (2.46)

As a result we state that the Hilbert space of identical particles consists of either only symmetric

or only anti-symmetric wave functions. In relativistic quantum field theory it is shown which

Hilbert space is appropriate for which sort of particles. According to the spin-statistic theorem

of Pauli identical particles with integer (half-integer) spin are bosons (fermions) and have

symmetric (anti-symmetric) wave functions, see Tab. 1.2.

2.3 Non-Interacting Identical Particles

In general it is quite cumbersome to calculate n-particle wave functions by taking into account

the symmetry property. We illustrate this by the example of non-interacting identical particles.

According to (2.23), (2.25) and a vanishing 2-particle potential V2(xν − xµ) = 0 the following

time-independent Schrödinger equation has to be solved:

n∑

ν=1

{
− h̄2

2M
∆ν + V1(xν)

}
ψE(x1, . . . ,xn) = E ψE(x1, . . . ,xn) . (2.47)
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In the following we assume that the 1-particle wave functions ψEα(x) with the vector of quantum

numbers α are known as solutions of the time-independent 1-particle Schrödinger equation

{
− h̄2

2M
∆ + V1(x)

}
ψEα(x) = Eα ψEα(x) . (2.48)

Thus they represent an orthonormal basis obeying both the orthonormality relation

∫
d3xψ∗Eα(x)ψEα′ (x) = δα,α′ (2.49)

and the completeness relation

∑

α

ψ∗Eα(x)ψEα(x′) = δ(x− x′) . (2.50)

In case that the particles would be distinguishable, then a solution of the time-independent

n-particle Schrödinger equation (2.47) factorizes into 1-particle wave functions:

ψE(x1, . . . ,xn) = ψEα1 ,...,Eαn
(x1, . . . ,xn) =

n∏

ν=1

ψEαν (xν) (2.51)

and the total energy is the sum of the respective 1-particle energies

E =
n∑

ν=1

Eαν . (2.52)

Furthermore, the orthonormality and completeness relations of the 1-particle wave functions

(2.49) and (2.50) imply corresponding relations for the n-particle wave functions

∫
d3x1 · · ·

∫
d3xn ψ

∗
Eα1 ,...,Eαn

(x1, . . . ,xn)ψEα′1 ,...,Eα′n
(x1, . . . ,xn) =

n∏

ν=1

δαν ,α′ν , (2.53)

∑

α1

· · ·
∑

αn

ψ∗Eα1 ,...,Eαn
(x1, . . . ,xn)ψEα1 ,...,Eαn

(x′1, . . . ,x
′
n) =

n∏

ν=1

δ(xν − x′ν) . (2.54)

But, as identical particles are indistinguishable, the n-particle wave functions must either be

symmetric or anti-symmetric. To this end we introduce the (anti-)symmetrization operator

Ŝε =
∑

P̂

εpP̂ , (2.55)

which consists of a sum over all permutation operators P̂ and p denotes the number of trans-

positions of a certain permutation corresponding to the decomposition (2.27). Multiplying a

permutation P̂ in the sum (2.55) with a single transposition P̂jk, one obtains another permu-

tation P̂ ′ = P̂jkP̂ with p′ = p± 1. This has due to ε = ±1 the following consequence:

P̂jkŜ
ε =

∑

P̂

εpP̂jkP̂ =
∑

P̂ ′

εp
′∓1P̂ ′ = ε

∑

P̂ ′

εp
′
P̂ ′ = εŜε . (2.56)
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With the prescription

ψε{Eα}(x1, . . . ,xn) = N ε
{Eα}Ŝ

ε

n∏

ν=1

ψEαν (xν) (2.57)

we construct for each wave function (2.51) of n distinguishable particles a corresponding sym-

metric (ε = 1) or anti-symmetric ε = −1 n-particle wave function, which obeys (2.43) by taking

(2.56) into account. Due to the indistinguishability property the (anti-)symmetrized n-particle

wave function (2.57) turns out to be independent of the concrete order of the 1-particle energies

Eα1 , . . . , Eα1 . In order to emphasize that within our notation, we have introduced in (2.57) the

index {Eα}.
At first, we remark that the (anti-)symmetrized n-particle wave function (2.57) obeys the time-

independent Schrödinger equation (2.47) with the energy eigenvalue (2.52). This follows from

(2.37) as well as the circumstance (2.27) that each permutation operator P̂ in the sum (2.55)

can be represented as a product of transposition operators:

Ĥ|ψE〉 = E|ψE〉 =⇒ ĤŜε|ψE〉 = ŜεĤ|ψE〉 = EŜε|ψE〉 . (2.58)

Furthermore, we read off from (2.55) and (2.57) an important observation for the anti-symmetric

n-particle wave function, which is characterized by ε = −1:

ψ−{Eα}(x1, . . . ,xn) = N−{Eα}

∑

P̂

(−1)p ψEα1
(xP (1)) · · ·ψEαn (xP (n)) . (2.59)

Thus, the anti-symmetric n-particle wave function can be represented in form of a Slater de-

terminant:

ψ−{Eα}(x1, . . . ,xn) = N−{Eα}

∣∣∣∣∣∣∣

ψEα1
(x1) ψEα1

(x2) · · · ψEα1
(xn)

...
...

...

ψEαn (x1) ψEαn (x2) · · · ψEαn (xn)

∣∣∣∣∣∣∣
. (2.60)

In the case of an equality of two rows, i.e. αj = αk, or two columns, i.e. xj = xk, the anti-

symmetric n-particle wave function (2.60) vanishes and with this the probability to have such a

wave function. This just represents the fundamental Pauli exclusion principle that two fermions

can not be neither in the same state nor at the same space point. A corresponding restriction

does not exist for bosons. This means that there can be more than one boson in one state

or at one space point. In order not to overload the following combinatorial considerations,

we consider from now on only those bosonic wavefunctions, where a state or a space point is

occupied at most by one boson.

It remains to determine the normalization constant N ε
{Eα} in (2.57). To this end we apply (2.27),

that each permutation operator P̂ can be represented by transpositions P̂jk, and conclude that

iterating (2.56) yields

P̂ Ŝε = εpŜε . (2.61)
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Taking into account (2.55) the scalar product between two (anti-)symmetric n-particle wave

functions (2.57) reads at first

〈ψε{Eα}|ψε{Eα′}〉 = N ε
{Eα}

∑

P̂

εp〈ψEα1
· · ·ψEαn |P̂ †ψε{Eα′}〉 . (2.62)

Due to (2.27) and (2.35) as well as (2.57) and (2.61) this reduces to

〈ψε{Eα}|ψε{Eα′}〉 = N ε
{Eα}

∑

P̂

ε2p〈ψEα1
· · ·ψEαn |ψε{Eα′}〉 . (2.63)

As we have ε = ±1, the summand turns out to be independent of the respective permutations

P̂ , so the sum reduces to the factor n!, which is the number of all possible permutations. Taking

into account again (2.57) and (2.61) we get

〈ψε{Eα}|ψε{Eα′}〉 = N ε
{Eα}N

ε
{Eα′}n!

∑

P̂ ′

εp
′〈ψEα1

· · ·ψEαn |P̂ ′ψEα′1 · · ·ψEα′n 〉 . (2.64)

And with the orthonormality (2.53) of the 1-particle wavefunctions we finally obtain for the

scalar product the expression

〈ψε{Eα}|ψε{Eα′}〉 = N ε
{Eα}N

ε
{Eα′}n!

∑

P̂ ′

εp
′
δα1,α′P ′(1)

· · · δα1,α′P ′(n)
. (2.65)

We now demand the orthonormality relation

〈ψε{Eα}|ψε{Eα′}〉 = δεα1,...,αn;α′1,...α
′
n

(2.66)

with the (anti-)symmetrized Kronecker symbol

δεα1,...,αn;α′1,...α
′
n

=
∑

P̂

εp δα1,α′P (1)
· · · δα1,α′P (n)

. (2.67)

As we restrict ourselves both for bosons and fermions to the case that all single-particle states

differ from each other, i.e. αµ 6= αν for µ 6= ν, in (2.66) and (2.67) only the identity permutation

P̂ = 1 survives, which fixes the normalization constant N ε
{Eα} according to

N ε
{Eα} =

1√
n!
. (2.68)

Finally, we show that one can span the whole Hilbert space of (anti-)symmetrized n-particle

wave functions with (2.57). To this end we start from the completeness relation (2.54) of the

n-particle wave function and apply twice the (anti-)symmetrization operator (2.55), once upon

the space coordinates x1, . . . ,xn and once upon the space coordinates x′1, . . . ,x
′
n:

∑

P̂

∑

P̂ ′

εp+p
′∑

α1

· · ·
∑

αn

ψ∗Eα1
(xP (1)) · · ·ψ∗Eαn (xP (n))ψEα1

(x′P ′(1)) · · ·ψEαn (x′P ′(n))

=
∑

P̂

∑

P̂ ′

εp+p
′
δ(xP (1) − x′P ′(1)) · · · δ(xP (n) − x′P ′(n)) . (2.69)
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At the left-hand side the space coordinates xP (1), . . . ,xP (n) and x′P ′(1), . . . ,x
′
P ′(n) are rearranged

in their respective standard order x1, . . . ,xn and x′1, . . . ,x
′
n. As a consequence the quantum

numbers α1, . . . αn are rearranged to αP (1), . . . αP (n) and αP ′(1), . . . αP ′(n), respectively. A corre-

sponding reordering on the right-hand side from xP (1), . . . ,xP (n) to x1, . . . ,xn rearranges then

x′P ′(1), . . . ,x
′
P ′(n) to x′P ′(P (1)), . . . ,x

′
P ′(P (n)), yielding

∑

α1

· · ·
∑

αn

{∑

P̂

εpψ∗EαP (1)
(x1) · · ·ψ∗EαP (n)

(xn)
}{∑

P̂ ′

εp
′
ψ∗EαP ′(1)

(x′1) · · ·ψ∗EαP ′(n)
(x′n)

}

=
∑

P̂

∑

P̂ ′

εp+p
′
δ(x1 − x′P ′(P (1))) · · · δ(xn − x′P ′(P (n))) . (2.70)

At the left-hand side we now use (2.55), (2.57), and (2.68), whereas at the right-hand side the

sum over all permutations P̂ ′ is substituted by an equivalent sum over all permutations Q̂ = P̂ ′P̂

with q = p′ + p, so that afterwards the sum over P̂ can straight-forwardly be performed. With

this we finally obtain the completeness relation
∑

α1

· · ·
∑

αn

ψε∗{Eα}(x1, . . . ,xn)ψε{Eα}(x
′
1, . . . ,x

′
n) = δε(x1, . . . ,xn; x′1, . . . ,x

′
n) , (2.71)

where we have introduced analogous to (2.67) the (anti-)symmetrized delta function

δε(x1, . . . ,xn; x′1, . . . ,x
′
n) =

∑

Q̂

εqδ(x1 − x′Q(1)) · · · δ(xn − x′Q(n)) . (2.72)

The considerations of the present section have the purpose to generate a basis of the Hilbert

space of indistinguishable identical particles via a(n) (anti-)symmetrization of the known basis

of the Hilbert space of distinguishable identical particles. So far the starting point has been

the eigenvalue problem (2.47) of the underlying Hamilton operator. But another basis results

from considering the eigenvalue problem (2.15) of the coordinate operators as the starting

point. Then the eigenfunctions |x1, . . . ,xn〉 with the continuous eigenvalues x1, . . . ,xn span

the Hilbert space of distinguishable identical particles. The subsequent (anti-)symmetrization

is performed analogous to (2.55), (2.57), and (2.68), yielding another basis in the Hilbert space

of indistinguishable identical particles:

|x1, . . . ,xn〉ε =
1√
n!

∑

P̂

εp|xP (1), . . . ,xP (n)〉 . (2.73)

Both the orthonormality relation and the completeness relation corresponding to (2.66) and

(2.71) read then

ε〈x1, . . . ,xn|x′1, . . . ,x′n〉ε = δε(x1, . . . ,xn; x′1, . . . ,x
′
n) , (2.74)∫

d3x1 · · ·
∫
d3xn |x1, . . . ,xn〉ε ε〈x1, . . . ,xn| = 1 . (2.75)

For the purpose of illustration we consider the spatial representation for two particles. The

basis for two distinguishable identical particles reads in coordinate representation according to

(2.16) and (2.20)

ψx1,x2(z1, z2) = 〈z1, z2|x1,x2〉 = δ(z1 − x1)δ(z2 − x2) . (2.76)
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Correspondingly, the coordinate representation for two indistinguishable particles follows from

(2.20):

ψεx1,x2
(z1, z2) = 〈z1, z2|x1,x2〉ε , (2.77)

which reduces due to (2.16) and (2.73) to

ψεx1,x2
(z1, z2) =

1√
2

{
δ(z1 − x1)δ(z2 − x2) + εδ(z1 − x2)δ(z2 − x1)

}
. (2.78)

Note that (2.78) also follows from an (anti-)symmetrization (2.73) from (2.76) as defined by

(2.55), (2.57), and (2.68). With this one obtains for the orthonormality relation (2.74) by taking

into account (2.72)

∫
d3z1

∫
d3z2 ψ

ε∗
x1,x2

(z1, z2)ψεx′1,x′2(z1, z2) = δε(x1,x2; x′1,x
′
2) (2.79)

and correspondingly the completeness relation (2.75) reads together with (2.74) and (2.76)

∫
d3x1

∫
d3x2 ψ

ε∗
x1,x2

(z1, z2)ψεx1,x2
(z′1, z

′
2) = δε(z1, z2; z′1, z

′
2) . (2.80)





Chapter 3

Second Quantization

The formulation of quantum many-body systems introduced so far dealt first with distinguish-

able particles and necessitated then to perform afterwards a(n) (anti-)symmetrization of wave

functions in order to describe indistinguishable particles in form of bosons (fermions). Usually

this procedure turns out to be quite cumbersome due the huge number of particles involved in a

quantum many-body system. Therefore, one has worked out second quantization as an alterna-

tive formulation for describing quantum many-body systems, which has the advantage that it

automatically takes into account the (anti-)symmetrization of wave functions. It is based on the

ladder formalism, which allows an algebraic treatment of the first quantized harmonic oscillator

and is therefore initially reviewed. Afterwards, we heuristically formulate second quantization,

which represents the technical basis for non-relativistic quantum many-body theory. Due to

the introduction of creation and annihilation operators for identical particles we are able to

describe interacting bosonic and fermionic systems involving an arbitrary number of particles.

This is relevant for concrete applications in the realm of solid-state physics like the descrip-

tion of Bose-Einstein condensation and superfluidity as well as the Bardeen-Cooper-Schrieffer

theory of superconductivity, which is not the content of this lecture. But, a similar second

quantization formalism is later on used to quantize relativistic fields like the Maxwell and the

Dirac field and, thus, represents the very basis for quantum electrodynamics.

3.1 Harmonic Oscillator

The harmonic oscillator represents a standard quantum mechanical model with which it is

possible to describe quite successfully, for instance, collective oscillations in molecules or in

solids. The Hamilton operator of a one-dimensional harmonic oscillator with mass M and

frequency ω reads

Ĥ =
p̂2

2M
+
M

2
ω2x̂2 , (3.1)

21
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where one demands non-trivial commutation relations between the coordinate operator q̂ and

the momentum operator p̂ analogous to (2.12):

[
x̂, x̂
]
− =

[
p̂, p̂
]
− = 0 ,

[
p̂, x̂
]
− =

h̄

i
. (3.2)

The problem is now to solve the eigenvalue problem of the Hamilton operator

Ĥ|α〉 = Eα|α〉 , (3.3)

i.e. to determine how the energy eigenvalues Eα and the energy eigenfunctions |α〉 depend

on the quantum number α. Usually this representation-free eigenvalue problem (3.3) is trans-

formed into the coordinate representation, so it amounts to solve the corresponding Schrödinger

equation by taking into account the appropriate Dirichlet boundary condition. In the follow-

ing, however, we proceed differently by solving the representation-free eigenvalue problem (3.3)

directly by taking into account the cummator relations (3.2).

At first, the two hermitian operators x̂ and p̂ are transformed into two new operators â† and

â, which are adjoint with respect to each other:

â† =

√
Mω

2h̄

(
x̂− i

Mω
p̂

)
, â =

√
Mω

2h̄

(
x̂+

i

Mω
p̂

)
. (3.4)

The inverse transformation reads correspondingly

x̂ =

√
h̄

2Mω

(
â† + â

)
, p̂ =

√
h̄Mω

2
i
(
â† − â

)
. (3.5)

Here the physical dimension of the coordinate operator x̂ is provided by the oscillator length√
h̄/(2Mω), whereas the corresponding one

√
h̄Mω/2 of the momentum operator p̂ is related

to the oscillator length via the Heisenberg uncertainty relation. Inserting (3.5) into (3.1), the

Hamilton operator of the harmonic oscillator can be expressed in terms of the new operators

â† and â, yielding

Ĥ =
h̄ω

2

(
â†â+ ââ†

)
. (3.6)

Furthermore, the transformation (3.4) allows to deduce from (3.2) the commutation relations

between the new operators â† and â:

[
â, â
]
− =

[
â†, â†

]
− = 0 ,

[
â, â†

]
− = 1 . (3.7)

Using (3.7) the Hamilton operator of the harmonic oscillator (3.6) reduces to

Ĥ = h̄ω

(
n̂+

1

2

)
, (3.8)

where the zero-point energy h̄ω/2 and the operator

n̂ = â†â (3.9)



3.1. HARMONIC OSCILLATOR 23

appear. In order to calculate commutators the following identity turns out to be quite useful

[
ÂB̂, Ĉ

]
− = Â

[
B̂, Ĉ

]
− +

[
Â, Ĉ

]
− B̂ , (3.10)

which follows immediately from the definition of the commutator (2.13). Indeed, applying

(3.10) we obtain the commutation relations for the operator (3.9):

[
n̂, â†

]
− = â† , (3.11)

[
n̂, â
]
− = −â . (3.12)

Let us now consider the eigenvalue problem of the operator (3.9):

n̂|λ〉 = λ|λ〉 (3.13)

As the operator (3.9) is hermitian, its eigenvalues λ must be real. Furthermore, the commuta-

tion relations (3.11) and (3.12) allow to investigate which consequences occur once the operators

â† and â are applied to the eigenfunctions |λ〉. On the one hand we read off from (3.11) and

(3.13)

n̂â†|λ〉 =
(
â†n̂+ â†

)
|λ〉 = (λ+ 1)â†|λ〉 =⇒ â†|λ〉 ∼ |λ+ 1〉 , (3.14)

on the other hand we conclude from (3.12) and (3.13)

n̂â|λ〉 =
(
ân̂− â

)
= (λ− 1)â|λ〉 =⇒ â|λ〉 ∼ |λ− 1〉 . (3.15)

Thus, the operators â† and â can be considered as ladder operators, which allow to climb up or

down the ladder of eigenfunctions |λ〉. Applying the raising (lowering) ladder operator â† (â)

to |λ〉 yields an eigenfunction corresponding to an eigenvalue which is increased (decreased) by

one, see Fig. 3.1

Furthermore, one can show that the eigenvalues λ of the operator N̂ are always positive by

taking into account (3.9) and (3.13) and by assuming without loss of generality that the eigen-

functions |λ〉 are normalized:

0 ≤ 〈âλ|âλ〉 = 〈λ|â†â|λ〉 = 〈λ|n̂|λ〉 = λ〈λ|λ〉 = λ . (3.16)

From (3.15) and (3.16) we conclude that the eigenvalues λ are given by positive integer number

including zero:

λ = n = 0, 1, 2, . . . . (3.17)

If there were a positive, non-integer eigenvalue λ, one could apply iteratively the lowering ladder

operator â and reduce in this way the eigenvalue due to (3.15) until it would become negative.

But this would then contradict the inequality (3.16). Thus, due to this contradiction proof,

there must be a ground state |0〉 with the property

â|0〉 = 0 ⇐⇒ 〈0|â† = 0 . (3.18)
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Figure 3.1: Raising (lowering) operator â† (â) increases (decreases) the quantum number λ of

the harmonic oscillator by one.

Normalized eigenfunctions |n〉 can then be constructed as follows. At first, we deduce from

(3.7), (3.9), (3.13), and (3.17):

〈â†n|â†n〉 = 〈n|ââ†|n〉 = 〈n|
(
â†â+ 1

)
|n〉 = 〈n|

(
n̂+ 1

)
|n〉 = n+ 1 . (3.19)

From (3.14), (3.17), and (3.19) follows a rule how applying the raising ladder operator â† upon

the normalized eigenfunction |n〉 yields the next normalized eigenfunction |n+ 1〉:

â†|n〉 = Cn|n+ 1〉 =⇒ C2
n〈n+ 1|n+ 1〉 = (n+ 1) =⇒ â†|n〉 =

√
n+ 1 |n+ 1〉 . (3.20)

And then iterating (3.20) yields a prescription how the eigenfunctions |n〉 can be constructed

from the ground state |0〉 defined by (3.18):

|n〉 =
1√
n
â†|n− 1〉 =

1√
n(n− 1)

(
â2
)2|n− 2〉 = . . . =⇒ |n〉 =

1√
n!

(
â†
)n|0〉 . (3.21)

For the sake of completeness we also determine the action of the lowering ladder operator â

upon the eigenfunction |n〉. At first we obtain from (2.68), (3.13), and (3.17)

〈ân|ân〉 = 〈n|â†â|n〉 = 〈n|n̂|n〉 = n . (3.22)

Thus, we conclude from (3.15) and (3.22)

â|n〉 = Dn|n− 1〉 =⇒ D2
n〈n− 1|n− 1〉 = n =⇒ â|n〉 =

√
n |n− 1〉 . (3.23)

Furthermore, we read off from (3.8), (3.9), (3.13), and (3.17) the energy eigenvalues of the

harmonic oscillator

En = h̄ω

(
n+

1

2

)
. (3.24)
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3.2 Creation and Annihilation Operators for Bosons

This ladder formalism for the algebraic treatment of the first quantized harmonic oscillator is

now used in the realm of second quantization for describing indistinguishable identical bosons.

We outline heuristically this basic idea by working out the analogy step by step:

• Whereas n describes the quantum number of the 1-particle system, we denote from now

on with nx the number of bosons at space point x.

• The ladder operators â† and â, which are defined by the commutator relations (3.7), allow

to increase and decrease the quantum number n of the harmonic oscillator. Correspond-

ingly we introduce operators â†x and âx via the commutator relations

[
âx, âx′

]
− =

[
â†x, â

†
x′

]
− = 0 ,

[
âx, â

†
x′

]
− = δ(x− x′) . (3.25)

With these commutator relations at hand, we can now proceed and deduce similar con-

clusions for the second quantized description of many bosons as we have just obtained for

the first quantized harmonic oscillator. In particular, this allows to determine a concrete

physical interpretation for the operators â†x and âx.

• The operator n̂ = â†â has turned out to have the eigenvalues n, which follows ultimately

from the commutator relations (3.11) and (3.12). Analogously we define the particle

number operator

N̂ =

∫
d3x′ â†x′ âx′ (3.26)

which obeys due to (3.10), (3.25), and (3.26) the commutator relations

[
N̂ , â†x

]
− = â†x , (3.27)

[
N̂ , âx

]
− = −âx . (3.28)

Note that we have deliberately introduced in the commutator relations (3.25) a delta

function in order to obtain for the particle number operator (3.26) commutator relations

(3.27), (3.28) in analogy to (3.11) and (3.12). This has the consequence that the operators

â†x and âx can be interpreted as a creation and annihilator operator as they create and

annihilate a boson at space point x, respectively.

• The first quantized harmonic oscillator has a ground state |0〉, which is introduced ac-

cording to (3.18). In a similar way we define in second quantization a vacuum state |0〉
via

âx|0〉 = 0 ⇐⇒ 〈0|â†x = 0 . (3.29)
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• Similar to (3.21) an iterative application of creation operators to the vacuum state yields

the basis states of the underlying Hilbert space for describing bosons

|x1, . . . ,xn〉+1 = â†x1
· · · â†xn|0〉 , (3.30)

where we assume that the space coordinates differ pairwise, i.e. xi 6= xj for all i 6= j. For

the sake of illustration we exemplary verify the identity of (2.73) and (3.30) for n = 1 and

n = 2 bosons in the coordinate representation. From (2.72), (3.25), (3.29), and (3.30) we

obtain at first

+1〈x1|x′1〉+1 = 〈â†x1
0|â†x′10〉 = 〈0|âx1 â

†
x′1
|0〉

= 〈0|â†x′1 âx1 + δ(x1 − x′1)|0〉 = δ(x1 − x′1) = δ+1(x1; x′1) . (3.31)

Correspondingly, we get then

+1〈x1,x2|x′1,x′2〉+1 = 〈â†x1
â†x2

0|â†x′1 â
†
x′2

0〉 = 〈0|âx2 âx1 â
†
x′1
â†x′2
|0〉

= 〈0|âx2

[
â†x′1

âx1 + δ(x1 − x′1)
]
â†x′2
|0〉 = δ(x1 − x′1)〈0|â†x′2 âx2 + δ(x2 − x′2)|0〉

+〈0|
[
â†x′1

âx2 + δ(x′1 − x2)
] [
â†x′2

âx1 + δ(x1 − x′2)
]
|0〉 = δ(x1 − x′1)δ(x2 − x′2)

+δ(x1 − x′2)δ(x2 − x′1) = δ+1(x1,x2; x′1,x
′
2) . (3.32)

3.3 Schrödinger Equation for Interacting Bosons

Introducing local creation and annihilation operators â†x and âx has not only the advantage of

constructing many-particle states, which automatically have the correct symmetry. In addition

one obtains a universal form of the time-dependent Schrödinger equation, which turns out to

be independent of the particle number n. In its representation-independent form it reads

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 . (3.33)

Here |ψ(t)〉 denotes some many-particle state in the second-quantized Hilbert space, which is

spanned by the basis states (3.30). The second-quantized Hamilton operator Ĥ consists of two

terms:

Ĥ = Ĥ1 + Ĥ2 . (3.34)

The local Hamilton operator Ĥ1 is determined the 1-particle Hamilton operator of non-interacting

bosons

− h̄2

2M
∆ + V1(x) . (3.35)

Due to the sandwich principle the first-quantized Hamilton operator (3.35) is multiplied with

the local creation and annihilation operators â†x and âx to the left and to the right, respectively,
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so a subsequent integration over the coordinate x yields the corresponding second-quantized

1-particle Hamilton operator:

Ĥ1 =

∫
d3x â†x

{
− h̄2

2M
∆ + V1(x)

}
âx . (3.36)

Correspondingly the bi-local Hamilton operator Ĥ2 is constructed with the help of the 2-particle

interaction V2(x− x′):

Ĥ2 =
1

2

∫
d3x

∫
d3x′ â†xâ

†
x′ V2(x− x′)âx′ âx . (3.37)

Note that in both terms (3.36) and (3.37) the creation and annihilation operators appear at

the left and at the right, respectively. This particular ordering of second-quantized operators

is called normal ordering. It has the consequence that the vacuum energy of the Hamilton

operator defined by (3.34), (3.36), and (3.37) vanishes due to the definition of the vacuum state

in (3.29):

Ĥ|0〉 = 0 ⇐⇒ 〈0|Ĥ = 0 . (3.38)

In the following we demonstrate that the operator character of â†x and âx is essential for the fact

that the Schrödinger equation (3.33) describes a many-body problem. To this end we multiply

(3.33) from the left with the adjoint of the basis state (3.30)

+1〈x1, . . . ,xn| = 〈0|âxn · · · âx1 . (3.39)

With this we get at first

ih̄
∂

∂t
〈0|âxn · · · âx1|ψ(t)〉 = 〈0|âxn · · · âx1Ĥ|ψ(t)〉 . (3.40)

Due to (3.38) we can express the right-hand side of (3.40) in terms of a commutator

ih̄
∂

∂t
〈0|âxn · · · âx1|ψ(t)〉 = 〈0|

[
âxn · · · âx1 , Ĥ

]
−
|ψ(t)〉 . (3.41)

Taking into account both contributions (3.36) and (3.37) of the Hamilton operator this leads

to the expression

∫
d3y

∫
d3z δ(y − z)

{
− h̄2

2M
∆z + V1(z)

}
〈0|
[
âxn · · · âx1 , â

†
yâz
]
− |ψ(t)〉+

1

2

∫
d3y1

∫
d3y2

·
∫
d3z1

∫
d3z2 δ(y1 − z1)δ(y2 − z2)V2(z1 − z2)〈0|

[
âxn · · · âx1 , â

†
y1
â†y2

âz2 âz1

]
− |ψ(t)〉 . (3.42)

In order to evaluate the first commutator in (3.42) we use an identity similar to (3.10)

[
Â, B̂Ĉ

]
− =

[
Â, B̂

]
−Ĉ + B̂

[
Â, Ĉ

]
− , (3.43)

which yields

[
âxn · · · âx1 , â

†
yâz
]
− =

[
âxn · · · âx1 , â

†
y

]
− âz + â†y [âxn · · · âx1 , âz]− . (3.44)
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Note that here the second term vanishes as the annihilation operators commute with respect

to each other due to (3.25). Applying now recursively the identity (3.10), we get

[
âxn · · · âx1 , â

†
y

]
− =

n∑

ν=1

âxn · · · âxν+1

[
âxν , â

†
y

]
− âxν−1 · · · âx1 , (3.45)

where the remaining commutators yield a delta function δ(xν − y) due to (3.25):

[
âxn · · · âx1 , â

†
y

]
− =

n∑

ν=1

δ(y − xν) âxn · · · âxν+1 âxν−1 · · · âx1 . (3.46)

Thus, the first expectation value in (3.42) yields

〈0|
[
âxn · · · âx1 , â

†
yâz
]
− |ψ(t)〉 =

n∑

ν=1

δ(xν − y)〈0|âxn · · · âxν+1 âzâxν−1 · · · âx1|ψ(t)〉 . (3.47)

In a similar manner we proceed also for the second commutator in (3.42) by applying the

identity (3.43) twice, yielding
[
âxn · · · âx1 ,

(
â†y1

â†y2

)
(âz2 âz1)

]
− =

[
âxn · · · âx1 , â

†
y1
â†y2

]
− âz2 âz1

=
[
âxn · · · âx1 , â

†
y1

]
− â
†
y2
âz2 âz1 + â†y1

[
âxn · · · âx1 , â

†
y2

]
− âz2 âz1 (3.48)

Thus, taking into account (3.46) reduces (3.48) to

[
âxn · · · âx1 , â

†
y1
â†y2

âz2 âz1

]
− =

n∑

ν=1

δ(xν − y1) âxn · · · âxν+1 âxν−1 · · · âx1 â
†
y2
âz2 âz1

+
n∑

ν=1

δ(xν − y2) â†y1
âxn · · · âxν+1 âxν−1 · · · âx1 âz2 âz1 . (3.49)

Now we determine the second expectation value in (3.42) from (3.49). Due to (3.29) we ob-

serve that the second term in (3.49) then vanishes and the first term can be rewritten as a

commutator:

〈0|
[
âxn · · · âx1 , â

†
y1
â†y2

âz2 âz1

]
− |ψ(t)〉

=
n∑

ν=1

δ(xν − y1)
[
âxn · · · âxν+1 âxν−1 · · · âx1 , â

†
y2

]
− âz2 âz1|ψ(t)〉 . (3.50)

Using again (3.46) we can then evaluate (3.50):

〈0|
[
âxn · · · âx1 , â

†
y1
â†y2

âz2 âz1

]
− |ψ(t)〉 (3.51)

=
n∑

ν=1

n∑

µ=1

δ(xν − y1)δ(xµ − y2)〈0|âxn âxν+1 âz1 âxν−1 · · · âxµ+1 âz2 âxµ−1 · · · âx1|ψ(t)〉 .

Finally, inserting the intermediate results (3.47) and (3.51) into the projected Schrödinger

equation (3.40) and the expectation value of the Hamilton operator (3.42) as well as performing

the integrations over the delta functions yields the n-particle Schrödinger equation (2.21) with

(2.23). Here we take into account that the n-particle wave function ψ(x1, . . .xn; t) follows from

projecting the state |ψ(t)〉 upon the basis state (3.30) similar to (2.20):

ψ+1(x1, . . .xn; t) = +1〈x1, . . . ,xn|ψ(t)〉 . (3.52)
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3.4 Field Operators in Heisenberg Picture

So far the non-relativistic many-body theory was formulated in the Schrödinger picture as the

local particle creation and annihilation operators â†x and âx were time-independent, whereas

the many-body state |ψ(t)〉 from the second quantized Hilbert space was time-dependent. Now

we perform the transformation to the Heisenberg picture, where the many-body state is time-

independent and the whole time dependence is carried by so-called field operators.

At first we repeat the general procedure in first quantization. To this end we start with the

Schrödinger picture and restrict ourselves for the sake of simplicity to the case of a time-

independent Hamilton operator ĤS. The corresponding equations of motion for both the time-

dependent state |ψS(t)〉 and a time-independent operator ÔS read

ih̄
∂

∂t
|ψS(t)〉 = ĤS |ψS(t)〉 , (3.53)

ih̄
∂

∂t
ÔS = 0 . (3.54)

The formal solution of the Schrödinger equation (3.53) is given by

|ψS(t)〉 = e−iĤSt/h̄ |ψS(0)〉 . (3.55)

Here we identify the initial state |ψS(0)〉 in the Schrödinger picture with the state |ψH〉 in the

Heisenberg picture:

|ψS(0) = |ψH〉 . (3.56)

Thus, the transformations from the Schrödinger to the Heisenberg picture and vice versa are

defined according to the relations

|ψS(t)〉 = e−iĤSt/h̄ |ψH〉 ⇐⇒ |ψH〉 = eiĤSt/h̄ |ψS(t)〉 . (3.57)

From (3.53) and (3.57) we then read off that the state in the Heisenberg picture |ψH〉 is time-

independent:

ih̄
∂

∂t
|ψH〉 = −ĤS e

iĤSt/h̄ |ψS(t)〉+ eiĤSt/h̄ ih̄
∂

∂t
|ψS(t)〉 = 0 . (3.58)

In order to determine the operator ÔH(t) in the Heisenberg picture, we demand that the ex-

pectation values do not change once we perform a transformation from the Schrödinger to the

Heisenberg picture:

〈ψS(t)|ÔS|ψS(t)〉 = 〈ψH|ÔH(t)|ψH〉 . (3.59)

Inserting (3.57) into (3.59) we determine, indeed, formally the time dependence of the operator

ÔH(t) in the Heisenberg picture:

〈e−iĤSt/h̄ ψH|ÔS|e−iĤSt/h̄ ψH〉 = 〈ψH|eiĤSt/h̄ ÔSe
−iĤSt/h̄|ψH〉 = 〈ψH|ÔH(t)|ψH〉 .

=⇒ ÔH(t) = eiĤSt/h̄ ÔS e
−iĤSt/h̄ . (3.60)
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Thus, multiplying an operator in the Schrödinger picture ÔS from the left with eiĤSt/h̄ and from

the right with e−iĤSt/h̄ yields the corresponding operator in the Heisenberg picture ÔH(t). For

instance, for the Hamilton operator ÔS = ĤS we obtain from (3.60) the result that it does not

change its form when we perform the transformation from the Schrödinger to the Heisenberg

picture:

ĤH(t) = eiĤSt/h̄ ĤS e
−iĤSt/h̄ = ĤS . (3.61)

Furthermore, for the operator in the Heisenberg picture ÔH(t) we determine from (3.54), (3.60),

and (3.61) the Heisenberg equation of motion:

ih̄
∂

∂t
ÔH(t) = eiĤSt/h̄

{
−ĤSÔS + ÔSĤS

}
e−iĤSt/h̄ + eiĤSt/h̄ ih̄

∂

∂t
ÔS e

−iĤSt/h̄

=⇒ ih̄
∂

∂t
ÔH(t) =

[
ÔH(t), ĤS

]
−

=
[
ÔH(t), ĤH(t)

]
−
. (3.62)

Now we transfer this procedure to the second quantization. To this end we assign analogous

to (3.60) to the local particle creation and annihilation operators â†x and âx in the Schrödinger

picture corresponding time-dependent fields operators in the Heisenberg picture:

ψ̂†(x, t) = â†xH(t) = eiĤt/h̄ â†x e
−iĤt/h̄ , ψ̂(x, t) = âxH(t) = eiĤt/h̄ âx e

−iĤt/h̄ . (3.63)

At first we determine from (3.25) and (3.63) the equal-time commutator relations of these field

operators:
[
ψ̂(x, t), ψ̂(x′, t)

]
−

=
[
ψ̂†(x, t), ψ̂†(x′, t)

]
−

= 0 ,
[
ψ̂(x, t), ψ̂†(x′, t)

]
−

= δ(x− x′) . (3.64)

Thus, the field operators ψ̂†(x, t), ψ̂(x, t) in the Heisenberg picture fulfill at each time instant t

the same commutator relations (3.25) as the local creation and annihilation operators â†x, âx in

the Schrödinger picture. This means that ψ̂†(x, t) and ψ̂(x, t) have the physical interpretation

to create and annihilate a boson at space point x at time t.

Now we transform the Hamilton operator (3.34), (3.36), and (3.37) from the Schrödinger to the

Heisenberg picture. Analogous to (3.60) we multiply the Hamilton operator

Ĥ =

∫
d3x â†x

{
− h̄2

2M
∆ + V1(x)

}
âx +

1

2

∫
d3x

∫
d3x′ â†xâ

†
x′ V2(x− x′)âx′ âx (3.65)

from the left with eiĤt/h̄ and from the right with e−iĤt/h̄:

ĤH(t) =

∫
d3x eiĤt/h̄ â†x e

−iĤt/h̄
{
− h̄2

2M
∆ + V1(x)

}
eiĤt/h̄ âx e

−iĤt/h̄ (3.66)

+
1

2

∫
d3x

∫
d3x′ eiĤt/h̄ â†xe

−iĤt/h̄ eiĤt/h̄ â†x′e
−iĤt/h̄ V2(x− x′)eiĤt/h̄ âx′ e

−iĤt/h̄ eiĤt/h̄ âxe
−iĤt/h̄ .

Using the field operators (3.63) the Hamilton operator reads in the Heisenberg picture:

ĤH(t) =

∫
d3x ψ̂†(x, t)

{
− h̄2

2M
∆ + V1(x)

}
ψ̂(x, t)

+
1

2

∫
d3x

∫
d3x′ ψ̂†(x, t)ψ̂†(x′, t)V2(x− x′)ψ̂(x′, t) ψ̂(x, t) . (3.67)



3.5. CREATION AND ANNIHILATION OPERATORS FOR FERMIONS 31

With this Hamilton operator in the Heisenberg picture we can determine from (3.62) the Heisen-

berg equation of motion of the field operator ψ̂(x, t):

ih̄
∂ψ̂(x, t)

∂t
=

[
ψ̂(x, t), ĤH(t)

]
−
. (3.68)

At first we get

ih̄
∂ψ̂(x, t)

∂t
=

∫
d3x′

∫
d3x′′ δ(x− x′)

{
− h̄2

2M
∆′′ + V1(x′′)

}[
ψ̂(x, t), ψ̂†(x′, t)ψ̂(x′′, t)

]
−

+
1

2

∫
d3x′

∫
d3x′′ V2(x′ − x′′)

[
ψ̂(x, t), ψ̂†(x′, t)ψ̂†(x′′, t)ψ̂(x′′, t)ψ̂(x′, t)

]
−
. (3.69)

Here the respective commutators can be evaluated with the help of the identity (3.43) and the

commutator relations (3.64), yielding

[
ψ̂(x, t), ψ̂†(x′, t)ψ̂(x′′, t)

]
−

= δ(x− x′) ψ̂(x′′, t) (3.70)

and, correspondingly,

[
ψ̂(x, t), ψ̂†(x′, t)ψ̂†(x′′, t)ψ̂(x′′, t)ψ̂(x′, t)

]
−

=
{
δ(x− x′) ψ̂†(x′′, t) + δ(x− x′′) ψ̂†(x′, t)

}
ψ̂(x′′, t)ψ̂(x′, t) . (3.71)

Inserting (3.70) and (3.71) in (3.69) we finally obtain

ih̄
∂ψ̂(x, t)

∂t
=

{
− h̄2

2M
∆ + V1(x)

}
ψ̂(x, t) +

∫
d3x′ V2(x− x′) ψ̂†(x′, t)ψ̂(x′, t)ψ̂(x, t) . (3.72)

In the same way also the Heisenberg equation of motion of the adjoint field operator

ih̄
∂ψ̂†(x, t)

∂t
=

[
ψ̂†(x, t), ĤH(t)

]
−

(3.73)

is evaluated:

−ih̄ ∂ψ̂
†(x, t)

∂t
=

{
− h̄2

2M
∆ + V1(x)

}
ψ̂†(x, t) + ψ̂†(x, t)

∫
d3x′ V2(x− x′) ψ̂†(x′, t)ψ̂(x′, t) . (3.74)

This is, indeed, the adjoint of the Heisenberg equation of motion (3.72). The operator-valued

integro-differential equations (3.72) and (3.74) are nonlinear. Due to their complexity it is not

possible to obtain exact analytic solutions. Therefore, one has to reside to develop physically

reasonable approximate solutions.

3.5 Creation and Annihilation Operators for Fermions

So far we have shown that the symmetric many-body states for bosons can be practically realized

with the help of local creation and annihilation operators â†x and âx in the Schrödinger picture.
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Here the symmetry of the many-body states of bosons was ultimately a direct consequence of

the commutation relations (3.25). Therefore, the question arises whether there exists a similar

formalism also in view of the anti-symmetric many-body states for fermions. To this end we

aim for creating an anti-symmetric many-body state for fermions similar to (3.30) via

|x1, . . . ,xn〉−1 = â†x1
· · · â†xn|0〉 . (3.75)

But then we have to demand instead of the commutation relations (3.25) corresponding anti-

commutation relations

[
âx, âx′

]
+

=
[
â†x, â

†
x′

]
+

= 0 ,
[
âx, â

†
x′

]
+

= δ(x− x′) . (3.76)

where the anti-commutator between two quantum mechanical operators Â and B̂ is defined by

[
Â, B̂

]
+

= ÂB̂ + B̂Â . (3.77)

As in the bosonic case in (3.29) we define in addition the vacuum state |0〉 by the condition

that it does not contain any particles:

âx|0〉 = 0 ⇐⇒ 〈0|â†x = 0 . (3.78)

Indeed, (3.77) and (3.78) turn out to guarantee for the anti-symmetric many-body states (3.75)

the orthonormality relations (2.74) for n = 1 and n = 2 fermions, which are characterized by

ε = −1. From (2.72), (3.75), (3.76), and (3.78) we obtain at first

−1〈x1|x′1〉−1 = 〈â†x1
0|â†x′10〉 = 〈0|âx1 â

†
x′1
|0〉

= 〈0| − â†x′1 âx1 + δ(x1 − x′1)|0〉 = δ(x1 − x′1) = δ−1(x1; x′1) . (3.79)

Correspondingly, we get then

−1〈x1,x2|x′1,x′2〉−1 = 〈â†x1
â†x2

0|â†x′1 â
†
x′2

0〉 = 〈0|âx2 âx1 â
†
x′1
â†x′2
|0〉

= 〈0|âx2

(
− â†x′1 âx1 + δ(x1 − x′1)

)
â†x′2
|0〉 = δ(x1 − x′1)〈0| − â†x′2 âx2 + δ(x2 − x′2)|0〉

−〈0|
(
− â†x′1 âx2 + δ(x′1 − x2)

)(
− â†x′2 âx1 + δ(x1 − x′2)

)
|0〉 = δ(x1 − x′1)δ(x2 − x′2)

−δ(x1 − x′2)δ(x2 − x′1) = δ−1(x1,x2; x′1,x
′
2) . (3.80)

As two local creation operators â†x and â†x′ anti-commute due to (3.76), we conclude that then

the square of the fermionic creation operator â†x vanishes:

(
â†x
)2

= 0 . (3.81)

For the anti-symmetric many-body state (3.75) this has the consequence that it vanishes pro-

vided that two space coordinates xi and xj for i 6= j coincide:

|x1, . . . ,xn〉−1 = 0 , if xi = xj for i 6= j . (3.82)
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Thus, the anti-commutation relations (3.76) contain automatically the Pauli exclusion principle

that two fermions can not be at the same space point.

The properties (3.75) and (3.76) are also sufficient in order to formulate with the help of the

second quantized Hamilton operator

Ĥ =

∫
d3x â†x

{
− h̄2

2M
∆ + V1(x)

}
âx +

1

2

∫
d3x

∫
d3x′ â†xâ

†
x′ V2(x− x′)âx′ âx (3.83)

the second quantized Schrödinger equation for a fermionic many-body state |ψ(t)〉:

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 . (3.84)

Projecting (3.84) to the anti-symmetric basis states (3.75) yields, like in the bosonic case, the

corresponding n-body Schrödinger equation (2.21) with (2.23) for the n-particle wave function

ψ−1(x1, . . .xn; t) = −1〈x1, . . . ,xn|ψ(t)〉 . (3.85)

We leave the detailed proof to the reader, which follows a consideration similar to Section 3.3.

Furthermore, transforming the fermionic creation and annihilation operators â†x and âx from

the Schrödinger to the Heisenberg picture yields fermionic field operators

ψ̂†(x, t) = eiĤt/h̄ â†x e
−iĤt/h̄ , ψ̂(x, t) = eiĤt/h̄ âx e

−iĤt/h̄ , (3.86)

which fulfill due to (3.76) equal-time anti-commutation relations:

[
ψ̂(x, t), ψ̂(x′, t)

]
+

=
[
ψ̂†(x, t), ψ̂†(x′, t)

]
+

= 0 ,
[
ψ̂(x, t), ψ̂†(x′, t)

]
+

= δ(x− x′) . (3.87)

Furthermore, we remark that the Hamilton operator in the Heisenberg picture

ĤH(t) =

∫
d3x eiĤt/h̄ â†x e

−iĤt/h̄
{
− h̄2

2M
∆ + V1(x)

}
eiĤt/h̄ âx e

−iĤt/h̄ (3.88)

+
1

2

∫
d3x

∫
d3x′ eiĤt/h̄ â†xe

−iĤt/h̄ eiĤt/h̄ â†x′e
−iĤt/h̄ V2(x− x′)eiĤt/h̄ âx′ e

−iĤt/h̄ eiĤt/h̄ âxe
−iĤt/h̄ .

turns out to have the same form as in the bosonic case, see (3.67):

ĤH(t) =

∫
d3x ψ̂†(x, t)

{
− h̄2

2M
∆ + V1(x)

}
ψ̂(x, t)

+
1

2

∫
d3x

∫
d3x′ ψ̂†(x, t)ψ̂†(x′, t)V2(x− x′)ψ̂(x′, t) ψ̂(x, t) . (3.89)

With this the Heisenberg equations of motion of the field operators ψ̂(x, t) and ψ̂†(x, t)

ih̄
∂ψ̂(x, t)

∂t
=

[
ψ̂(x, t), ĤH(t)

]
−
, (3.90)

ih̄
∂ψ̂†(x, t)

∂t
=

[
ψ̂†(x, t), ĤH(t)

]
−

(3.91)



34 CHAPTER 3. SECOND QUANTIZATION

are evaluated and yield

ih̄
∂ψ̂(x, t)

∂t
=

{
− h̄2

2M
∆ + V1(x)

}
ψ̂(x, t) +

∫
d3x′ V2(x− x′) ψ̂†(x′, t)ψ̂(x′, t)ψ̂(x, t) (3.92)

as well as its adjoint

−ih̄ ∂ψ̂
†(x, t)

∂t
=

{
− h̄2

2M
∆ + V1(x)

}
ψ̂†(x, t) + ψ̂†(x, t)

∫
d3x′ V2(x− x′) ψ̂†(x′, t)ψ̂(x′, t) (3.93)

corresponding to the bosonic case, see (3.72) and (3.74). Note that obtaining (3.92) and (3.93)

necessitates the operator identity (3.43) and the complementary one

[
Â, B̂Ĉ

]
− =

[
Â, B̂

]
+
Ĉ − B̂

[
Â, Ĉ

]
+
, (3.94)

which directly follows from the definitions of both the commutator (2.13) and the anti-commutator

(3.77).

3.6 Occupation Number Representation

Let us finally consider the case that the 2-particle interaction vanishes, i.e. V2(x−x′) = 0, from

the point of view of second quantization. We show in this section that then identical particles

are described within the so-called occupation number representation. To this end we start with

the second quantized Hamilton operator in the Schrödinger picture for non-interacting identical

particles

Ĥ =

∫
d3x â†x

{
− h̄2

2M
∆ + V1(x)

}
âx . (3.95)

As we deal at the same time with bosons and fermions, the creation and annihilation operators

â†x, âx fulfill either canonical commutation or canonical anti-commutation relations:

[
âx, âx′

]
∓ =

[
â†x, â

†
x′

]
∓ = 0 ,

[
âx, â

†
x′

]
∓ = δ(x− x′) . (3.96)

In the following we assume again that the 1-particle wavefunctions ψEα(x) with the quantum

numbers α are known as solutions of the time-independent 1-particle Schrödinger equation

(2.48), obeying both the orthonormality relation (2.49) and the completeness relation (2.50).

Due to the latter the creation and annihilation operators â†x, âx can be expanded in the 1-

particle basis:

âx =
∑

α

ψEα(x) âα ⇐⇒ â†x =
∑

α

ψ∗Eα(x) â†α . (3.97)

Both expansions are inverted with the help of the orthonormality relation (2.49), yielding

âα =

∫
d3xψ∗Eα(x) âx ⇐⇒ â†α =

∫
d3xψEα(x) â†x . (3.98)
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With this we deduce the commutation and anti-commutation relations for the operator-valued

expansion coefficients â†α, âα by taking into account (3.96):

[
âα, âα′

]
∓ =

[
â†α, â

†
α′

]
∓ = 0 ,

[
âα, â

†
α′

]
∓ = δα,α′ . (3.99)

Inserting the expansions of the creation and annihilation operators (3.97) in the second quan-

tized Hamilton operator (3.95), we can express it via the operator-valued expansion coefficients

â†α, âα due to (2.48) and (2.49) and end up with

Ĥ =
∑

α

Eα n̂α , (3.100)

where we have introduced the particle number operator

n̂α = â†αâα . (3.101)

Note that the useful operator identity

[
ÂB̂, Ĉ

]
− = Â

[
B̂, Ĉ

]
∓ ±

[
Â, Ĉ

]
∓ B̂ , (3.102)

which follows from the definitions of both the commutator (2.13) and the anti-commutator

(3.77), complements the bosonic version (3.10) with a corresponding fermionic one. With

(3.43) and (3.102) we can then show that the particle operators n̂α and n̂α′ for two quantum

numbers α and α′ commute:

[n̂α, n̂α′ ]− =
[
n̂α, â

†
α′ âα′

]
−

=
[
â†αâα, â

†
α′

]
−
âα′ + â†α′

[
â†αâα, âα′

]
− (3.103)

=

(
â†α

[
âα, â

†
α′

]
∓
±
[
â†α, â

†
α′

]
∓
âα

)
âα′ + â†α′

(
â†α [âα, âα′ ]∓ ±

[
â†α, âα′

]
∓ âα

)
= 0 .

Thus, we conclude that the particle number operator (3.101) commutes with the Hamilton

operator (3.100):

[
n̂α, Ĥ

]
− =

∑

α′

Eα′
[
n̂α, n̂α′

]
− = 0 . (3.104)

Due to (3.103) and (3.104) we know that there must exist a set of states, which are eigenstates

for both all particle number operators (3.101 )and the Hamilton operator (3.100):

n̂α| . . . , nα, . . .〉 = nα | . . . , nα, . . .〉 , (3.105)

Ĥ| . . . , nα, . . .〉 =
∑

α

Eαnα | . . . , nα, . . .〉 . (3.106)

In the case of bosons we already know from Section 3.2 that the commutation relations for the

operators â†α, âα imply that the eigenvalues of the particle operator n̂α can have any integer

value including zero:

bosons: nα = 0, 1, 2, . . . . (3.107)



36 CHAPTER 3. SECOND QUANTIZATION

But for fermions it turns out that the anti-commutation relations for the operators â†α, âα lead

to an essential restriction for the eigenvalues of the particle operators. Namely we read off from

(3.81) and (3.101):

(n̂α)2 = â†αâαâ
†
αâα = â†αâα −

(
â†α
)2

(âα)2 = n̂α . (3.108)

Applying (3.108) to the eigenstates | . . . , nα, . . .〉 we conclude due to the eigenvalue problem

(3.105):

n2
α = nα , (3.109)

which yields straightforwardly

fermions: nα = 0, 1 . (3.110)

Thus, each state characterized by the quantum number α can be occupied with at most one

fermion in accordance with the Pauli exclusion principle.



Chapter 4

Canonical Field Quantization for

Bosons

The equal-time commutation relations (3.64) of the field operators ψ̂(x, t) and ψ̂†(x, t) have

so far been introduced heuristically in order to describe a non-relativistic quantum many-body

problem. In the following we show that these equal-time commutation relations (3.64) can be

systematically derived from first principles within the canonical field quantization formalism

for bosons. To this end we have to generalize the recipe how to quantize a system with a finite

number of degrees of freedom to a continuum of degrees of freedom. But prior to that it is

essential to work out the field theory of non-relativistic quantum mechanics.

4.1 Action of Schrödinger Field

We start with considering the complex Schrödinger field ψ(x, t) and its adjoint ψ∗(x, t) as two

independent fields with their respective equations of motion:

ih̄
∂ψ(x, t)

∂t
=

{
− h̄2

2M
∆ + V1(x)

}
ψ(x, t) , (4.1)

−ih̄ ∂ψ
∗(x, t)

∂t
=

{
− h̄2

2M
∆ + V1(x)

}
ψ∗(x, t) . (4.2)

Now we derive a variational principle with an underlying action so that these equations of

motion emerge from applying the corresponding Hamilton principle. To this end we multiply

(4.1) and (4.2) with the variations δψ∗(x, t) and δψ(x, t), respectively, add both equations

together, yielding the spatio-temporal integral

∫
dt

∫
d3x

{
ih̄

[
δψ∗(x, t)

∂ψ(x, t)

∂t
− δψ(x, t)

∂ψ∗(x, t)

∂t

]
(4.3)

+
h̄2

2M

[
δψ∗(x, t)∆ δψ(x, t) + δψ(x, t)∆ δψ∗(x, t)

]
− V1(x) δ

[
ψ∗(x, t)ψ(x, t)

]}
= 0 .

37
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Note we have used in the last term the product rule for field variations:

δ
[
ψ∗(x, t)ψ(x, t)

]
= δψ∗(x, t)ψ(x, t) + δψ(x, t)ψ∗(x, t) . (4.4)

Both terms in (4.3) with the temporal and the spatial derivatives are now partially integrated

appropriately. Here we implicitly assume that the variations of the fields δψ(x, t) and δψ∗(x, t)

vanish at the respective integration boundaries. Furthermore, we apply the calculational rule

that a variation and a partial derivative are independent from each other, so they can be

interchanged. With this one partial integration in time leads to
∫
dt

[
δψ∗(x, t)

∂ψ(x, t)

∂t
− δψ(x, t)

∂ψ∗(x, t)

∂t

]
= δ

∫
dt ψ∗(x, t)

∂ψ(x, t)

∂t
(4.5)

and two partial integrations in space give, correspondingly:
∫
d3x
[
δψ∗(x, t)∇2 δψ(x, t) + δψ(x, t)∇2 δψ∗(x, t)

]
= −δ

∫
d3x∇ψ∗(x, t) · ∇ψ(x, t) . (4.6)

Inserting (4.5) and (4.6) into (4.3) we obtain a variational principle of the form

δA [ψ∗(•, •);ψ(•, •)] = 0 . (4.7)

Note that we use here a bullet • in order to emphasize that the action is a functional of both

Schrödinger fields ψ∗(x, t) and ψ(x, t). The action A is defined as a temporal integral over a

Lagrange function L according to

A =

∫
dt L

[
ψ∗(•, t), ∂ψ

∗(•, t)
∂t

;ψ(•, t), ∂ψ(•, t)
∂t

]
(4.8)

and the Lagrange function L represents a spatial integral over the Lagrange density

L =

∫
d3xL

(
ψ∗(x, t),∇ψ∗(x, t),

∂ψ∗(x, t)

∂t
;ψ(x, t),∇ψ(x, t),

∂ψ(x, t)

∂t

)
. (4.9)

In case of the Schrödinger field the Lagrange density reads

L = ih̄ ψ∗(x, t)
∂ψ(x, t)

∂t
− h̄2

2M
∇ψ∗(x, t) · ∇ψ(x, t)− V1(x)ψ∗(x, t)ψ(x, t) . (4.10)

Conversely, it is also possible to rederive the original equations of motion (4.1) and (4.2) from

a variational principle, which is based on the action (4.8)–(4.10). But this necessitates to

introduce before the technique of functional derivatives, which we now introduce concisely

without mathematical rigour.

4.2 Functional Derivative: Definition

At first we consider a function f of a finite number of degrees of freedom:

f = f(q1, . . . , qN) . (4.11)
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The partial derivative of f with respect to the variable qj, i.e.

∂f(q1, . . . , qN)

∂qj
, (4.12)

then denotes the change of the function with respect to the variable qj, where all other variables

q1, . . . , qj−1, qj+1, . . . , qN remain constant. The total change of the function f

df(q1, . . . , qN) =
N∑

j=1

∂f(q1, . . . , qN)

∂qj
dqj (4.13)

is then additive in all possible changes of the function, where always only one variable changes

and all the other variables remain constant. Specializing (4.13) to an infinitesimal change in

one variable, i.e. dqj = εδij, yields

f(q1, . . . , qi + ε, . . . , qN)− f(q1, . . . , qi, . . . , qn) = df(q1, . . . , qN) = ε
∂f(q1, . . . , qN)

∂qi
. (4.14)

Thus, the partial derivative follows from the limit of a difference quotient:

∂f(q1, . . . , qN)

∂qi
= lim

ε→0

f(q1, . . . , qi + ε, . . . , qN)− f(q1, . . . , qi, . . . , qn)

ε
. (4.15)

Now we generalize this concept of differentiation from a finite number to a continuum of vari-

ables. Therefore, we regard now a functional

F = F
[
φ(•)

]
, (4.16)

i.e. a mapping of a field φ(x) to a real or a complex number. The functional derivative

δF
[
φ(•)

]

δφ(x)
(4.17)

should then describe how the functional F changes provided that the function φ(x) is only

changed at a single point x. Thus, the functional derivative (4.17) becomes in this way an

ordinary function, which depends on the variable x. In analogy to (4.13) the total change of

the functional F is defined via

δF
[
φ(•)

]
=

∫
dx

δF
[
φ(•)

]

δφ(x)
δφ(x) , (4.18)

so it is additive with respect to all local changes of the function φ(x) at all space points x.

Similar to the case of a partial derivative also the functional derivative can be determined from

the limit of a difference quotient. To this end we introduce a local perturbation of the field

φ(x) at space point y with strength ε:

δφ(x) = εδ(x− y) . (4.19)

and determine from (4.18)

F [φ(•) + εδ(• − y)]− F [φ(•)] = δF [φ(•)] =

∫
dx

δF [φ(•)]
δφ(x)

δφ(x) = ε
δF [φ(•)]
δφ(y)

. (4.20)
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In the limit ε→ 0 we obtain

δF [φ(•)]
δφ(y)

= lim
ε→0

F [φ(•) + εδ(• − y)]− F [φ(•)]
ε

. (4.21)

From this definition of the functional derivative as a limit of a difference quotient follow several

useful calculation rules. At first, we obtain from (4.21) the trivial functional derivative

δφ(x)

δφ(y)
= lim

ε→0

φ(x) + εδ(x− y)− φ(x)

ε
= δ(x− y) . (4.22)

Then we determine from (4.21) the product rule

δ{F [φ(•)]G[φ(•)]}
δφ(y)

= lim
ε→0

F [φ(•) + εδ(• − y)]G[φ(•) + εδ(• − y)]− F [φ(•)]G[φ(•)]
ε

= lim
ε→0

{
F [φ(•) + εδ(• − y)]− F [φ(•)]

ε
G[φ(•)] + F [φ(•)] G[φ(•) + εδ(• − y)]−G[φ(•)]

ε

}

=
δF [φ(•)]
δφ(y)

G[φ(•)] + F [φ(•)]δG[φ(•)]
δφ(y)

. (4.23)

And, finally, combining (4.21) and (4.22) yields the chain rule:

δf(φ(x))

δφ(y)
= lim

ε→0

f (φ(x) + εδ(x− y))− f(φ(x))

ε
=
∂f(φ(x))

∂φ(x)
δ(x− y) =

∂f(φ(x))

∂φ(x)

δφ(x)

δφ(y)
. (4.24)

4.3 Functional Derivative: Application

Now we work out several non-trivial applications of the functional derivative in the realm of

second quantization, where it turns out to be a useful tool in order to determine commutators

between second quantized operators. We start with the observation that the commutator (3.46)

can also be determined from a functional derivative via

[
âxn · · · âx1 , â

†
x

]
− =

n∑

ν=1

δ(x− xν) âxn · · · âxν+1 âxν−1 · · · âx1 =
δ

δâx
âxn · · · âx1 . (4.25)

Let us consider then an arbitrary functional F [â•] of the annihilation operator âx:

F [â•] =
∞∑

n=1

∫
d3x1 · · ·

∫
d3xn Fn(x1, . . .xn) âxn · · · âx1 . (4.26)

Then the functional derivative of this functional (4.26) with respect to the annihilation operator

âx can be efficiently determined via a functional derivative due to (4.25):

[
F [â•], â

†
x

]
−

=
∞∑

n=1

∫
d3x1 · · ·

∫
d3xn Fn(x1, . . .xn)

[
âxn · · · âx1 , â

†
x

]
−

=
∞∑

n=1

∫
d3x1 · · ·

∫
d3xn Fn(x1, . . .xn)

δ

δâx
âxn · · · âx1 =

δ

δâx
F [â•] . (4.27)
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In a similar manner one also proves

[
âx, F [â†•]

]
−

=
δ

δâ†x
F [â†•] . (4.28)

In particular, (4.27) and (4.28) allow to reproduce the non-trivial commutation relation in

(3.25) with functional derivatives:

[
âx, â

†
x′

]
− =

δâx
δâx′

=
δâ†x′

δâ†x
= δ(x− x′) . (4.29)

And it is even possible to show that both calculational rules (4.27) and (4.28) can also be

applied to functionals, which contain creation and annihilation operators in normal order:

[
F [â†•, â•], â

†
x

]
−

= F [â†•, â•]

←−−
δ

δâx
, (4.30)

[
âx, F [â†•, â•]

]
−

=

−−→
δ

δâ†x
F [â†•, â•] . (4.31)

Here the arrows over the functional derivatives indicate from which side the normal ordered

functional of creation and annihilation operators has to be differentiated. With this it is also

possible to reproduce the trivial commutation relation in (3.25) with functional derivatives:

[
â†x, â

†
x′

]
−

= â†x

←−−
δ

δâx′
= 0 ,

[
âx, âx′

]
−

=

−−→
δ

δâ†x
âx′ = 0 . (4.32)

Furthermore, the calculational rules (4.30) and (4.31) in the Schödinger picture can be extended

correspondingly to the Heisenberg picture:

[
F
[
ψ̂†(•, •)ψ̂(•, •)

]
, ψ̂†(x, t)

]
−

= F
[
ψ̂†(•, •)ψ̂(•, •)

]←−−−−−δ

δψ̂(x, t)
, (4.33)

[
ψ̂(x, t), F

[
ψ̂†(•, •)ψ̂(•, •)

]]
−

=

−−−−−−→
δ

δψ̂†(x, t)
F
[
ψ̂†(•, •)ψ̂(•, •)

]
. (4.34)

With this the Heisenberg equations of motion (3.62) of the fields operators ψ̂†(x, t), ψ̂(x, t) can

be formulated with the help of functional derivatives:

ih̄
∂ψ̂(x, t)

∂t
=

[
ψ̂(x, t), ĤH(t)

]
=

−−−−−−→
δ

δψ̂†(x, t)
ĤH(t) , (4.35)

ih̄
∂ψ̂†(x, t)

∂t
=

[
ψ̂†(x, t), ĤH(t)

]
= −ĤH(t)

←−−−−−
δ

δψ̂(x, t)
. (4.36)

Thus, we conclude that all commutators between second-quantized operators in Sections 3.2–

3.4, which have been evaluated via the operator identities (3.10) and (3.43), can also be calcu-

lated with appropriate functional derivatives.
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4.4 Euler-Lagrange Equations

After this technical excursion to the definition and application of functional derivatives we now

return to the question how to determine the underlying equations of motion from the variational

principle (4.7). Applying (4.18) to (4.7) we get

δA =

∫
dt

∫
d3x

{
δA

δψ∗(x, t)
δψ∗(x, t) +

δA
δψ(x, t)

δψ(x, t)

}
= 0 . (4.37)

As the variations of the fields δψ∗(x, t) and δψ(x, t) are considered to be independent, we obtain

from (4.37) the following two conditions:

δA
δψ∗(x, t)

= 0 ,
δA

δψ(x, t)
= 0 . (4.38)

Thus, the Hamilton principle in Lagrangian field theory states that the fields ψ∗(x, t) and

ψ(x, t) are determined from extremizing the action. It remains to explicitly determine the

functional derivatives of the action A with respect to the fields ψ∗(x, t) and ψ(x, t). Due to

(4.8) we have to consider the spatial coordinates x to be fixed and only take only variations

with respect to the functional dependencies in time t into account. With the chain rule of

functional differentiation (4.24) we get

δA
δψ∗(x, t)

=

∫
dt′





δL

δψ∗(x, t′)

δψ∗(x, t′)

δψ∗(x, t)
+

δL

δ
∂ψ∗(x, t′)

∂t′

δ
∂ψ∗(x, t′)

∂t′

δψ∗(x, t)




. (4.39)

Interchanging variation and partial derivative allows for a partial integration, where the bound-

ary terms can be ignored, yielding

δA
δψ∗(x, t)

=

∫
dt′





δL

δψ∗(x, t′)
− ∂

∂t′
δL

δ
∂ψ∗(x, t′)

∂t′





δψ∗(x, t′)

δψ∗(x, t)
. (4.40)

From the trivial function derivative (4.22) follows

δψ∗(x, t′)

δψ∗(x, t)
= δ(t− t′) , (4.41)

so we read off from (4.40)

δA
δψ∗(x, t)

=
δL

δψ∗(x, t)
− ∂

∂t

δL

δ
∂ψ∗(x, t)

∂t

. (4.42)

Correspondingly we obtain

δA
δψ(x, t)

=
δL

δψ(x, t)
− ∂

∂t

δL

δ
∂ψ(x, t)

∂t

. (4.43)
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Thus, we conclude that (4.38) together with (4.42) and (4.43) represent the underlying Euler-

Langrange equations. It remains to determine the respective functional derivatives of the

Lagrange function (4.9). To this end we consider, conversely the time t to be fixed and only

take only variations with respect to the functional dependencies in the spatial coordinates x

into account. Applying similar techniques of the functional differentiation as before, we obtain

δL

δψ∗(x, t)
=

∂L
∂ψ∗(x, t)

−∇ ∂L
∇ψ∗(x, t)

,
δL

δ
∂ψ∗(x, t)

∂t

=
∂L

∂
∂ψ∗(x, t)

∂t

, (4.44)

δL

δψ(x, t)
=

∂L
∂ψ(x, t)

−∇ ∂L
∇ψ(x, t)

,
δL

δ
∂ψ(x, t)

∂t

=
∂L

∂
∂ψ(x, t)

∂t

. (4.45)

Thus, combining (4.38) with (4.42)–(4.45) yields ultimately the Euler-Lagrange equations of

classical field theory:

∂L
∂ψ∗(x, t)

−∇ ∂L
∇ψ∗(x, t)

− ∂

∂t

∂L

∂
∂ψ∗(x, t)

∂t

= 0 , (4.46)

∂L
∂ψ(x, t)

−∇ ∂L
∇ψ(x, t)

− ∂

∂t

∂L

∂
∂ψ(x, t)

∂t

= 0 . (4.47)

Although we have derived these field equations in two variational steps by taking into account

(4.8) and (4.9), they can also be directly determined by considering the action A as a spatio-

temporal integral over the Lagrange density L:

A =

∫
dt

∫
d3xL

(
ψ∗(x, t),∇ψ∗(x, t),

∂ψ∗(x, t)

∂t
;ψ(x, t),∇ψ(x, t),

∂ψ(x, t)

∂t

)
. (4.48)

Now it remains in (4.46) and (4.47) to evaluate the respective partial derivatives of the Lagrange

density L of the Schrödinger field theory defined in (4.10):

∂L
∂ψ∗(x, t)

= −V1(x)ψ(x, t) + ih̄
∂ψ(x, t)

∂t
,

∂L
∇ψ∗(x, t)

= − h̄2

2M
∇ψ(x, t) ,

∂L

∂
∂ψ∗(x, t)

∂t

= 0 , (4.49)

∂L
∂ψ(x, t)

= −V1(x)ψ∗(x, t) ,
∂L

∇ψ(x, t)
= − h̄2

2M
∇ψ∗(x, t) ,

∂L

∂
∂ψ(x, t)

∂t

= ih̄ψ∗(x, t) . (4.50)

Inserting these intermediate results (4.49) and (4.50) into (4.46) and (4.47) yields, indeed, the

equations of motion of the Schrödinger theory (4.1) and (4.2).

4.5 Hamilton Field Theory

Now we go over from the Lagrange to the Hamilton formulation of classical field theory. To

this end we have to determine at first the momenta fields π∗(x, t), π(x, t), which are canonically
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conjugated to the Schödinger fields ψ∗(x, t), ψ(x, t). In close analogy to a classical system with

a finite number of degrees of freedom we obtain from (4.44), (4.49), and (4.50):

π∗(x, t) =
δL

δ
∂ψ∗(x, t)

∂t

=
∂L

∂
∂ψ∗(x, t)

∂t

= 0 , (4.51)

π(x, t) =
δL

δ
∂ψ(x, t)

∂t

=
∂L

∂
∂ψ(x, t)

∂t

= ih̄ψ∗(x, t) , (4.52)

Thus, we conclude that ψ∗(x, t) represents the canonically conjugated momentum field of

ψ(x, t). The Hamilton function follows via a Legendre transformation from the Lagrange func-

tion:

H =

∫
d3x

{
π∗(x, t)

∂ψ∗(x, t)

∂t
+ π(x, t)

∂ψ(x, t)

∂t

}
− L . (4.53)

Inserting therein (4.9), (4.10) and (4.51), (4.52) the Hamilton function turns out to be of the

form

H =

∫
d3xH (π(x, t),∇π(x, t);ψ(x, t),∇ψ(x, t)) , (4.54)

where the Hamilton density H is given by

H =
h̄

2Mi
∇π(x, t) ·∇ψ(x, t) +

V1(x)

ih̄
π(x, t)ψ(x, t) . (4.55)

Thus, taking into account the relation (4.52) between π(x, t) and ψ∗(x, t) yields

H =

∫
d3x

{
h̄2

2M
∇ψ∗(x, t) ·∇ψ(x, t) + V1(x)ψ∗(x, t)ψ(x, t)

}
, (4.56)

where a partial integration leads to the standard form

H =

∫
d3xψ∗(x, t)

{
− h̄2

2M
∆ + V1(x)

}
ψ(x, t) , (4.57)

Also the Hamilton equations of motion can be obtained in close analogy to the classical me-

chanics of a finite number of degrees of freedom. To this end one has to consider the action A
as a functional of the fields π(x, t) and ψ(x, t). Then the Hamilton principle

δA [π(•, •);ψ(•, •)] =

∫
dt

∫
d3x

{
δA

δπ(x, t)
δπ(x, t) +

δA
δψ(x, t)

δψ(x, t)

}
= 0 . (4.58)

leads because of the arbitrariness of the variations δπ(x, t) and δψ(x, t) to

δA
δπ(x, t)

= 0 ,
δA

δψ(x, t)
= 0 . (4.59)

Due to (4.8) and (4.53) the action A depends on the Hamilton function H as follows:

A =

∫
dt

∫
d3x π(x, t)

∂ψ(x, t)

∂t
−
∫
dtH [π(•, t);ψ(•, t)] . (4.60)
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With this we can now evaluate the functional derivatives in (4.59), yielding the Hamilton

equations of motion of classical field theory:

δA
δπ(x, t)

=
∂ψ(x, t)

∂t
− δH

δπ(x, t)
= 0 , (4.61)

δA
δψ(x, t)

= −∂π(x, t)

∂t
− δH

δψ(x, t)
= 0 . (4.62)

As the Hamilton function H is of the form (4.56), the respective functional derivatives in (4.61)

and (4.62) yield

δH

δπ(x, t)
=

∂H
∂π(x, t)

−∇ ∂H
∂∇π(x, t)

, (4.63)

δH

δψ(x, t)
=

∂H
∂ψ(x, t)

−∇ ∂H
∂∇ψ(x, t)

, (4.64)

Thus, inserting (4.63) and (4.64) into (4.61), (4.62) the Hamilton equations of classical field

theory have the form

∂ψ(x, t)

∂t
=

∂H
∂π(x, t)

−∇ ∂H
∂∇π(x, t)

, (4.65)

∂π(x, t)

∂t
= − ∂H

∂ψ(x, t)
+ ∇ ∂H

∂∇ψ(x, t)
. (4.66)

Due to the Hamilton density of the Schrödinger theory (4.55) the respective partial derivatives

read

∂H
∂π(x, t)

=
V1(x)

ih̄
ψ(x, t) ,

∂H
∂∇π(x, t)

=
h̄

2Mi
∇ψ(x, t) , (4.67)

∂H
∂ψ(x, t)

=
V1(x)

ih̄
π(x, t) ,

∂H
∂∇ψ(x, t)

=
h̄

2Mi
∇π(x, t) . (4.68)

Thus, we recover from (4.65)–(4.68) due to (4.52) the equations of motion of the Schrödinger

theory (4.1) and (4.2).

4.6 Poisson Brackets

And, finally, we analyze the role of Poisson brackets in classical field theory. To this end we

define for two functionals F [π(•, •);ψ(•, •)] and G [π(•, •);ψ(•, •)] their Poisson bracket via

{
F,G

}
−

=

∫
d3x

(
δF

δψ(x, t)

δG

δπ(x, t)
− δF

δπ(x, t)

δG

δψ(x, t)

)
. (4.69)

This allows to reexpress the Hamilton equations (4.61), (4.62) with the help of Poisson brackets:

{
ψ(x, t), H

}
−

=

∫
d3x′

(
δψ(x, t)

δψ(x′, t)

δH

δπ(x′, t)
− δψ(x, t)

δπ(x′, t)

δH

δψ(x′, t)

)
=

δH

δπ(x, t)
=
∂ψ(x, t)

∂t
(4.70)



46 CHAPTER 4. CANONICAL FIELD QUANTIZATION FOR BOSONS

{
π(x, t), H

}
−

=

∫
d3x′

(
δπ(x, t)

δψ(x′, t)

δH

δπ(x′, t)
− δπ(x, t)

δπ(x′, t)

δH

δψ(x′, t)

)
= − δH

δψ(x, t)
=
∂π(x, t)

∂t
(4.71)

Also the temporal change of a functional F [π(•, •);ψ(•, •)] can be formulated with the help of

Poisson brackets. At first we obtain with the chain rule of functional differentiation:

∂F

∂t
=

∫
d3x

(
∂π(x, t)

∂t

δF

δπ(x, t)
+
∂ψ(x, t)

∂t

δF

δψ(x, t)

)
, (4.72)

which reduces due to the Hamilton equations (4.61), (4.62) and the Poisson brackets (4.69) to

∂F

∂t
=

∫
d3x

(
− δH

δψ(x, t)

δF

δπ(x, t)
+

δH

δπ(x, t)

δF

δψ(x, t)

)
=
{
F,H

}
−
. (4.73)

Thus, the formulation of the Hamilton equations in form of Poisson brackets according to

(4.70) and (4.71) follows immediately from (4.73). Furthermore, we obtain for the fundamental

Poisson brackets of the Schrödinger field ψ(x, t) and its canonical momentum field π(x, t) at

equal times:

{
ψ(x, t), ψ(x′, t)

}
−

=

∫
d3x′′

(
δψ(x, t)

δψ(x′′, t)

δψ(x′, t)

δπ(x′′, t)
− δψ(x, t)

δπ(x′′, t)

δψ(x′, t)

δψ(x′′, t)

)
= 0 . (4.74)

{
π(x, t), π(x′, t)

}
−

=

∫
d3x′′

(
δπ(x, t)

δψ(x′′, t)

δπ(x′, t)

δπ(x′′, t)
− δπ(x, t)

δπ(x′′, t)

δπ(x′, t)

δψ(x′′, t)

)
= 0 . (4.75)

{
ψ(x, t), π(x′, t)

}
−

=

∫
d3x′′

(
δψ(x, t)

δψ(x′′, t)

δπ(x′, t)

δπ(x′′, t)
− δψ(x, t)

δπ(x′′, t)

δπ(x′, t)

δψ(x′′, t)

)
= δ(x− x′) . (4.76)

4.7 Canonical Field Quantization

On the basis of having worked out the classical field theory to such an extent, we can now

perform the canonical field quantization in the Heisenberg picture. To this end we associate

to the complex Schrödinger field ψ(x, t) and its canonically conjugated momentum field π(x, t)

corresponding second quantized field operators ψ̂(x, t) and π̂(x, t). Furthermore, in close anal-

ogy to the quantum mechanics for a finite number of degrees of freedom, we postulate that the

Poisson bracket between two functionals F and G goes over into a commutator between their

corresponding second quantized operators F̂ and Ĝ as follows:

{
F,G

}
−

=⇒ 1

ih̄

[
F̂ , Ĝ

]
−
. (4.77)

In this way, the fundamental Poisson brackets (4.74)–(4.76) go over into equal-time commuta-

tion relations
[
ψ̂(x, t), ψ̂(x′, t)

]
−

=
[
π̂(x, t), π̂(x′, t)

]
−

= 0 ,
[
ψ̂(x, t), π̂(x′, t)

]
−

= ih̄ δ(x− x′) . (4.78)

As (4.52) implies that the momentum field operator π̂(x, t) is given by the adjoint field operator

ψ̂†(x, t) via

π̂(x, t) = ih̄ ψ̂†(x, t) , (4.79)
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we recognize that the previous equal-time commutation relations (3.64) between the field op-

erators ψ̂(x, t) and ψ̂†(x, t) follow from (4.78). Furthermore, the postulate (4.77) converts the

Hamilton equations (4.70), (4.71) into

ih̄
∂ψ̂(x, t)

∂t
=

[
ψ̂(x, t), Ĥ

]
−
, (4.80)

ih̄
∂π̂(x, t)

∂t
=

[
π̂(x, t), Ĥ

]
−
. (4.81)

Due to (4.79) they turn out to agree with the Heisenberg equations of motion of the fields

operators ψ̂(x, t) and ψ̂†(x, t) in (3.68) and (3.73). And the Hamilton function (4.57) is con-

verted within the canonical field quantization to the Hamilton operator (3.67) in the Heisenberg

picture without the 2-particle interaction.





Chapter 5

Canonical Field Quantization for

Fermions

In the previous chapter we worked out with the help of the functional derivative the classical

field theory for bosons. Its canonical field quantization then allowed to derive the equal-time

commutation relations for the bosonic field operators. Here we show that a corresponding

derivation is also possible in view of the equal-time anti-commutation relations for the fermionic

field operators. But in order to obtain a proper classical field theory for fermions, one needs anti-

commuting Grassmann fields. Therefore, we start this chapter with introducing the concept

of anti-commuting Grassmann numbers and fields, which was developed by the mathematician

Hermann Grassmann in the middle of the 19th century.

5.1 Grassmann Fields

The classical analogue of the Pauli exclusion principle is not realizable within the realm of

the usual numbers like real or complex numbers but needs the new mathematical concept of

Grassmann numbers.

5.1.1 Grassmann Numbers

The entity of anti-commuting Grassmann numbers is called the Grassmann algebra. Each

element of a Grassmann algebra of dimension n can be represented by a set of n generators or

Grassmann variables ψi, where the index i runs from 1 to n. The Grassmann algebra is defined

by postulating the anti-commutation relations

[
ψi, ψj

]
+

= ψi ψj + ψj ψi = 0 (5.1)

49
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for all i, j = 1, . . . , n. As a special case of (5.1) we read off that the square and all higher

powers of a generator have to vanish:

ψ2
i = 0 . (5.2)

This has the consequence that each element of the Grassmann algebra can be expanded in a

finite sum over products of generators as follows:

f(ψ1, . . . , ψn) = f (0) +
n∑

i=1

f
(1)
i ψi +

n∑

i=1

i−1∑

j=1

f
(2)
ij ψi ψj + . . .

+
n∑

i=1

f
(n−1)
i ψ1 · · · ψi−1 ψi+1 · · · ψn + f (n) ψ1 · · · ψn , (5.3)

where all coefficients f (0), f
(1)
i , f

(2)
ij , . . . , f

(n−1)
i , f (n) are complex numbers. Due to the anti-

commutation relations (5.1) it is sufficient in the sum (5.3) that the indices of the generators

appear in ascending order, i.e. i > j in the third term. This reduces correspondingly the number

of independent products of p generators to the binomial coefficients

np =

(
n

p

)
. (5.4)

For instance, one obtains for p = 0, 1, 2, . . . , n− 1, n:

n0 = 1 =

(
n

0

)
, n1 =

n∑

i=1

1 = n =

(
n

1

)
, n2 =

n∑

i=1

i−1∑

j=1

1 =
1

2
n(n− 1) =

(
n

2

)

, . . . , nn−1 =
n∑

i=1

1 = n =

(
n

n− 1

)
, nn = 1 =

(
n

n

)
. (5.5)

The dimension of the Grassmann algebra, i.e. the maximal number of linear independent terms

in the expansion (5.3) amounts to

n∑

p=0

np =
n∑

p=0

1p 1n−p

(
n

p

)
= 2n (5.6)

as (5.4) has to be taken into account.

5.1.2 Grassmann Functions

A Grassmann function maps a Grassmann number (5.3) to another Grassmann number (5.3).

Consider as an example the Grassmann algebra of degree 2 with the generators ψ1 and ψ2,

which has the dimension 22 = 4. A Grassmann number f is then represented as

f(ψ1, ψ2) = f (0) + f
(1)
1 ψ1 + f

(1)
2 ψ2 + f (2) ψ1 ψ2 . (5.7)
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ordinary variables Grassmann variables

∂

∂xi
1 = 0

∂

∂ψi
1 = 0

∂xj
∂xi

= δij
∂ψj

∂ψi
= δij

∂

∂xi

(
xj xk

)
= δij xk + δik xj

∂

∂ψi

(
ψj ψk

)
= δij ψk − δik ψj

∂

∂xi

[
xj f(x1, . . . , xn)

]
= δij f(x1, . . . , xn) + xj

∂f(x1, . . . , xn)

∂xi

∂

∂ψi

[
ψj f(ψ1, . . . , ψn)

]
= δij f(ψ1, . . . , ψn)− ψj

∂f(ψ1, . . . , ψn)

∂ψi

[
∂

∂xi
, xj

]

−
=

∂

∂xi
xj − xj

∂

∂xi
= δij

[
∂

∂ψi
, ψj

]

+

=
∂

∂ψi
ψj + ψj

∂

∂ψi
= δij

[
∂

∂xi
,
∂

∂xj

]

−
=

∂

∂xi

∂

∂xj
− ∂

∂xj

∂

∂xi
= 0

[
∂

∂ψi
,
∂

∂ψj

]

+

=
∂

∂ψi

∂

∂ψj
+

∂

∂ψj

∂

∂ψi
= 0

Figure 5.1: Comparison of calculation rules for differentiation with respect to ordinary and

Grassmann variables.

With the help of the Taylor series and (5.1) we obtain, for instance, the following two Grassmann

functions:

eψ1+ψ2 = 1 + ψ1 + ψ2 , (5.8)

eψ1 ψ2 = 1 + ψ1 ψ2 . (5.9)

Does a Grassmann number f only consist of an even number of generators, then it commutes

with all Grassmann numbers and one assigns to it the parity π(f) = 0. In the opposite case that

a Grassmann number f consists of an odd number of generators, then it anti-commutes with

such Grassmann numbers, which also have an odd number of generators, and one assigns to it

the parity π(f) = 1. Grassmann numbers, which contain both an even and an odd number of

generators, do not have any parity. We have, for example, π(ψ1) = π(ψ2) = 1 and π(eψ1 ψ2) = 0

due to (5.9), but we can assign to eψ1+ψ2 no parity due to (5.8).

5.1.3 Differentiation and Integration

Within a Grassmann algebra one can introduce the operations of differentiation and integration.

But these are abstract constructions, which have properties differing considerably from the

usual differentiation and integration calculus with real or complex numbers. In comparison

of a differentiation with respect to an ordinary variable, the differentiation with respect to a

Grassmann variable is defined via the rules in Fig. 5.1. As an example we consider again the

Grassmann algebra of degree 2. For the respective derivatives of (5.7) we obtain

∂f(ψ1, ψ2)

∂ψ1

= f
(1)
1 + f (2) ψ2 ,

∂f(ψ1, ψ2)

∂ψ2

= f
(1)
2 − f (2) ψ1 , (5.10)

∂2f(ψ1, ψ2)

∂ψ2
1

=
∂2f(ψ1, ψ2)

∂ψ2
2

= 0 ,
∂2f(ψ1, ψ2)

∂ψ1∂ψ2

= −f (2) = −∂
2f(ψ1, ψ2)

∂ψ2∂ψ1

. (5.11)
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ordinary variable Grassmann variable

∫ ∞

−∞
dx

[
αf(x) + βg(x)

]
= α

∫ ∞

−∞
dxf(x) + β

∫ ∞

−∞
dxg(x)

∫
dψ

[
αf(ψ) + βg(ψ)

]
= α

∫
dψf(ψ) + β

∫
dψg(ψ)

∫ ∞

−∞
dxf(x+ x0) =

∫ ∞

−∞
dxf(x)

∫
dψf(ψ + ψ0) =

∫
dψf(ψ)

Figure 5.2: Linearity and translational invariance as defining properties of integration with

respect to Grassmann variables in comparison to integration with respect to ordinary variables.

Correspondingly the derivatives of (5.8) and (5.9) yield

∂eψ1+ψ2

∂ψ1

= 1 ,
∂eψ1+ψ2

∂ψ2

= 1 , (5.12)

∂eψ1 ψ2

∂ψ1

= ψ2 ,
∂eψ1 ψ2

∂ψ2

= −ψ1 . (5.13)

Introducing an integration with respect to a Grassmann variable one has to abstain from various

usual properties. For instance, the integration with respect to Grassmann variables can not

be defined via a Riemann sum as there does not exist any concrete interpretation for an area

under a curve. But the integration can also not be defined by inverting the differentiation as

integration boundaries do not make any sense. Let us consider at first the case of a single

Grassmann variable ψ with the property

[
ψ, ψ

]
+

= 0 . (5.14)

Then a Grassmann function f of this Grassmann variable ψ is given by

f(ψ) = a+ b ψ . (5.15)

The integral
∫
dψ f(ψ) is determined according to Fig. 5.2 such that its properties are similar

to those of a definite integral
∫ +∞
−∞ dx f(x) of ordinary functions f(x), which vanish at infin-

ity. Demanding linearity and translational invariance of integration according to Fig. 5.2, we

conclude
∫
dψ
[
a+ b (ψ + ψ0)

]
=

∫
dψ
(
a+ b ψ

)
+ b

(∫
dψ 1

)
ψ0 =

∫
dψ
(
a+ b ψ

)
, (5.16)

from which we can read off the following important integration rule:
∫
dψ 1 = 0 . (5.17)

This is integration rule is complemented by the arbitrary normalization
∫
dψ ψ = 1 . (5.18)
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Those integration rules (5.17), (5.18) have to be compared with the corresponding differentiation

rules, see Fig. 5.1:

d

dψ
1 = 0 ,

d

dψ
ψ = 1 . (5.19)

Thus, one can conclude that in the space of Grassmann numbers integration and differentiation

are surprisingly identical. For instance, we get for the function (5.15):

∫
dψ f(ψ) = b ,

d

dψ
f(ψ) = b . (5.20)

The generalization of the integration rules (5.17), (5.18) to the case of higher-dimensional

Grassmann algebra with generators ψi for i = 1, . . . , n is given by

∫
dψi 1 = 0 ,

∫
dψi ψj = δij , (5.21)

which corresponds to the differentiation rules in Fig. 5.1. Multiple integrals are calculated

in the usual way by performing successively the respective one-dimensional integrals. As an

example we determine the integral over the function (5.7):

∫
dψ2

∫
dψ1 f(ψ1, ψ2) = f (2) . (5.22)

Thus, a multiple integration has the effect of projecting the corresponding coefficient in the

expansion (5.3) of the Grassmann function

∫
dψn . . .

∫
dψ1 f(ψ1, . . . , ψn) = f (n) . (5.23)

5.1.4 Complex Grassmann Numbers

In view of dealing with a quantum many-body problem with an arbitrary number of fermions

it is reasonable to also introduce complex Grassmann numbers. To this end one deals with two

disjunct sets of Grassmann numbers ψ1, . . . , ψn and ψ∗1, . . . , ψ
∗
n, which anti-commute:

[
ψi, ψj

]
+

=
[
ψ∗i , ψ

∗
j

]
+

=
[
ψi, ψ

∗
j

]
+

= 0 . (5.24)

Those generators constitute together a 2n-dimensional Grassmann algebra. Both sets ψ1, . . . , ψn

and ψ∗1, . . . , ψ
∗
n are interconnected via the operation of conjugation:

(ψi)
∗ = ψ∗i , (ψ∗i )

∗ = ψi , (ψi1 ψi2 · · · ψin)∗ = ψ∗in · · · ψ∗i2 ψ∗i1 , (λψi)
∗ = λ∗ ψ∗i , (5.25)

where λ denotes a complex number. Differentiation and integration are the defined in such a

way that both sets ψ1, . . . , ψn and ψ∗1, . . . , ψ
∗
n are treated as independent numbers.
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5.1.5 Grassmann Fields

Finally, in order to apply complex Grassmann numbers in the realm of classical field theory for

fermions, we have to introduce also anti-commuting fields, which amounts to the continuum

limit ψi → ψ(x) and ψ∗i → ψ∗(x). Thus, the anti-commutation relations (5.24) go over to

[
ψ(x), ψ(x′)

]
+

=
[
ψ∗(x), ψ∗(x′)

]
+

=
[
ψ(x), ψ∗(x′)

]
+

= 0 . (5.26)

With this the anti-commuting fields ψ(x) and ψ∗(x) are the generators of an infinite-dimensional

Grassmann algebra. An arbitrary element of this algebra then represents a functional f [ψ∗, ψ],

which can be expanded in generalization to (5.3) according to

f [ψ∗(•), ψ(•)] = f (0) +

∫
dx1

{
f

(1)
1 (x1)ψ∗(x1) + f

(1)
2 (x1)ψ(x1)

}
+

∫
dx1

∫
dx2

×
{
f

(2)
1 (x1, x2)ψ∗(x1)ψ∗(x2) + f

(2)
2 (x1, x2)ψ∗(x1)ψ(x2) + f

(2)
3 (x1, x2)ψ(x1)ψ(x2)

}
+ . . . . (5.27)

In this continuum limit the differentiation with respect to Grassmann variables becomes the

functional derivative with respect to complex Grassmann fields, which obey the rules

δψ(x)

δψ(x′)
=
δψ∗(x)

δψ∗(x′)
= δ(x− x′) , δψ(x)

δψ∗(x′)
=
δψ∗(x)

δψ(x′)
= 0 . (5.28)

5.2 Lagrange Field Theory for Fermions

Now we develop a classical field theory for fermions and assume to this end that the Schrödinger

fields ψ∗(x, t) and ψ(x, t) are anti-commuting complex Grassmann fields. As in the bosonic case

(4.8)–(4.10) the action is a space-time integral

A =

∫
dt L

[
ψ∗(•, t), ∂ψ

∗(•, t)
∂t

;ψ(•, t), ∂ψ(•, t)
∂t

]
(5.29)

of the Lagrange function

L =

∫
d3xL

(
ψ∗(x, t),∇ψ∗(x, t),

∂ψ∗(x, t)

∂t
;ψ(x, t),∇ψ(x, t),

∂ψ(x, t)

∂t

)
, (5.30)

where the Lagrange density is given by

L = ih̄ ψ∗(x, t)
∂ψ(x, t)

∂t
− h̄2

2M
∇ψ∗(x, t) · ∇ψ(x, t)− V1(x)ψ∗(x, t)ψ(x, t) . (5.31)

Instead of the bosonic Hamilton principle of the Lagrange field theory (4.37), (4.38) we obtain

now the corresponding fermionic version:

δA =

∫
dt

∫
d3x

{
δψ∗(x, t)

δA
δψ∗(x, t)

+ δψ(x, t)
δA

δψ(x, t)

}
= 0 . (5.32)
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As the variations of the complex Grassmann fields δψ∗(x, t) and δψ(x, t) are considered to be

independent, we obtain from (5.32) like in (4.38):

δA
δψ∗(x, t)

= 0 ,
δA

δψ(x, t)
= 0 . (5.33)

Calculating the functional derivatives of the action (5.29) with respect to the complex Grass-

mann fields ψ∗(x, t) and ψ(x, t) yields the same Euler-Lagrange equations like in the bosonic

case (4.42) and (4.43):

δA
δψ∗(x, t)

=
δL

δψ∗(x, t)
− ∂

∂t

δL

δ
∂ψ∗(x, t)

∂t

, (5.34)

δA
δψ(x, t)

=
δL

δψ(x, t)
− ∂

∂t

δL

δ
∂ψ(x, t)

∂t

. (5.35)

Also the respective functional derivatives of the Lagrange function (5.30) with respect to the

complex Grassmann fields ψ∗(x, t) and ψ(x, t) formally coincide with the bosonic calculation

(4.44), (4.45):

δL

δψ∗(x, t)
=

∂L
∂ψ∗(x, t)

−∇ ∂L
∇ψ∗(x, t)

,
δL

δ
∂ψ∗(x, t)

∂t

=
∂L

∂
∂ψ∗(x, t)

∂t

, (5.36)

δL

δψ(x, t)
=

∂L
∂ψ(x, t)

−∇ ∂L
∇ψ(x, t)

,
δL

δ
∂ψ(x, t)

∂t

=
∂L

∂
∂ψ(x, t)

∂t

. (5.37)

Thus, also the Euler-Lagrange equations for the complex Grassmann fields have formally the

same structure as in the bosonic case (4.46), (4.47)

∂L
∂ψ∗(x, t)

−∇ ∂L
∇ψ∗(x, t)

− ∂L

∂
∂ψ∗(x, t)

∂t

= 0 , (5.38)

∂L
∂ψ(x, t)

−∇ ∂L
∇ψ(x, t)

− ∂L

∂
∂ψ(x, t)

∂t

= 0 . (5.39)

A difference between the Schrödinger field theory for bosons and fermions only occurs once the

partial derivatives of the Lagrange density (5.31) are determined:

∂L
∂ψ∗(x, t)

= −V1(x)ψ(x, t) + ih̄
∂ψ(x, t)

∂t
,

∂L
∇ψ∗(x, t)

= − h̄2

2M
∇ψ(x, t) ,

∂L

∂
∂ψ∗(x, t)

∂t

= 0 , (5.40)

∂L
∂ψ(x, t)

= V1(x)ψ(x, t) ,
∂L

∇ψ(x, t)
=

h̄2

2M
∇ψ∗(x, t) ,

∂L

∂
∂ψ(x, t)

∂t

= −ih̄ψ∗(x, t) . (5.41)

Namely, whereas (4.49) and (5.40) have the same signs, we observe different signs in (4.50) and

(5.41). Despite of that we obtain in the fermionic case from (5.38)–(5.41) formally the same
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equations of motion for the Schrödinger Grassmann fields

ih̄
∂ψ(x, t)

∂t
=

{
− h̄2

2M
∆ + V1(x)

}
ψ(x, t) , (5.42)

−ih̄ ∂ψ
∗(x, t)

∂t
=

{
− h̄2

2M
∆ + V1(x)

}
ψ∗(x, t) . (5.43)

as in the bosonic case (4.1) and (4.2).

5.3 Hamilton Field Theory for Fermions

Going over from the Lagrange to the Hamilton formulation of field theory one needs the momen-

tum fields, which are canonically conjugated to the anti-commuting Schrödinger fields ψ∗(x, t)

and ψ(x, t). From (5.36), (5.37) as well as from (5.40), (5.41) we conclude:

π∗(x, t) =
δL

δ
∂ψ∗(x, t)

∂t

=
∂L

∂
∂ψ∗(x, t)

∂t

= 0 , (5.44)

π(x, t) =
δL

δ
∂ψ(x, t)

∂t

=
∂L

∂
∂ψ(x, t)

∂t

= −ih̄ψ∗(x, t) . (5.45)

Thus, π∗(x, t) vanishes and the momentum field π(x, t), which is canonically conjugated to

the Grassmann field ψ(x, t), turns out be also a Grassmann field as it is given by ψ∗(x, t).

Furthermore, we remark that a comparison of (4.52) with (5.45) reveals a sign change. The

Legendre transformation between the Lagrange function L and the Hamilton function H reads

L =

∫
d3x

{
∂ψ∗(x, t)

∂t
π∗(x, t) +

∂ψ(x, t)

∂t
π(x, t)

}
−H

[
π(•, t);ψ(•, t)

]
. (5.46)

Note that here the order of the Grassmann fields ∂ψ(x, t)/∂t and π(x, t) and their complex

conjugate is chosen in such a way that the Legendre transformation (5.46) is consistent with

the definition of the canonical conjugated momentum fields in (5.44) and (5.45). Taking into

account (5.30), (5.31) as well as (5.44) and (5.46), the Hamilton function turns out to be of the

form

H =

∫
d3xH (π(x, t),∇π(x, t);ψ(x, t),∇ψ(x, t)) , (5.47)

where the Hamilton density H is given by

H = − h̄

2Mi
∇π(x, t) ·∇ψ(x, t)− V1(x)

ih̄
π(x, t)ψ(x, t) . (5.48)

Note that the fermionic Hamilton density (5.48) has the opposite sign of the bosonic Hamilton

density (4.55). Furthermore, we remark that, in order to derive (5.48), we used the anti-

commutativity of the Grassmann fields so that two terms proportional to [∂ψ(x, t)/∂t]π(x, t)
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and π(x, t)[∂ψ(x, t)/∂t] just cancel each other. Taking into account the relation (5.45) between

π(x, t) and ψ∗(x, t) yields

H =

∫
d3x

{
h̄2

2M
∇ψ∗(x, t) ·∇ψ(x, t) + V1(x)ψ∗(x, t)ψ(x, t)

}
, (5.49)

so a subsequent partial integration then converts (5.49) to the standard form

H =

∫
d3xψ∗(x, t)

{
− h̄2

2M
∆ + V1(x)

}
ψ(x, t) . (5.50)

Thus, we conclude that the two sign changes in (5.45) and (5.48) in comparison to the bosonic

case compensate each other and the Hamilton function of anti-commuting Schrödinger fields

(5.49) finally coincides formally with the corresponding one of commuting Schrödinger fields in

(4.56).

The Hamilton principle of classical field theory reads in the Hamilton formulation

δA [π(•, •);ψ(•, •)] =

∫
dt

∫
d3x

{
δπ(x, t)

δA
δπ(x, t)

+ δψ(x, t)
δA

δψ(x, t)

}
= 0 . (5.51)

As the variations of the Grassmann fields δπ(x, t) and δψ(x, t) can be arbitrary, we obtain

δA
δπ(x, t)

= 0 ,
δA

δψ(x, t)
= 0 . (5.52)

Due to (5.29) and (5.46) the action A depends on the Hamilton function H as follows:

A =

∫
dt

∫
d3x

∂ψ(x, t)

∂t
π(x, t)−

∫
dtH [π(•, t);ψ(•, t)] . (5.53)

Performing the functional derivatives (5.52) of the action (5.53) then leads to the Hamilton

equations of the anti-commuting Schrödinger fields:

δA
δπ(x, t)

= −∂ψ(x, t)

∂t
− δH

δπ(x, t)
= 0 , (5.54)

δA
δψ(x, t)

= −∂π(x, t)

∂t
− δH

δψ(x, t)
= 0 . (5.55)

Note that the first term of the Hamilton equation equation (5.54) has an opposite sign in

comparison with the corresponding bosonic case in (4.61). As the Hamilton function H is of

the form (5.47), the respective functional derivatives in (5.54) and (5.55) yield

δH

δπ(x, t)
=

∂H
∂π(x, t)

−∇ ∂H
∂∇π(x, t)

, (5.56)

δH

δψ(x, t)
=

∂H
∂ψ(x, t)

−∇ ∂H
∂∇ψ(x, t)

, (5.57)

which formally agree with the corresponding formulas of the bosonic case (4.63) and (4.64).

Thus, inserting (5.56), (5.57) into (5.54), (5.55) the Hamilton equations of the Grassmann field
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theory have the form

∂ψ(x, t)

∂t
= − ∂H

∂π(x, t)
+ ∇ ∂H

∂∇π(x, t)
, (5.58)

∂π(x, t)

∂t
= − ∂H

∂ψ(x, t)
+ ∇ ∂H

∂∇ψ(x, t)
. (5.59)

Due to the Hamilton density of the Schrödinger theory (5.47) the respective partial derivatives

read

∂H
∂π(x, t)

= −V1(x)

ih̄
ψ(x, t) ,

∂H
∇π(x, t)

= − h̄

2Mi
∇ψ(x, t) , (5.60)

∂H
∂ψ(x, t)

=
V1(x)

ih̄
π(x, t) ,

∂H
∇ψ(x, t)

=
h̄

2Mi
∇π(x, t) . (5.61)

Thus, we recover from (5.58)–(5.61) due to (5.45) the Schrödinger equations for the Grassmann

fields (5.42) and (5.43), which formally agree with the Schrödinger equations of the bosonic

case (4.1) and (4.2).

5.4 Poisson Brackets

Also in the classical field theory of anti-commuting Schrödinger fields one can introduce Poisson

brackets. For two Grassmann functionals F [π(•, •);ψ(•, •)] andG [π(•, •);ψ(•, •)] their Poisson

bracket is defined as
{
F,G

}
+

= (−1)π(F )

∫
d3x

(
δF

δψ(x, t)

δG

δπ(x, t)
+

δF

δπ(x, t)

δG

δψ(x, t)

)
, (5.62)

where π(F ) denotes the parity of the Grassmann functional F . For instance, the anti-commuting

Schrödinger fields ψ(x, t) and π(x, t) have an odd parity π = 1, whereas the Lagrange function

(5.30), (5.31) or the Hamilton function (5.47), (5.48) have an even parity π = 0. Now we

investigate the symmetry of the Poisson bracket (5.62), which leads to three cases:

1. case: π(F ) = π(G) = 0

{
F,G

}
+

=

∫
d3x

(
δF

δψ(x, t)

δG

δπ(x, t)
+

δF

δπ(x, t)

δG

δψ(x, t)

)

= −
∫
d3x

(
δG

δπ(x, t)

δF

δψ(x, t)
+

δG

δψ(x, t)

δF

δπ(x, t)

)
= −

{
G,F

}
+

(5.63)

2. case: π(F ) = 0, π(G) = 1

{
F,G

}
+

=

∫
d3x

(
δF

δψ(x, t)

δG

δπ(x, t)
+

δF

δπ(x, t)

δG

δψ(x, t)

)

=

∫
d3x

(
δG

δπ(x, t)

δF

δψ(x, t)
+

δG

δψ(x, t)

δF

δπ(x, t)

)
= −

{
G,F

}
+

(5.64)

Note that the case π(F ) = 1, π(G) = 0 follows from reading (5.64) in the opposite

direction and exchanging F and G.
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3. case: π(F ) = π(G) = 1
{
F,G

}
+

= −
∫
d3x

(
δF

δψ(x, t)

δG

δπ(x, t)
+

δF

δπ(x, t)

δG

δψ(x, t)

)

= −
∫
d3x

(
δG

δπ(x, t)

δF

δψ(x, t)
+

δG

δψ(x, t)

δF

δπ(x, t)

)
=
{
G,F

}
+

(5.65)

Thus, the Poisson bracket is symmetric for two odd Grassmann fields, otherwise it is anti-

symmetric provided that the involved functionals do have a specific parity.

With the help of the Poisson bracket (5.62), the Hamilton equations (5.54), (5.55) for Grass-

mann fields read
{
ψ(x, t), H

}
+

= − δH

δπ(x, t)
=
∂ψ(x, t)

∂t
, (5.66)

{
π(x, t), H

}
+

= − δH

δψ(x, t)
=
∂π(x, t)

∂t
. (5.67)

Thus, the Hamilton equations of the fermionic and bosonic case (5.66), (5.67) and (4.70), (4.71),

respectively, have the same general structure and only differ by the used Poisson bracket. Also

the temporal change of a Grassmann functional F [π(•, •);ψ(•, •)] can be formulated with the

help of a Poisson bracket. At first we obtain with the chain rule of functional differentiation:

∂F

∂t
=

∫
d3x

(
∂π(x, t)

∂t

δF

δπ(x, t)
+
∂ψ(x, t)

∂t

δF

δψ(x, t)

)
, (5.68)

which reduces due to the Hamilton equations (5.54), (5.55) to

∂F

∂t
= −

∫
d3x

(
δH

δψ(x, t)

δF

δπ(x, t)
+

δH

δπ(x, t)

δF

δψ(x, t)

)

= (−1)π(F )

∫
d3x

(
δF

δψ(x, t)

δH

δπ(x, t)
+

δF

δπ(x, t)

δH

δψ(x, t)

)
=
{
F,H

}
+
. (5.69)

Thus, the formulation of the Hamilton equations in form of Poisson brackets according to (5.66),

(5.67) represent a special case of (5.69). Furthermore, we obtain for the fundamental Poisson

brackets:
{
ψ(x, t), ψ(x′, t)

}
+

= −
∫
d3x′′

(
δψ(x, t)

δψ(x′′, t)

δψ(x′, t)

δπ(x′′, t)
− δψ(x, t)

δπ(x′′, t)

δψ(x′, t)

δψ(x′′, t)

)
= 0 . (5.70)

{
π(x, t), π(x′, t)

}
+

= −
∫
d3x′′

(
δπ(x, t)

δψ(x′′, t)

δπ(x′, t)

δπ(x′′, t)
− δπ(x, t)

δπ(x′′, t)

δπ(x′, t)

δψ(x′′, t)

)
= 0 . (5.71)

{
ψ(x, t), π(x′, t)

}
+

= −
∫
d3x′′

(
δψ(x, t)

δψ(x′′, t)

δπ(x′, t)

δπ(x′′, t)
− δψ(x, t)

δπ(x′′, t)

δπ(x′, t)

δψ(x′′, t)

)
= −δ(x− x′) . (5.72)

Note the additional minus sign in (5.72) in comparison with (4.76).

5.5 Canonical Field Quantization

No we implement the canonical field quantization for fermions in the Heisenberg picture by

going over from the anti-commuting Schrödinger fields ψ(x, t) and π(x, t) to corresponding
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second quantized field operators ψ̂(x, t) and π̂(x, t). Here the question arises whether the

Poisson bracket (5.62) corresponds to a commutator or to an anti-commutator. We show now

that this depends upon which parity the Grassmann functions F and G have.

In case of the fundamental Poisson brackets (5.70)–(5.72) we observe that they are all sym-

metric. Therefore we postulate in case of symmetric Poisson brackets (5.65) a transition to

anti-commutators, which are also symmetric:

π(F ) = π(G) = 1 :
{
F,G

}
+

=⇒ 1

ih̄

[
F̂ , Ĝ

]
+
. (5.73)

In this way, the fundamental Poisson brackets (5.70)–(5.72) go over into equal-time anti-

commutation relations

[
ψ̂(x, t), ψ̂(x′, t)

]
−

=
[
π̂(x, t), π̂(x′, t)

]
−

= 0 ,
[
ψ̂(x, t), π̂(x′, t)

]
−

= −ih̄ δ(x− x′) . (5.74)

As (5.45) implies that the momentum field operator π̂(x, t) is given by the adjoint field operator

ψ̂†(x, t) via

π̂(x, t) = −ih̄ ψ̂†(x, t) , (5.75)

we recognize that the previous equal-time anti-commutation relations (3.87) between the field

operators ψ̂(x, t) and ψ̂†(x, t) follow from (5.74).

Afterwards, we consider the Hamilton equations (5.66), (5.67), where the involved Poisson

brackets are anti-symmetric. Therefore we postulate in case of (5.64) )that the Poisson brackets

go over to commutators, which are also anti-symmetric:

π(F ) = 1, π(G) = 0 :
{
F,G

}
+

=⇒ 1

ih̄

[
F̂ , Ĝ

]
−
. (5.76)

Then we obtain from the Hamilton equations (5.66), (5.67) the corresponding Heisenberg equa-

tions

ih̄
∂ψ̂(x, t)

∂t
=

[
ψ̂(x, t), Ĥ

]
−
, (5.77)

ih̄
∂π̂(x, t)

∂t
=

[
π̂(x, t), Ĥ

]
−
. (5.78)

Due to (5.75) they turn out to agree with the Heisenberg equations of motion of the fields

operators ψ̂(x, t) and ψ̂†(x, t) in (3.68) and (3.73). And the Hamilton function (5.50) is con-

verted within the canonical field quantization to the Hamilton operator (3.67) in the Heisenberg

picture without the 2-particle interaction.
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Chapter 6

Poincaré Group

According to special relativity the space-time in the absence of gravity has a flat Minkowskian

structure. The group of symmetries, which leaves distances between events in this Minkowskian

space-time invariant, is named after the mathematician Henri Poincaré as the Poincaré group.

In the following we work out its properties as a Lie group, which unifies mathematical structures

of a group and a manifold as its group elements depend continuously and differentiably on

certain parameters. In fact, the Poincaré group turns out to be a ten-parametric, non-abelian

Lie group, which contains rotations in space, boosts between inertial systems, and translations

in space-time. Thus, the elements of the Poincaré group depend continuously and differentiably

on the rotation angles, the boost velocities and the translations. Furthermore, we discuss the

Poincaré algebra, which amounts to restricting the Poincaré group to the tangent plane at the

identity element, yielding the generators of rotations, boosts, and translations. And, conversely,

the Lie theorem turns out to allow to reconstruct the full Poincaré group by evaluating an

exponential function involving both the generators, i.e. the elements of the Lie algebra, and

the group parameters. And, finally, we determine the Casimir operators of the Poincaré group,

i.e. those operators commuting with all elements of the Poincaré algebra. Their eigenvalues

turn out to characterize all irreducible representations of the Poincaré group, to one of which

each elementary particle of the standard model has to belong. In this way, the Poincaré group

characterizes the underlying symmetry of relativistic quantum field theory and, thus, represents

its very backbone.

6.1 Special Relativity

Albert Einstein formulated the special relativity in 1905, which has changed since then the

basic concept of space and time in the absence of gravity. It is based on two basic postulates:

1. Postulate: The velocity of light is the same in all inertial systems.

2. Postulate: The fundamental laws of physics have the same form in all inertial systems.
63
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On the one hand, this implies concrete physical consequences for fast moving particles, which

are nowadays confirmed, for instance, in the Large Hadron Collider (LHC) at Cern on a daily

basis. A prominent example is provided by the time dilatation, i.e. for an observer in an inertial

frame of reference, a clock that is moving relative to it in another inertial frame of reference will

be measured to tick slower than a clock that is at rest in its frame of reference. On the other

hand, special relativity also unifies the fundamental description of space and time. In view of

formalising the second postulate, a point in space-time, which is also called the Minskowski

space, is characterized by the contravariant space-time four-vector

(xµ) =
(
x0, x1, x2, x3

)
=
(
ct, xi

)
= (ct,x) . (6.1)

Here we use the convention that Greek (Latin) indices run from 0 to 3 (from 1 to 3). Further-

more, from the first postulate follows for a light ray in two different inertial systems:

(ct)2 − x2 = (ct′)
2 − x′2 . (6.2)

This condition can be reformulated with the help of the covariant Minkowski metric

(gµν) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 (6.3)

as the invariance of the scalar product of the space-time four-vectors xµ and x′µ in the respective

inertial systems:

gµν x
µxν = gµν x

′µx′
ν
. (6.4)

Note that we use here the Einstein summation convention that one has to sum over all indices,

which appear twice, i.e. once in form of an upper or contravariant index and once in form of

a lower or covariant index. Apart from the contravariant space-time four-vector (6.1) we also

introduce the covariant space-time four-vector

xµ = gµν x
ν . (6.5)

Thus, the contravariant space-time four-vector xν is transformed via contraction with the co-

variant metric gµν to the corresponding covariant space-time four-vector xµ. Inserting (6.1) and

(6.3) in (6.5) the respective components of the covariant space-time four-vector turn out to be

(xµ) = (x0, x1, x2, x3) =
(
ct,−xi

)
= (ct,−x) . (6.6)

With this the invariance of the scalar product (6.4) reduces to

xµxµ = x′
µ
x′µ . (6.7)
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Furthermore, the obvious identity

gµν δ
ν
κ = gµκ (6.8)

with the Kronecker symbol δνκ means that the latter can be identified with the Minkowski

metric gνκ, which consists of both the contravariant index ν and the covariant index κ:

(gνκ) = (δνκ) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 . (6.9)

In addition we also define

(gµν) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 , (6.10)

for which we read off with (6.3) and (6.9) the obvious identity

gµν gνκ = δµκ = gµκ . (6.11)

Thus, (6.10) represents the contravariant Minkoswki metric. Due to (6.5) and (6.11) the co-

variant space-time four-vector xν is transformed via contraction with the contravariant metric

gµν to the corresponding contravariant space-time four-vector xµ:

gµν xν = gµν gνκ x
κ = δµκ x

κ = xµ . (6.12)

Therefore, we can summarize that the co- and contravariant Minkowski metrices allow to pull

down and up indices according to (6.5) and (6.12).

But the concept of four-vectors is much more general than the mere description of space-time

four-vectors. Namely, a four-vector represents objects whose scalar products coincide in all

inertial systems. Let us consider in view of another example the seminal energy-momentum

dispersion relation of a relativistic particle, see Fig. 6.1, in two different inertial systems:

E2 = M2c4 + p2c2 , E ′2 = M ′2c′4 + p′2c2 . (6.13)

Due to the equality of the rest masses M and M ′ in both inertial systems

M = M ′ (6.14)

the energy-momentum dispersion relations (6.13) reduce to the identity

(
E

c

)2

− p2 =

(
E ′

c

)2

− p′2 . (6.15)
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Figure 6.1: A relativistic energy-momentum dispersion (6.13) for massive (red) and massless

(blue) particles in comparison with the non-relativistic limit (black).

Thus, introducing the contravariant momentum four-vector

(pµ) =
(
p0, p1, p2, p3

)
=

(
E

c
, pi
)

=

(
E

c
,p

)
(6.16)

allows to formulate the identity (6.15) as the invariance of the scalar products of the contravari-

ant momentum four-vectors pµ and p′µ:

gµν p
µpν = gµν p

′µp′
ν
. (6.17)

Defining in analogy to (6.5)

pµ = gµν p
ν (6.18)

also the components of the covariant momentum four-vector

(pµ) = (p0, p1, p2, p3) =

(
E

c
,−pi

)
=

(
E

c
,−p

)
. (6.19)

the invariance of the scalar product (6.17) can also be formulated as

pµpµ = p′
µ
p′µ . (6.20)

Furthermore, we conclude from (6.13), (6.14), and (6.19) that the scalar product of the four-

momentum vector with itself is given by the rest mass M of the particle:

pµpµ = M2c2 . (6.21)
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6.2 Defining Representation of Lorentz Group

Now we study the consequences of the invariance of the scalar product of four-vectors with

respect to a change from one inertial system to another. To this end we consider that the two

inertial systems are connected via a linear coordinate transformation, which is mediated by a

4× 4 matrix Λµ
ν :

x′µ = Λµ
ν x

ν . (6.22)

The invariance (6.4) then reads explicitly

gµν x
µxν = gµν x

′µx′
ν

= gµν Λµ
σΛν

ρ x
σxρ = gσρ Λσ

µΛρ
ν x

µxν . (6.23)

As (6.23) holds for arbitrary components xµ of a space-time four-vector, we conclude the identity

gµν = Λσ
µ gσρ Λρ

ν . (6.24)

This represents the defining relation for Lorentz transformations Λ, which can be interpreted

in two different ways. At first we write (6.24) in matrix notation

g = ΛT gΛ , (6.25)

where we have introduced the elements of the transposed matrix ΛT according to

(
ΛT
) σ

µ
= gµκ

(
ΛT
)κσ

= gµκΛ
σκ = Λσκgκµ = Λσ

µ . (6.26)

Note that a left (right) index denotes the respective row (column) of the matrix, so we have

concretely




ΛT 0
0 ΛT 1

0 ΛT 2
0 ΛT 3

0

ΛT 0
1 ΛT 1

1 ΛT 2
1 ΛT 3

1

ΛT 0
2 ΛT 1

2 ΛT 2
2 ΛT 3

2

ΛT 0
3 ΛT 1

3 ΛT 2
3 ΛT 3

3


 =




Λ0
0 Λ1

0 Λ2
0 Λ3

0

Λ0
1 Λ1

1 Λ2
1 Λ3

1

Λ0
2 Λ1

2 Λ2
2 Λ3

2

Λ0
3 Λ1

3 Λ2
3 Λ3

3


 . (6.27)

The set L of all 4× 4 matrices Λ, which transform the Minkowski matrix g according to (6.25)

into the Minkowski metric g, defines the so-called Lorentz transformations. Note that another

equivalent way to interpret the invariance (6.24) follows from contracting it with gνκ. Taking

into account (6.11) and (6.26) yields

δκµ = δ κ
µ =

(
ΛT
)κ
σ

Λσ
µ =

(
ΛTΛ

)κ
µ
. (6.28)

Thus, we conclude that Lorentz transformations Λ are also defined by the identity

ΛT = Λ−1 ⇐⇒
(
ΛT
)µ
ν

= Λ µ
ν =

(
Λ−1

)µ
ν
. (6.29)

By inspection we find that the set L fulfills all group axioms:
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• At first we show that the closedness axiom is valid. Provided that Λ1, Λ2 belong to L we

obtain from (6.25) that also Λ1Λ2 belongs to L:

(Λ1Λ2)T g (Λ1Λ2) = ΛT
2

(
ΛT

1 gΛ1

)
Λ2 = ΛT

2 gΛ2 = g . (6.30)

• Then we take advantage of the associativity of matrix multiplication. For Λ1, Λ2, and Λ3

belonging to L we conclude (Λ1Λ2) Λ3 = Λ1 (Λ2Λ3) from (6.25):

[(Λ1Λ2) Λ3]T g [(Λ1Λ2) Λ3] = ΛT
3

[
ΛT

2

(
ΛT

1 gΛ1

)
Λ2

]
Λ3 = g = [Λ1 (Λ2Λ3)]T g [Λ1 (Λ2Λ3)] . (6.31)

• The identity element is represented by the Kronecker symbol from (6.9):

Λe = I = (gνκ) . (6.32)

On the one hand we conclude that Λe belongs to L because of the identity

g = ΛT
e gΛe . (6.33)

On the other hand we observe for any Λ belonging to L:

ΛeΛ = ΛΛe = Λ . (6.34)

• And, finally, for each Λ from L we obtain for its determinant from (6.25):

Det g = Det ΛT ·Det g ·Det Λ =⇒ (Det Λ)2 = 1 . (6.35)

We conclude then that Λ from L has a non-vanishing determinant, i.e. Det Λ 6= 0, so

there exists an inverse transformation Λ−1. Furthermore, from (6.25) we yield:

(
ΛT
)−1

gΛ−1 = g =⇒
(
Λ−1

)T
gΛ−1 = g . (6.36)

Thus, there exists an inverse Λ−1 from L.

One denotes the set L of all Lorentz transformations as the Lorentz group or, more concretely,

as the pseudo-orthogonal group O(1, 3) due to the concrete form of the covariant Minkowski

metric (6.3). The Lorentz group L can be classified with respect to the following two properties:

• Due to (6.35) we read off that Det Λ = ±1. A Lorentz transformation with Det Λ = +1

(Det Λ = −1) is denoted to be special (non-special).

• From (6.24) we conclude for µ = ν = 0 due to (6.3):

1 = g00 = Λσ
0 gσρ Λρ

0 =
(
Λ0

0

)2 −
(
Λi

0

)2
=⇒

(
Λ0

0

)2
= 1 +

(
Λi

0

)2 ≥ 1 . (6.37)

A Lorentz transformation Λ with Λ0
0 ≥ 1 (Λ0

0 ≤ −1) is called orthochronous (non-

orthochronous).
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branch Det Λ Λ0
0 example

L1 +1 > 0 identity: diag (1,1,1,1)

L2 -1 > 0 space inversion: diag (1,-1,-1,-1)

L3 -1 < 0 time inversion: diag (-1,1,1,1)

L4 +1 < 0 space-time inversion: diag (-1,-1,-1,-1)

Table 6.1: Overview of the four branches of the Lorentz group.

Thus, we conclude that the Lorentz group consists of four different branches as indicated in

Tab. 6.1. As the Lorentz transformations from the different branches can not be transformed

into each other, the Lorentz group is not connected. Only the branch L1 of the special or-

thochronous Lorentz transformations represents a subgroup of the Lorentz group as performing

consecutively two transformations from this branch does not allow to leave this branch. There-

fore, in the following we deal with only this branch L1 and call these special orthochronous

Lorentz transformations for the sake of simplicity as the Lorentz group.

6.3 Defining Representation of Lorentz Algebra

The set of all 4 × 4 matrices Λ is described in total by 4 · 4 = 16 degrees of freedom, where

the invariance (6.24) leads to 4 · 5/2 = 10 restrictions. Therefore the dimension of the Lorentz

group is

16− 10 = 6 . (6.38)

Here we investigate, in particular, the elements of the Lorentz group in the vicinity of the unity

element (6.32). All elements of the Lorentz group, which deviate infinitesimally from the unity

element, can be represented as

Λµ
ν = gµν + ωµν . (6.39)

Inserting (6.39) into the defining identity for Lorentz transformations (6.24), we obtain up to

first order of the deviations ωµν :

Λσ
µΛρ

ν gσρ =
(
gσµ + ωσµ

) (
gρν + ωρν

)
gσρ ≈ gσµg

ρ
νgσρ + ωσµg

ρ
νgσρ + gσµω

ρ
νgσρ

= gσµgσν + ωσµgσν + ωρνgµρ = gµν + ωνµ + ωµν = gµν . (6.40)

Thus we conclude that the deviations of the Lorentz transformation from the unity element are

represented by anti-symmetric 4× 4 matrices:

ωµν + ωνµ = 0 . (6.41)

The set of all anti-symmetric 4×4 matrices are called the Lorentz algebra of the Lorentz group.

The dimension of the Lorentz algebra is 6, which coincides with the dimension of the Lorentz
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group determined in (6.38). Using the anti-symmetry (6.41) the elements ωµν of the Lorentz

algebra can be represented as

ωµν = gαµgβνωαβ =
1

2

(
gαµgβν − gβµgαν

)
ωαβ . (6.42)

Thus, all elements ωµν of the Lorentz algebra can be expanded with respect to basis elements

as follows:

ωµν = − i
2

(
Lαβ

)µ
ν
ωαβ . (6.43)

Here ωαβ represent expansion coefficients and the representation matrices of the basis elements

Lαβ read:

(
Lαβ

)µ
ν

= i
(
gαµgβν − gβµgαν

)
. (6.44)

The indices α, β characterize the respective basis elements Lαβ, whereas the indices µ, ν indicate

the components
(
Lαβ

)µ
ν

of their respective 4× 4 representation matrices. One calls (6.44) the

defining representation of the Lorentz algebra as it was derived via (6.39) and (6.43) from the

elements Λ of the Lorentz group acting on space-time. Its representation matrices (6.44) have

obviously the properties to be anti-symmetric with respect to both pairs of indices α, β and µ,

ν:

(
Lβα

)µ
ν

= −
(
Lαβ

)µ
ν
, (6.45)

(
Lαβ

) µ

ν
= −

(
Lαβ

)µ
ν
. (6.46)

And now we determine the commutator between two basis elements Lαβ and Lγδ. After a

lengthy but straight-forward calculation, which we have relegated to the exercises, one obtains

[
Lαβ, Lγδ

]
− = i

(
gαδLβγ + gβγLαδ − gαγLβδ − gβδLαγ

)
. (6.47)

This means that the Lorentz algebra is closed with respect to performing the commutator

between two of its basis elements. Furthermore, the result (6.47) can be summarized according

to

[
Lαβ, Lγδ

]
− = iCαβγδ

εξ Lεξ , (6.48)

where the structure constants of the Lorentz algebra are given by

Cαβγδ
εξ = gαδgβεg

γ
ξ + gβγgαεg

δ
ξ − gαγgβεgδξ − gβδgαεgγξ . (6.49)

6.4 Classification of Basis Elements

The basis elements Lαβ of the Lorentz algebra can be sorted into two classes by specializing

the indices α, β into spatial and spatio-temporal indices, respectively:

Lk =
1

2
εklmL

lm , (6.50)

Mk = L0k . (6.51)
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Here εklm denotes the three-dimensional Levi-Cività tensor, which has the value ε123 = 1 and

is anti-symmetric with respect to two of its three indices:

εklm = −εlkm = −εmlk = −εkml . (6.52)

According to (6.44) we obtain by taking into account (6.9) and (6.10) the following explicit

representations for the basis elements (6.50):

L1 = L23 = −i




0 0 0 0

0 0 0 0

0 0 0 −g22g3
3

0 0 g33g2
2 0


 = −i




0 0 0 0

0 0 0 0

0 0 0 +1

0 0 −1 0


 ,

L2 = L31 = −i




0 0 0 0

0 0 0 g11g3
3

0 0 0 0

0 −g33g1
1 0 0


 = −i




0 0 0 0

0 0 0 −1

0 0 0 0

0 +1 0 0


 ,

L3 = L12 = −i




0 0 0 0

0 0 −g11g2
2 0

0 g22g1
1 0 0

0 0 0 0


 = −i




0 0 0 0

0 0 +1 0

0 −1 0 0

0 0 0 0


 . (6.53)

Correspondingly, we yield for the basis elements (6.51):

M1 = L01 = i




0 g00g1
1 0 0

−g11g0
0 0 0 0

0 0 0 0

0 0 0 0


 = i




0 +1 0 0

+1 0 0 0

0 0 0 0

0 0 0 0


 ,

M2 = L02 = i




0 0 g00g2
2 0

0 0 0 0

−g22g0
0 0 0 0

0 0 0 0


 = i




0 0 +1 0

0 0 0 0

+1 0 0 0

0 0 0 0


 ,

M3 = L03 = i




0 0 0 g00g3
3

0 0 0 0

0 0 0 0

−g33g0
0 0 0 0


 = i




0 0 0 +1

0 0 0 0

0 0 0 0

+1 0 0 0


 . (6.54)

Specializing the commutator (6.47) to the respective spatial and temporal indices, we obtain

corresponding commutator relations for the two classes of basis elements (6.50) and (6.51). To

this end, however, one has to take into account the inversion of (6.50)

Lij = εijkLk , (6.55)

which can be proven with the help of the contraction rule of the three-dimensional Levi-Cività

symbol εijk:

εijkεlmk = δilδjm − δimδjl . (6.56)
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With this we yield

[Lk, Ll]− = iεklmLm , (6.57)

[Lk,Ml]− = iεklmMm , (6.58)

[Mk,Ml]− = −iεklmLm . (6.59)

From the commutator (6.57) we read off that the basis elements (6.50) represent a subalgebra

of the Lorentz algebra.

6.5 Lie Theorem

Considering the Lorentz group in the vicinity of the unity element (6.32), we recognize from

(6.39) and (6.43) that there the basis elements Lαβ appear:

Λµ
ν = gµν −

i

2

(
Lαβ

)µ
ν
ωαβ . (6.60)

Conversely, the Lie theorem states that the knowledge of the basis elements Lαβ of the Lorentz

algebra allows to determine each element of the Lorentz group by evaluating a matrix expo-

nential function:

Λ = exp

{
− i

2
Lαβ ωαβ

}
. (6.61)

The statement of the Lie theorem suggests that the (basis) elements of the Lorentz algebra are

called to be the (basis) generators of the Lorentz group. Corresponding to the decomposition

of the basis generators Lαβ into the two classes (6.50) and (6.51) also the expansion coefficients

ωαβ are decomposed into

ϕk =
1

2
εklm ωlm , (6.62)

ξk = ω0k . (6.63)

By taking into account the anti-symmetric properties (6.41) and (6.45) as well as the definitions

(6.51) and (6.55) the Lie theorem (6.61) reads

Λ = exp

(
− i

2
Lklωkl −

i

2
L0kω0k

)
= exp

(
− iϕL− iξM

)
. (6.64)

In the following we investigate further the Lie theorem (6.64) and show that ξ = 0 corresponds

to rotations and ϕ = 0 to boosts, respectively. Thus, ϕ (ξ) denote the vector of rotation angles

(rapidities) and L (M) represent the generators for the rotations (boosts).



6.6. ROTATIONS 73

6.6 Rotations

According to the Lie theorem (6.64) a general rotation with the vector of rotation angles ϕ is

defined by the matrix exponential function

R(ϕ) = exp
{
− iϕL

}
, (6.65)

where the explicit representation matrices for the basis generators of rotations L are defined in

(6.53). In the exercises Eq. (6.65) is evaluated by investigating the Taylor series for the matrix

exponential function and using, for instance, the Cayleigh-Hamilton theorem. To this end one

uses the fact that for any matrix A its characteristic polynomial

f(λ) = Det (A− λE) = (−1)nλn + cn−1λ
n−1 + · · ·+ c1λ+ DetA (6.66)

yields an analogous polynomial f(A) by substituting the scalar variable λ by the matrix A:

f(A) = (−1)nAn + cn−1A
n−1 + · · ·+ c1A+ Det A . (6.67)

The Cayley-Hamilton theorem then states that this polynomial expression is equal to the zero

matrix, i.e. f(A) = 0, implying that the matrix A fulfills the property

(−1)nAn + cn−1A
n−1 + · · ·+ c1A+ DetA = 0 . (6.68)

With this one obtains from (6.65) that the representation matrix of a rotation is of the form

R00 = 1 , R0j = Rj0 = 0 , Rjk(ϕ) =
ϕi
|ϕ| εikj sin |ϕ|+ ϕjϕk

|ϕ|2 (1− cos |ϕ|) + δjk cos |ϕ| . (6.69)

Note that the 4× 4 matrix defined by (6.69) fulfills two properties, which are characteristic for

describing a rotation along the axis ϕ with the angle |ϕ|. On the one hand the rotation axis

ϕ is an eigenvalue of the rotation matrix R(ϕ) with eigenvalue 1:

R(ϕ)

(
0

ϕ

)
=

(
0

ϕ

)
. (6.70)

On other hand the trace of the rotation matrix R(ϕ) is related to the rotation angle |ϕ| via

TrR(ϕ) = 2 + 2 cos |ϕ| . (6.71)

Furthermore, we note that the spatial components of a representation matrix of a rotation obey

the orthonormality relation

Rkl(ϕ)Rkm(ϕ) = δlm , (6.72)

which follows from (6.28) and (6.29) but can also be proven by using the explicit expression

(6.69).
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passive rotation active rotation

vector is fixed vector is rotated

coordinate system is rotated coordinate system is fixed

Table 6.2: Passive and active rotations act in opposite directions.

Now we apply the rotation matrix (6.69) to a vector x, which has a component parallel to the

rotation axis

x‖ =
ϕ · x
|ϕ|

ϕ

|ϕ| (6.73)

and another one perpendicular to the rotation axis: x⊥ = x− x‖. For the rotated vector

x′j = Rjk xk (6.74)

we then obtain the decomposition

x′ = x‖ + x⊥ cos |ϕ|+ ϕ

|ϕ| × x⊥ sin |ϕ| . (6.75)

Specializing (6.75) to a rotation around the axis ϕ = ϕ ez yields




x′1
x′2
x′3


 =




cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1







x1

x2

x3


 . (6.76)

Note that a coordinate transformation like the rotation in (6.76) allows for both a passive and

an active interpretation, see Tab. 6.2. For instance, the transformation

x =




1

0

0


 =⇒ x′ =




cosϕ

sinϕ

0


 (6.77)

can be interpreted either as the description of a fixed vector under the clockwise rotation of the

coordinate system or an anti-clockwise rotation of the vector for a fixed coordinate system.
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Figure 6.2: Inertial system S ′ moves with the velocity v relative to inertial system S.

6.7 Boosts

According to the Lie theorem (6.64) a general boost with the vector of rapidities ξ is defined

by the matrix exponential function

B(ξ) = exp
{
− iξM

}
, (6.78)

where the explicit representation matrices for the basis generators of boosts M are defined in

(6.54). In the exercises (6.78) is evaluated, yielding the representation matrix of a boost in the

form

B(ξ) =




cosh |ξ| ξj
|ξ| sinh |ξ|

ξi
|ξ| sinh |ξ| δij +

ξiξj
|ξ|2 (cosh |ξ| − 1)


 . (6.79)

We interpret the boost (6.79) passively in order to determine a relation between the rapidity

ξ and the velocity v, with which the inertial system S ′ is moving with respect to the inertial

system S, see Fig. 6.2. To this end we observe that the coordinate origin of S ′ is described in

both inertial systems S and S ′ with the following space-time four-vectors:

(xµ) =

(
ct

vt

)
,

(
x′
µ)

=

(
ct′

0

)
. (6.80)

Thus, mapping the four-vector (xµ) to (x′µ) via the boost (6.80) according to

x′
µ

= Bµ
ν(ξ)xν (6.81)

we obtain from taking to account (6.79):

t′ = t cosh |ξ|+ ξvt

|ξ|c sinh |ξ| , (6.82)

0 =
ξ

|ξ| sinh |ξ|+ v

c
+
ξv

|ξ|c
ξ

|ξ| (cosh |ξ| − 1) . (6.83)

At first, we conclude from (6.83) that rapidity ξ and velocity v are anti-parallel with respect

to each other:

ξ

|ξ| = − v

|v| . (6.84)
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Inserting (6.84) into (6.83) we conclude how the amounts of both the rapidity vector and the

velocity vector are related:

|v|
c

= sinh |ξ| − |v|
c

(cosh |ξ| − 1) =⇒ |v|
c

= tanh |ξ| . (6.85)

Thus, due to hyperbolic relations we obtain

cosh |ξ| =
1√

1− tanh2 |ξ|
= γ , (6.86)

sinh |ξ| =
tanh |ξ|√

1− tanh2 |ξ|
=
|v|
c
γ , (6.87)

where we have introduced the Lorentz factor of special relativity as an abbreviation:

γ =
1√

1− |v|2/c2
. (6.88)

With (6.79) and (6.84)–(6.88) the representation matrix of a boost turns out to be

B(v) =




γ −vj
c
γ

−vi
c
γ δij +

vivj
|v|2 (γ − 1)


 . (6.89)

Note that the components of a representation matrix of a boost obey the relation

Bµ
ν(v)Bµ

κ(v) = δν
κ , (6.90)

which follows from (6.28) and (6.29) but can also be proven by using the explicit expression

(6.79). And finally, as a concrete example, we read off from (6.82) and (6.84)–(6.88) the time

dilatation

t′ = t γ

(
1− v2

c2

)
= t

√
1− v2

c2
, (6.91)

i.e. an observer in the inertial system S detects that the clock in the moving inertial system S ′

goes slower than the clock in S.

6.8 Scalar Field Representation

Let us consider a scalar field φ(xµ), which represents a tensor field of rank n = 0 as it is

invariant with respect to any Lorentz transformation Λ. Within a passive interpretation of the

Lorentz transformation

x′
µ

= Λµ
ν x

ν ⇐⇒ xµ =
(
Λ−1

)µ
ν
x′
ν

(6.92)
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the four-vectors xµ and x′µ denote one and the same space-time point at the original and the

transformed coordinate system S and S ′, respectively. Due to the invariance of the scalar field

the original scalar field φ(xµ) in S must coincide with the transformed scalar field φ′(x′µ) in S ′:

φ′(x′
µ
) = φ(xµ) . (6.93)

Expressing the original scalar field φ via the transformed coordinate system S ′ we obtain from

(6.92) and (6.93):

φ′(x′
µ
) = φ

((
Λ−1

)µ
ν
x′
ν
)
. (6.94)

In order to simplify our notation in view of the following considerations, we omit from now on

the prime ′ at the respective four-vectors:

φ′(xµ) = φ
((

Λ−1
)µ
ν
xν
)
. (6.95)

Specializing (6.95) with the help of (6.39) and (6.42) to infinitesimal Lorentz transformations,

we obtain up to first order in the expansion coefficients ωαβ:

φ′(xµ) = φ

(
xµ +

i

2
ωαβ

(
Lαβ

)µ
ν
xν
)

=

(
1− i

2
ωαβ L̂

αβ

)
φ(xµ) , (6.96)

where the differential operators L̂αβ are given by

L̂αβ = −
(
Lαβ

)µ
ν
xν ∂µ . (6.97)

Due to the representation matrices (6.44) the differential operators turn out to be of the form

L̂αβ = i
(
xα∂β − xβ∂α

)
. (6.98)

Taking into account the definition of the four-momentum operator in quantum mechanics

p̂α = ih̄ ∂α (6.99)

Eq. (6.98) reduces to dimensionless angular momentum operators

L̂αβ =
1

h̄

(
xαp̂β − xβ p̂α

)
. (6.100)

Note that the components of the space-time four-vector and the momentum four-vector operator

fulfill

[
p̂α, xβ

]
− = ih̄ gαγ

[
∂γ, x

β
]
− = ih̄ gαβ . (6.101)

Here we have taken into account that differentiating with respect to the components of a

contravariant four-vector yields the components of a covariant four-vector:

∂α =
∂

∂xα
. (6.102)
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From (3.10) and (6.101) we get the following set of commutation relations:
[
L̂αβ, xγ

]
−

= −
(
Lαβ

)γ
δ
xδ , (6.103)

[
L̂αβ, p̂γ

]
−

= −
(
Lαβ

)γ
δ
p̂δ . (6.104)

Due to the commutation relations (6.103) and (6.104) one denotes the space-time four-vector xλ

and the momentum four-vector operator p̂λ as vector operators. Correspondingly one considers

an operator Ôλ1...λn as a tensor operator of rank n if it transforms in each index λ1, . . . , λn as

a vector:

[
L̂µν , Ôλ1...λn

]
−

= −
n∑

k=1

(Lµν)λkκ Ô
λ1...λk−1κλk+1...λn . (6.105)

The commutation relations (6.103) and (6.104) now allow to determine the commutation rela-

tions between the angular momentum operators (6.100) by taking into account (3.43):
[
L̂αβ, L̂γδ

]
−

= i
(
gαδ L̂βγ + gβγ L̂αδ − gαγ L̂βδ − gβδ L̂αγ

)
. (6.106)

Comparing (6.47) with (6.106) we conclude that also the angular momentum operators L̂αβ

fulfill the commutation relations of the Lorentz algebra. Therefore, the angular momentum

operators L̂αβ are considered as a representation of the Lorentz algebra in the Hilbert space of

scalar fields. Furthermore, with the help of the representation matrices (6.43) we can rewrite

(6.106) according to
[
L̂αβ, L̂γδ

]
−

= −
(
Lαβ

)γ
σ
L̂σδ −

(
Lαβ

)δ
σ
L̂γσ . (6.107)

Thus, the angular momentum operators L̂αβ represent in the sense of (6.105) tensor operators

of rank 2.

6.9 Tensor/Spinor Field Representation

Now we consider a tensor or a spinor field ψσ(xµ), where the index σ stands for the respective

tensor or spinor indices. Performing a Lorentz transformation one has to take into account that

this affects both the space-time four-vector xµ and the tensor or spinor components ψσ.

6.9.1 Four-Vector Example

Let us consider at first the concrete example of a four-vector Aσ(xµ), which represents a tensor

field of rank n = 1 as one Lorentz matrix Λ is involved in transforming the tensor or spinor

components ψσ:

A′
σ
(x′

µ
) = Λσ

τ A
τ (xµ) . (6.108)
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Reexpressing the space-time components of the original four-vector Aτ in S via the transformed

coordinate system S ′ according to (6.92), one yields

A′
σ
(xµ) = Λσ

τ A
τ
((

Λ−1
)µ
ν
xν
)
, (6.109)

where again the prime ′ at the space-time four-vector has been omitted in order to simplify the

notation. Afterwards we specialize (6.109) with the help of (6.39) and (6.42) to infinitesimal

Lorentz transformations and obtain up to first order in the expansion coefficients ωαβ:

A′
σ
(xµ) =

{
gστ −

i

2

(
Lαβ

)σ
τ
ωαβ

} {
Aτ (xµ) +

i

2

(
Lαβ

)µ
ν
ωαβ x

ν ∂µA
τ (xµ)

}

=⇒ A′
σ
(xµ) =

{
gστ −

i

2

(
M̂αβ

)σ
τ
ωαβ

}
Aτ (xµ) . (6.110)

Here the operator M̂αβ turns out to be additive in the representation matrices (6.43) and the

angular momentum operator (6.100):

M̂αβ = L̂αβ + Lαβ . (6.111)

Thus, from (6.45) and (6.100) we read off the anti-symmetry

M̂αβ = −M̂βα . (6.112)

As both the representation matrices Lαβ and the angular momentum operators L̂αβ fulfill

according to (6.47) and (6.106) the Lorentz algebra as well as they commute with each other
[
Lαβ, L̂γδ

]
−

= 0 , (6.113)

we conclude that also the operators M̂αβ fulfill the Lorentz algebra:
[
M̂αβ, M̂γδ

]
−

= i
(
gαδ M̂βγ + gβγ M̂αδ − gαγ M̂βδ − gβδ M̂αγ

)
. (6.114)

6.9.2 General Case

Now we return back to the general case of a tensor or spinor field ψσ(xµ). Performing an

infinitesimal Lorentz transformation we have then in analogy to (6.110)

ψ′
σ
(xµ) =

{
gστ −

i

2

(
M̂αβ

)σ
τ
ωαβ

}
ψτ (xµ) , (6.115)

where the operator M̂αβ has a decomposition similar to (6.111):

M̂αβ = L̂αβ +Nαβ . (6.116)

Although we can not write down the explicit form of the matrices Nαβ for a general tensor or

spinor representation of the Lorentz algebra, we do know that they must fulfill the commutator

relation

[
Nαβ, Nγδ

]
− = i

(
gαδNβγ + gβγ Nαδ − gαγ Nβδ − gβδNαγ

)
. (6.117)
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Furthermore, both representations L̂αβ and Nαβ of the Lorentz algebra in Minkowski space and

in the space of the tensor or spinor components are independent from each other, implying
[
Nαβ, L̂γδ

]
−

= 0 . (6.118)

From this we then read off that also the operators M̂αβ defined in (6.116) fulfill the commutation

relation (6.114) of the Lorentz algebra. They are a representation of the Lorentz algebra in the

Hilbert space of tensor or spinor fields. In addition, as L̂αβ coincides with the orbital angular

momentum (6.100), one can identify the representation Nαβ of the Lorentz algebra in the space

of the tensor or spinor components with the spin angular momentum and, thus, M̂αβ with the

total angular momentum.

6.10 Defining Representation of Poincaré Group

Poincaré transformations in Minkowski space are put together from a Lorentz transformation

Λµ
ν and a shift aµ:

x′
µ

= Λµ
ν x

ν + aµ . (6.119)

Whereas Lorentz transformations do not change the scalar product of four-vectors due to (6.4)

and (6.17), Poincaré transformations (6.119) only leave distances between four-vectors invariant:

gµν (xµ − yµ) (xν − yν) = gµν
(
x′
µ − y′µ

) (
x′
ν − y′ν

)
. (6.120)

Therefore, Poincaré transformations are also called to be inhomogeneous Lorentz transforma-

tions.

We show now that the set P of all Poincaré transformations is a group. To this end we

characterize an element from P with (Λ, a):

• At first we prove the closedness and assume, to this end, that both (Λ1, a1) and (Λ2, a2)

belong to P . Taking into account (6.119) we then conclude

xµ2 = Λ µ
2 ν x

ν
1 + aµ2 = Λ µ

2 ν

(
Λ ν

1 κ x
κ + aν1

)
+ aµ2 = Λ µ

2 ν Λ ν
1 κ x

κ + Λ µ
2 ν a

ν
1 + aµ2

=⇒ Λµ
ν = Λ µ

2 ν Λ ν
1 κ , aµ = Λ µ

2 ν a
ν
1 + aµ2 . (6.121)

Thus, also

(Λ2, a2)(Λ1, a1) = (Λ, a) = (Λ2Λ1,Λ2a1 + a2) (6.122)

belongs to P . One calls the multiplication rule (6.122) a semi-direct product of the

Lorentz group L and the translation group T . In case of a direct product one would have

had the simpler multiplication rule:

(Λ2, a2)(Λ1, a1) = (Λ, a) = (Λ2Λ1, a1 + a2) . (6.123)
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• In the next step we consider the associativity, so we assume that (Λ1, a1), (Λ2, a2) and

(Λ3, a3) belong to P . Thus, we obtain from (6.122)

(Λ1, a1) ((Λ2, a2)(Λ3, a3)) = (Λ1, a1)(Λ2Λ3,Λ2a3 + a2) = (Λ1Λ2Λ3,Λ1Λ2a3 + Λ1a2 + a1)(6.124)

((Λ1, a1)(Λ2, a2)) (Λ3, a3) = (Λ1Λ2,Λ1a2 + a1)(Λ3, a3) = (Λ1Λ2Λ3,Λ1Λ2a3 + Λ1a2 + a1)(6.125)

and deduce with this the associativity

(Λ1, a1) ((Λ2, a2)(Λ3, a3)) = ((Λ1, a1)(Λ2, a2)) (Λ3, a3) . (6.126)

• Then we identify the unity element of P with (Λe, ae) = (I, 0) due to (6.32). Namely,

with (Λ, a) from P we read off from (6.122)

(I, 0)(Λ, a) = (Λ, a) = (Λ, a)(I, 0) . (6.127)

• And, finally, the inverse element of some element (Λ, a) belonging to P is given by

(Λ, a)−1 = (Λ−1,−Λ−1a) from P as taking into account (6.122) leads to

(Λ, a)−1(Λ, a) = (Λ−1,−Λ−1a)(Λ, a) = (Λ−1Λ,Λ−1a− Λ−1a) = (I, 0) . (6.128)

Similar to the Lorentz group also the Poincaré group is divided with the help of the values

Det Λ and Λ0
0 into the four branches Pi with i = 1, 2, 3, 4, see Tab. 6.1. In the following we

restrict ourselves to consider the subgroup P1 of the Poincaré group P , which is characterized

by Det Λ > 0 and Λ0
0 > 0.

6.11 Tensor/Spinor Representation of Poincaré Algebra

Let us analyse a tensor or spinor field ψσ(xµ), which is invariant with respect to a translation

with an arbitrary four-vector aµ. Within a passive interpretation of the translation

x′
µ

= xµ + aµ ⇐⇒ xµ = x′
µ − aµ (6.129)

both xµ and x′µ denote one and the same space-time point with respect to the original and the

translated coordinate system S and S ′. Due to the invariance of the tensor or spinor field its

descriptions ψσ(xµ) and ψ′σ(x′µ) in S and S ′ must coincide:

ψ′
σ
(x′

µ
) = ψσ(xµ) . (6.130)

Considering in (6.130) the original tensor or spinor field ψσ with respect to the transformed

coordinate system S ′, we obtain from (6.129) and (6.130)

ψ′
σ
(xµ) = ψσ(xµ − aµ) , (6.131)
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where we have omitted again the prime ′ at the four-vectors in order to simplify the notation.

For an infinitesimal translation aµ = εµ we then have

ψ′
σ
(xµ) = ψσ(xµ)− εα ∂α ψσ(xµ) . (6.132)

Taking into account the momentum operator (6.99) this reduces to

ψ′
σ
(xµ) =

(
1 +

i

h̄
εα p̂

α

)
ψσ(xµ) . (6.133)

Thus, the basis generators of the translations can be identified with the components of the

momentum operator (6.99). Together with the basis generators of the Lorentz transformations,

which are given by the total momentum operators (6.116), they span the Poincaré algebra. In

order to characterize the Poincaré algebra completely, it remains to deduce the commutation re-

lations between its basis generators p̂α and M̂αβ, which can be accomplished straight-forwardly.

To this end we read off from (6.99) that the commutator between two basis generators of trans-

lations vanishes:
[
p̂α, p̂β

]
− = 0 . (6.134)

Thus, the momentum operators p̂α represent a commutative subalgebra of the Poincaré algebra,

which implies via the Lie theorem that the translations form an abelian subgroup of the Poincaré

group. Afterwards, we consider the commutator between the generators p̂α and M̂αβ themselves.

Here we use that the representation of the basis generators of translations (6.99) and the

representation Nαβ of the Lorentz algebra in the space of the tensor or spinor components are

independent from each other, implying
[
p̂α, Nβγ

]
− = 0 . (6.135)

With this as well as (6.44), (6.104), and (6.116) we then obtain
[
M̂αβ, p̂γ

]
−

= i
(
gβγ p̂α − gαγ p̂β

)
. (6.136)

And we remark that the commutator relations between the total momentum (6.116) were

already obtained in (6.114) and are characteristic of the Lorentz algebra. From (6.116) we read

off due to the Lie theorem that the Lorentz group is a non-abelian subgroup of the Poincaré

group.

Finally, the definition (6.105) of a tensor operators Ôλ1,...,λn of rank n for the Lorentz algebra

is straight-forwardly extended to the Poincaré algebra according to

[
M̂µν , Ôλ1...λn

]
−

= −
n∑

k=1

(Lµν)λkκ Ô
λ1...λk−1κλk+1...λn . (6.137)

With the help of the representation matrices (6.44) the commutator relations (6.116) and (6.136)

can then be rewritten as
[
M̂αβ, p̂γ

]
−

= −
(
Lαβ

)γ
δ
p̂δ , (6.138)

[
M̂αβ, M̂γδ

]
−

= −
(
Lαβ

)γ
σ
M̂σδ −

(
Lαβ

)δ
σ
M̂γσ . (6.139)
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Thus, according to (6.137), p̂α and M̂αβ represent tensor operators of rank n = 1 and n = 2,

respectively.

6.12 Casimir Operators of Poincaré Algebra

Those operators, which commute with all basis generators of a Lie algebra, are called Casimir

operators. The first Casimir operator of the Poincaré algebra is given by the scalar product of

the momentum operator with itself:

p̂2 = gαβ p̂
αp̂β . (6.140)

Taking into account (3.10) and (6.134) one can directly show that p̂2 commutes with all mo-

mentum operators:

[
p̂2, p̂α

]
− = gβγ

[
p̂β p̂γ, p̂α

]
− = gβγ

{
p̂β [p̂γ, p̂α]− +

[
p̂β, p̂α

]
− p̂

γ
}

= 0 . (6.141)

Furthermore, p̂2 is per construction a Lorentz scalar and, thus, commutes with all generators

of the Lorentz algebra M̂αβ due to (3.10), (6.136), and (6.140):

[
p̂2, M̂αβ

]
−

= gγδ

[
p̂γ p̂δ, M̂αβ

]
−

= gγδ

{
p̂γ
[
p̂δ, M̂αβ

]
−

+
[
p̂γ, M̂αβ

]
−
p̂δ
}

= igγδ

{
p̂γ
(
gαδp̂β − gβδp̂α

)
+
(
gαγ p̂β − gβγ p̂δ

)
p̂δ
}

= 0 . (6.142)

In order to construct a second Casimir operator, we define now the Pauli-Lubanski operator

Ŵα =
1

2
εαβγδ p̂

βM̂γδ . (6.143)

Here εαβγδ denotes the four-dimensional, totally anti-symmetric unity tensor, which is a rela-

tivistic extension of the three-dimensional Levi-Cività symbol used in (6.50). It has the value

ε1234 = 1 and is anti-symmetric with respect to two of its four indices:

εαβγδ = −εαβδγ = −εαδγβ = −εαγβδ = −εδβγα = −εγβαδ = −εβαγδ . (6.144)

The scalar product of the Pauli-Lubanski operator Ŵα with the four-momentum operator p̂α

vanishes due to (6.143) and (6.144):

Ŵα p̂
α =

1

2
εαβγδ p̂

βM̂γδp̂α = 0 . (6.145)

Furthermore, we read off from (3.102), (6.134), (6.136), (6.143), and (6.144) that the Pauli-

Lubanski vector commutes with the four-momentum operator:

[
Ŵα, p̂σ

]
−

= gαα
′
[
Ŵα′ , p̂

σ
]
−

=
1

2
gαα

′
εα′βγδ

[
p̂βM̂γδ, p̂σ

]
−

=
1

2
gαα

′
εα′βγδ

{
p̂β
[
M̂γδ, p̂σ

]
−

+
[
p̂β, p̂σ

]
− M̂

γδ
}

=
i

2
gαα

′
εα′βγδ

(
gδσp̂β p̂γ − gγσp̂β p̂δ

)
= 0 . (6.146)
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Now we determine the commutator of the Pauli-Lubanski operator with the basis generators

of the Lorentz algebra. To this end we use (3.43), (6.116), (6.136), (6.143), and (6.144) and

obtain at first:

[
M̂αβ, Ŵ γ

]
−

= gγδ
[
M̂αβ, Ŵδ

]
−

=
1

2
gγδεδρστ

[
M̂αβ, p̂ρM̂στ

]
−

=
1

2
gγδεδρστ

{[
M̂αβ, p̂ρ

]
−
M̂στ + p̂ρ

[
M̂αβ, M̂στ

]
−

}

=
i

2
gγδ

{
gβρεδρστ

(
p̂αM̂στ − 2p̂σMατ

)
− gαρεδρστ

(
p̂βM̂στ − 2p̂σMβτ

)}
. (6.147)

In order to identify the right-hand side of (6.147) with known operators, several additional

calculations are necessary. At first we apply the contraction rule for the ε-tensor

εαβγδ ε
α′β′γ′δ = δ α′

α δ β′

β δ γ′

γ + δ β′

α δ γ′

β δ α′

γ + δ γ′

α δ α′

β δ β′

γ

−δ β′

α δ α′

β δ γ′

γ − δ α′

α δ γ′

β δ β′

γ − δ γ′

α δ β′

β δ α′

γ , (6.148)

which is similar to (6.56), so that the relation (6.143) can be inverted in analogy to (6.50) and

(6.55) due to the anti-symmetry (6.112):

Ŵα ε
αβγδ = p̂βM̂γδ + p̂γM̂ δβ + p̂δM̂βγ . (6.149)

Furthermore, we conclude from the contraction rule (6.148) the special case

εαβγδ ε
α′β′γδ = 2

(
δ α′

α δ β′

β − δ β′

α δ α′

β

)
, (6.150)

so that (6.149) can be contracted with the ε-tensor. On the one hand we then obtain

Ŵα ε
αβγδ εστγδ = 2

(
Ŵσ δ

β
τ − Ŵτ δ

β
σ

)
, (6.151)

whereas we read off from (6.149)

Ŵα ε
αβγδ εστγδ = p̂βM̂γδ εστγδ + p̂γM̂ δβ εστγδ + p̂δM̂βγ εστγδ . (6.152)

Thus, taking into account (6.112) and (6.144) we result in

εστγδ

(
p̂βM̂γδ − 2p̂γM̂βδ

)
= 2

(
Ŵσ δ

β
τ − Ŵτ δ

β
σ

)
. (6.153)

Inserting then (6.153) into (6.147) determines the commutator of the Lubanski operator with

the basis generators of the Lorentz algebra in the following form:

[
M̂αβ, Ŵ γ

]
−

= i
(
gβγWα − gαγW β

)
. (6.154)

With the help of the representation matrices (6.44) one recognizes that the Pauli-Lubaski

operator represents a tensor operator of rank n = 1:

[
M̂αβ, Ŵ γ

]
−

= −
(
Lαβ

)γ
δ
Ŵ δ . (6.155)
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We consider now the scalar product of the Pauli-Lubanski operator with itself

Ŵ 2 = gαβŴ
αŴ β (6.156)

and show that it represents the second Casimir operator of the Poincaré algebra. At first, we

yield for the commutator of Ŵ 2 and p̂α due to (3.10) and (6.146)

[
Ŵ 2, p̂α

]
−

= 0 . (6.157)

In addition, we obtain that Ŵ 2 also commutes with M̂αβ by taking into account (3.43) and

(6.154)

[
Ŵ 2, M̂αβ

]
−

= 0 . (6.158)

Finally, the question arises how to physically interpret both Casimir operators of the Poincaré

group. To this end we describe a particle with fixed four-momentum p = (pµ) via a tensor or

spinor field ψσ(x) and the eigenvalue problem

p̂µψσ(x) = pµψσ(x) . (6.159)

Then the first Casimir operator (6.140) has an eigenvalue, which is determined by the rest

mass M due to (6.21). Thus, in view of the second Casmir operator Ŵ 2 it remains to interpret

physically also the Pauli-Lubanski operator Ŵα. To this end we insert the decomposition

(6.116) of the representation M̂αβ of the Lorentz algebra in the Hilbert space of the tensor

or spinor fields in the representation L̂αβ of the Lorentz algebra in Minskowski space and the

representation Nαβ of the Lorentz algebra in the space of the tensor or spinor components into

(6.143). Due to the anti-symmetry of the ε-tensor (6.144) this yields:

Ŵα =
1

6
εαβγδ

(
p̂βL̂γδ + p̂γL̂δβ + p̂δL̂βγ

)
+

1

2
εαβγδN

γδ . (6.160)

Taking into account the definition of the orbital angular momentum operators (6.100) as well

as the commutation relations (6.101) and (6.134) we observe that (6.160) reduces to

Ŵα =
1

2
εαβγδ p̂

β Nγδ . (6.161)

Thus, it turns out that the orbital angular momentum operator L̂αβ does not contribute to the

Pauli-Lubanski operator Wα. Describing again a particle with fixed four-momentum p = (pµ)

via a tensor or spinor field ψσ(x), the eigenvalue problem with respect to the Pauli-Lubanski

operator reads

Ŵαψ
σ(x) = Wαψ

σ(x) , (6.162)

where the eigenvector is given by the Pauli-Lubanski four-vector

Wα =
1

2
εαβγδ p

βNγδ . (6.163)
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Decomposing the basis generators Nαβ of the Lorentz algebra in the space of tensor or spinor

components in analogy to (6.50), (6.51) into two classes

Sk =
1

2
εklmN

lm , (6.164)

Kk = N0k , (6.165)

we introduce the two vectors

S = (S1, S2, S3) =
(
N23, N31, N12

)
, (6.166)

K = (K1, K2, K3) =
(
N01, N02, N03

)
. (6.167)

With this the covariant components of the Pauli-Lubanski four-vector (6.163) are defined similar

to (6.6) and (6.19)

(Wα) = (W0,W1,W2,W3) =
(
W0,−W i

)
= (W0,−W) , (6.168)

where the temporal and spatial components read

W0 = p · S , (6.169)

W = p0 S + S×K , (6.170)

respectively. In the rest frame of the particle we have p0 = Mc and p = 0, so that the temporal

and spatial components of the Pauli-Lubanski vector (6.169) and (6.170) reduce to

W0 = 0 , (6.171)

W = McS . (6.172)

Analogously to the calculation of (6.57) we obtain from the commutation relation (6.117) a

corresponding commutation relation for the vector components Sk:

[Sk, Sl]− = iεklmSm . (6.173)

Thus, we conclude that in the rest frame of the particle the Pauli-Lubanski four-vector rep-

resents the spin angular momentum of the particle. Therefore, Ŵα in (6.143) is a relativistic

generalization of the spin angular momentum in any inertial frame.

6.13 Irreducible Representations of Poincaré Group

With the help of the eigenvalues of the Casimir operators (6.140) and (6.143) of the Poincaré

algebra one can classify the irreducible representations of the Poincaré group. Note that they

are infinite dimensional as they describe particles with an unbounded momentum. In contrast

to that the defining representation of the Lorentz group was finite dimensional. The eigenvalue
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of the first Casimir operator (6.140) is characterized due to (6.21) by the rest mass M of the

particle:

p2 = M2c2 . (6.174)

Depending whether the rest mass M is non-zero or vanishes one distinguishes two different

classes of representations.

6.13.1 Massive Representations

Let us consider first the case that the rest mass is non-zero, i.e. M > 0, which defines the

massive representations. Then we remark that the second Casimir operator (6.143) has an

eigenvalue, which is a Lorentz scalar, so it has in each inertial system the same value. In

particular in the rest frame the eigenvalue of (6.143) reduces due to (6.171) to

W 2 = −W2 = −M2c2 S2 . (6.175)

As the components of the vector S obey the commutation relations (6.173) of the angular

momentum algebra, the eigenvalues of (6.175) are given by

W 2 = −M2c2 S(S + 1) ; S = 0, 1/2, 1, 3/2, . . . . (6.176)

Such a massive representation is, thus, characterized by both the mass M and the spin S. As

these are the fundamental properties of elementary particles, we have obtained the result that

the elementary particles themselves can be identified with the irreducible representations of the

Poincaré group. States within such a representation only differ in the third component of the

spin vector, where 2S + 1 different eigenvalues can occur.

6.13.2 Massless Representations

For a particle with a vanishing rest mass, i.e. M = 0, it is not possible to reach its rest frame by

applying any Lorentz transformation. If this was possible, then this would have the unphysical

consequence that the energy of the particle would vanish due to p0 = 0. Therefore, massless

particles need as a basic principle a different treatment.

Within a massless representation both four-vectors pα and Wα have a vanishing scalar product

with respect to each other due to (6.145):

pαW
α = 0 . (6.177)

Furthermore, due to (6.174) and (6.175), they represent light-like four-vectors, i.e. they obey

pαp
α = 0 , WαW

α = 0 , (6.178)
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Decomposing (6.178) into its temporal and spatial components

(
p0
)2

= p2 ,
(
W 0
)2

= W2 , (6.179)

then we directly conclude from pα 6= 0 and Wα 6= 0:

p0 6= 0 , W 0 6= 0 . (6.180)

Let us consider now the linear combination

Apα +BWα = 0 . (6.181)

Obviously, (6.181) does not only have the trivial solution A = B = 0 as we obtain from α = 0

and from taking into account (6.180)

B = − p0

W 0
A . (6.182)

Thus, both light-like four-vectors pα and Wα are linear dependent. Therefore, for their re-

spective operators p̂α and Ŵα there must exist a proportionality factor operator ĥ with the

property

Ŵα = ĥ p̂α . (6.183)

Now we determine for this proportionality factor ĥ the commutator relations with the generators

of the Poincaré algebra. At first we get from (3.10), (6.134), (6.146), and (6.183)

[
Ŵα, p̂β

]
−

=
[
ĥ p̂α, p̂β

]
−

= ĥ
[
p̂α, p̂β

]
− +

[
ĥ, p̂β

]
−
p̂α =⇒

[
ĥ, p̂α

]
−

= 0 . (6.184)

In a similar way we determine from (3.43), (6.136), (6.154), and (6.183):

[
M̂αβ, Ŵ γ

]
−

=
[
M̂αβ, ĥp̂γ

]
−

=
[
M̂αβ, ĥ

]
−
p̂γ + ĥ

[
M̂αβ, p̂γ

]
−

=⇒
[
M̂αβ, ĥ

]
−

= 0 . (6.185)

This means that the proportionality factor ĥ represents an additional Casimir operator. For

the corresponding eigenvalues of Ŵα, ĥ, and p̂ we then obtain from (6.183)

Wα = h pα , (6.186)

so we read off for the zeroth component α = 0

h =
W 0

p0
. (6.187)

Thus, taking into account (6.169) and (6.179) the eigenvalue h of this additional Casimir

operator ĥ is given by

h =
pS

|p| , (6.188)
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which is intuitively accessible as the projection of the particle spin upon the direction of motion.

Therefore, one calls ĥ as the helicity operator. For a given spin S and momentum p the

eigenvalue (6.188) of the helicity operator ĥ has a fixed sign, i.e. either positive or negative,

which is the same in all inertial systems.

One can define the helicity operator ĥ also for massive particles, but then it does not represent

a Casimir operator. This means, for instance, that then an appropriate Lorentz transformation

can convert a state of positive helicity into another state with negative helicity. Thus, the

helicity describes for a massive particle its state but not the massive particle itself. The latter

is only possible for massless particles as they always move with light velocity.

6.13.3 Other Representations

From a mathematical point of view the Poincaré group does allow also for other classes of

unitary representations. Among them is one with the constraint pµp
µ = 0 and a continuous

spin. Another one obeys the constraint pµp
µ < 0 for particles moving with a velocity larger

than the light velocity, which are known hypothetically as tachyons. But so far there is no

experimental indication that these other representations of the Poincaré group are realised in

nature by any elementary particle. But, although this is purely speculative, one of these other

representations of the Poincaré group might indicate a solution for the virulent problem of our

time that the physical nature of dark matter is yet unknown.





Chapter 7

Noether Theorem

In 1918 the mathematician Emmy Noether published a theorem, which had far-reaching conse-

quences for different branches of theoretical physics. It states that every differentiable symme-

try of the action of a physical system is relaed to a corresponding conservation law. Although

Noether’s theorem has implications also in classical mechanics, we focus here on classical field

theory, where it provides a fundamental connection between continuous symmetries and con-

served quantities. Namely, each continuous symmetry, which leaves the action invariant, leads

inevitably to a corresponding conserved quantity. For instance, translations in time and space

are related with the energy and the momentum conservation. In a similar way spatial rotations

and boosts imply the conservation of angular momentum and the center of mass, respectively.

And, finally, an invariance with respect to a translation of the phase in a wave function turns

out to be connected with the charge conservation. In the following we derive the Noether theo-

rem in its most general form in the realm of classical field theory and then specialize it to these

important applications.

7.1 Invariance

The action A represents a functional of the underlying tensor or spinor field Ψσ(xλ), i.e. we

have

A = A [Ψσ(•)] , (7.1)

which is defined as a spatio-temporal integral over the Lagrange density L:

A =
1

c

∫

Ω

d4xL
(
Ψσ(xλ), ∂µΨσ(xλ)

)
. (7.2)

Here we restrict ourselves to a local field theory, where the Lagrange density L can only depend

on the tensor or spinor field itself and its first partial derivatives but not from higher partial

derivatives with respect to space and time. Now we consider a transformation, which involves
91
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both the space-time coordinates and the tensor or spinor field:

x′
λ

= x′
λ

(xκ) , (7.3)

Ψ′
σ
(x′

λ
) = Ψ′

σ
(Ψτ (xκ)) . (7.4)

Here we use the convention that the unprimed (primed) quantities denote the ones before (after)

the transformation. The transformation (7.3), (7.4) then changes the action (7.1), (7.2) to

A′
[
Ψ′

σ
(•)
]

=
1

c

∫

Ω′
d4x′ L

(
Ψ′

σ
(x′

λ
), ∂′µΨ′

σ
(x′

λ
)
)
. (7.5)

The transformation (7.4), (7.5) is exactly then a symmetry transformation, when it leaves the

action invariant:

A [Ψσ(•)] = A′
[
Ψ′

σ
(•)
]
. (7.6)

In the following we analyze the physical consequences of this invariance of the action.

7.2 Infinitesimal Transformation

For the proof of the Noether theorem it turns out to be sufficient to consider an infinitesimal

symmetry transformation. For such an infinitesimal symmetry transformation Eqs. (7.3), (7.4)

reduce to

x′
λ

= xλ + δxλ , (7.7)

Ψ′
σ
(x′

λ
) = Ψσ(xλ) + δΨσ(xλ) . (7.8)

Here δΨσ(xλ) denotes the total variation of the tensor or spinor field, which generically contains

two contributions. On the one hand it involves a change due to transforming the space-time

coordinates from xλ to x′λ, on the other hand it includes a change of the tensor or spinor field

from Ψσ to Ψ′σ. For technical reasons it is, therefore, advantageous to introduce the local

variation δ̃Ψσ(xλ) of the tensor or spinor field Ψσ(xλ) as the infinitesimal transformation of the

tensor or spinor field for fixed space-time coordinates:

δ̃Ψσ(xλ) = Ψ′σ(xλ)−Ψσ(xλ) . (7.9)

Combining (7.8) and (7.9) we recognize the following connection between the total variation

δΨσ(xλ) and the local variation δ̃Ψσ(xλ):

δ̃Ψσ(xλ) = δΨσ(xλ)−
[
Ψ′σ(x′λ)−Ψ′σ(xλ)

]
. (7.10)

Inserting (7.7) into (7.10) and taking into account only the first order of the variations yields

δ̃Ψσ(xλ) ≈ δΨσ(xλ)− ∂µΨ′σ(xλ)δxµ ≈ δΨσ(xλ)− ∂µΨσ(xλ)δxµ . (7.11)
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The result (7.11) means that one has to subtract from the the total variation δΨσ(xλ) that

contribution, which stems from the change of the space-time coordinates, in order to obtain the

local variation δ̃Ψσ(xλ). Note that using the local variation δ̃Ψσ(xλ) has the formal advantage

that it commutes with the differentiation

∂µ

[
δ̃Ψσ(xλ)

]
= δ̃
[
∂µΨσ(xλ)

]
, (7.12)

whereas this is not true for the total variation δΨσ(xλ) due to (7.11):

∂µ

[
δ̃Ψσ(xλ)

]
6= δ
[
∂µΨσ(xλ)

]
. (7.13)

7.3 Total and Local Variation of Action

According to (7.2) the action A before the transformation is integrated with respect to Ω,

whereas the action A′ after the transformation is integrated with respect to Ω′ due to (7.5).

Within a passive interpretation of the space-time transformation (7.3) both Ω and Ω′ denote one

and the same four-dimensional integration volume, which is described by different coordinate

systems. Transforming Ω′ back into Ω with the help of the infinitesimal transformation (7.7),

the respective differential volumes transform with the Jacobi determinant. Up to first order in

the variation we have

d4x′

d4x
=

∂(x′λ)

∂(xµ)
=

∣∣∣∣gλµ +
∂δxλ

∂xµ

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

1 +
∂δx0

∂x0

∂δx0

∂x1
. . .

∂δx1

∂x0
1 +

∂δx1

∂x1
. . .

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣

≈ 1 +
∂δxµ

∂xµ
. (7.14)

The result (7.14) states that the relative change of the differential volumes is given by the four-

divergence of the variation of the space-time coordinates. The Lagrange density transforms

accordingly via

L′ = L+ δL . (7.15)

Taking into account (7.2) and (7.4) the total variation of the action

δA = A′ [Ψ′σ(•)]−A [Ψσ(•)] =
1

c

∫

Ω′
d4x′ L′ − 1

c

∫

Ω

d4xL (7.16)

can be evaluated with the help of (7.14) and (7.15) up to first order:

δA =
1

c

∫

Ω

d4x

[(
1 +

∂δxµ

∂xµ

)
(L+ δL)− L

]
≈ 1

c

∫

Ω

d4x

(
δL+

∂δxµ

∂xµ
L
)
. (7.17)

Similar to (7.11) the following relation holds between the total variation δL and the local

variation δ̃L of the Lagrange density:

δL = δ̃L+ ∂µL δxµ . (7.18)
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For the Lagrange density L of a local field theory as it appears in (7.2) the local variation δ̃L
is given by

δ̃L =
∂L

∂Ψσ(xλ)
δ̃Ψσ(xλ) +

∂L
∂(∂µΨσ(xλ))

δ̃
[
∂µΨσ(xλ)

]
. (7.19)

As the local variation δ̃ has according to (7.12) the property that it commutates with the

differentiation, we conclude from (7.19)

δ̃L =
∂L

∂Ψσ(xλ)
δ̃Ψσ(xλ) +

∂L
∂(∂µΨσ(xλ))

∂µ

[
δ̃Ψσ(xλ)

]
, (7.20)

which can be rewritten as

δ̃L =

[
∂L

∂Ψσ(xλ)
− ∂µ

∂L
∂(∂µΨσ(xλ))

]
δ̃Ψσ(xλ) + ∂µ

[
∂L

∂(∂µΨσ(xλ))
δ̃Ψσ(xλ)

]
. (7.21)

7.4 Continuity Equation

Inserting both the total and the local variation of the Lagrange density from (7.18) and (7.21)

into (7.17), the total variation of the action results in

δA =
1

c

∫

Ω

d4x

{[
∂L

∂Ψσ(xλ)
− ∂µ

∂L
∂(∂µΨσ(xλ))

]
δ̃Ψσ(xλ)

+∂µ

[
∂L

∂(∂µΨσ(xλ))
δ̃Ψσ(xλ)

]
+ L δxµ

}
. (7.22)

The first term in (7.22) turns out to vanish as the tensor or spinor field Ψσ(xλ) has to fulfill

the Euler-Lagrange equations corresponding to the action A due to the Hamilton principle of

classical field theory:

δA
δΨσ(xλ)

=
∂L

∂Ψσ(xλ)
− ∂µ

∂L
∂(∂µΨσ(xλ))

= 0 . (7.23)

From (7.22), (7.23) as well as the connection (7.10) between the local variation δ̃Ψσ(xλ) and

the total variation δΨσ(xλ) of the tensor or spinor field Ψσ(xλ) we then conclude

δA =
1

c

∫

Ω

d4x ∂µ

{
∂L

∂(∂µΨσ(xλ))
δΨσ(xλ)−

[
∂L

∂(∂µΨσ(xλ))
∂ν Ψσ(xλ) − δµν L

]
δxν
}
. (7.24)

As the infinitesimal symmetry transformation leaves the action invariant according to (7.6),

the total variation of the action must vanish:

δA = 0 . (7.25)

Furthermore, we note that the four-dimensional integration volume Ω in (7.24) can be chosen

arbitrarily, so we read off that also the integrand of (7.24) must vanish due to (7.25). In this

way one obtains a continuity equation

∂µ f
µ(xλ) = 0 , (7.26)
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where the current density fµ(xλ) is additive in the variations of both the tensor or spinor fields

δΨσ(xλ) and the space-time coordinates δxν :

fµ(xλ) =
1

c

∂L
∂(∂µΨσ(xλ))

δΨσ(xλ)− 1

c

[
∂L

∂(∂µΨσ(xλ))
∂ν Ψσ(xλ)− δµν L

]
δxν . (7.27)

7.5 Conserved Quantities

A continuity equation of the form (7.26) represents a differential formulation of a conservation

law. Integrating (7.26) over the total three-dimensional volume, we obtain

0 =

∫
d3x ∂µ f

µ(xλ) =
1

c

∫
d3x

∂f 0(xλ)

∂t
+

∫
d3x div f(x, t) . (7.28)

Thus, applying the theorem of Gauß and assuming that the tensor or spinor field as well as its

first derivatives vanish fast enough at infinity, we get

∂

∂t

∫
d3x f 0(xλ) = −c

∫
d3x div f(x, t) = −c

∮
do · f(x, t) = 0 . (7.29)

With this we conclude that the spatial integral of the temporal component of the current density

F (t) =

∫
d3x f 0(xλ) (7.30)

represents the conserved quantity of the Noether theorem:

∂

∂t
F (t) = 0 . (7.31)

After having derived with this the most general form of the Noether theorem, we discuss now

case by case important applications.

7.6 Canonical Energy-Momentum Tensor

Due to the Poincaré symmetry of the flat Minkowskian space-time structure the action must

be invariant with respect to translations of both time and space. According to (6.129) and

(6.130) this leads to the following infinitesimal variations of the space-time coordinates xλ and

the tensor or spinor field Ψ′σ(x′λ):

δxλ = x′λ − xλ = ελ , (7.32)

δ∂Ψσ(xλ) = Ψ′σ(x′λ)−Ψσ(xλ) = 0 . (7.33)

As the infinitesimal translation four-vector ελ can be chosen arbitrarily, we read off from (7.26),

(7.27) and (7.32), (7.33) the differential continuity equation

∂µ Θµν(xλ) = 0 , (7.34)
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where the canonical energy-momentum tensor Θµν(xλ) = gνκ Θµ
κ(x

λ) is given by

Θµ
κ(x

λ) =
1

c

[
∂L

∂(∂µΨσ(xλ))
∂κΨ

σ(xλ)− δµκ L
]
. (7.35)

Evaluating (7.34) for ν = 0, 1, 2, 3 we obtain four conserved quantities, namely the energy E

and the momentum p of the particle:

(pν) =

(
E/c

p

)
=

∫
d3x

(
Θ0ν(xλ)

)
,

∂pν

∂t
= 0 . (7.36)

The energy turns out to be of the form

E =

∫
d3xH , (7.37)

where the Hamilton density H is given by

H = cΘ00 =
∂L

∂

(
∂Ψσ

∂t

) ∂Ψσ

∂t
− L (7.38)

and, thus, corresponds to a Legendre transformation. And the momentum results in

pi =

∫
d3xP i , (7.39)

where the momentum density P i turns out to be

P i = Θ0i = − ∂L

∂

(
∂Ψσ

∂t

) ∂Ψσ

∂xi
. (7.40)

Later on we will specialize (7.37)–(7.40) for concrete field theories as, for instance, the Maxwell

and the Dirac theory. Then it will also become transparent that the conserved quantities defined

according to the Noether theorem via (7.37)–(7.40) have, indeed, the proper physical SI units.

Furthermore, we remark that, using the definition (7.35) of the canonical energy-momentum

tensor, the current density (7.27) of the Noether theorem can also be written as

fµ(xλ) =
1

c

∂L
∂(∂µΨσ(xλ))

δΨσ(xλ)−Θµ
ν(x

λ)δxν . (7.41)

7.7 Angular Momentum Tensor

The action must also be invariant with respect to Lorentz transformations. According to (6.22),

(6.39), (6.43) and Section 6.9 this involves the following infinitesimal transformations of the

space-time coordinates xλ in (7.7) and of the tensor or spinor field Ψσ(xλ) in (7.8):

δxλ = x′
λ − xλ = − i

2
ωνκ (Lνκ)λµ x

µ , (7.42)

δΨσ(xλ) = Ψ′
σ
(x′

λ
)−Ψσ(xλ) = − i

2
ωνκ (Nνκ)στ Ψτ (xλ) . (7.43)
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As the infinitesimal rotation angles and rapidities can be chosen arbitrarily, we obtain from

(7.26), (7.27) and (7.42), (7.43) the differential conservation law

∂µJ
µνκ(xλ) = 0 , (7.44)

where the angular momentum tensor Jµνκ consists of two contributions:

Jµνκ(xλ) = Lµνκ(xλ) + Sµνκ(xλ) . (7.45)

The first term in (7.45) depends on the representation matrices of the Lorentz algebra Lνκ in

the space-time

Lµνκ(xλ) = iΘµ
ρ(x

λ) (Lνκ)ρρ′ x
ρ′ (7.46)

and is, therefore, identified with the orbital angular momentum tensor. Inserting therein the

respective representation matrices (6.44), the orbital angular tensor reduces to

Lµνκ(xλ) = Θµκ(xλ)xν −Θµν(xλ)xκ . (7.47)

Analogously, the second term in (7.45) stems from the representation matrices of the Lorentz

algebra Nνκ in the tensor or spinor field space

Sµνκ(xλ) =
−i
c

∂L
∂(∂µΨσ(xλ))

(Nνκ)στ Ψτ (xλ) (7.48)

and, therefore, corresponds to the spin angular momentum tensor. As Nνκ is anti-symmetric

with respect to its indices ν, κ, the spin angular momentum tensor (7.48) fulfills the property

Sµνκ(xλ) = −Sµκν(xλ) . (7.49)

Furthermore, we read off from (7.34), (7.44), (7.45), and (7.47) that the four-divergence of the

spin angular momentum tensor coincides with the anti-symmetric contribution of the canonical

energy-momentum tensor:

∂µS
µνκ(xλ) = Θκν(xλ)−Θνκ(xλ) . (7.50)

Note that in addition to the differential conservation law (7.44) also an integral version exists,

which states that an anti-symmetric tensor of second rank represents a constant of motion:

Mνκ =

∫
d3x J0νκ(xλ) ,

∂M νκ

∂t
= 0 . (7.51)

Specializing ν, κ to the values j, k = 1, 2, 3 one can interpret M jk as the total angular momen-

tum. According to (7.45) and (7.51) it decomposes into

Mνκ = Ljk + Sjk . (7.52)

Here the angular momentum Ljk follows from (7.47)

Ljk =

∫
d3x

[
Θ0k(x, t)xj −Θ0j(x, t)xk

]
, (7.53)
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which reduces with the help of (7.35) to

Ljk =
1

c

∫
d3x

∂L
∂(∂0Ψσ(x, t))

(
xk∂j − xj∂k

)
Ψσ(x, t) . (7.54)

Correspondingly the spin angular momentum Sjk reads due to (7.48)

Sjk =
−i
c

∫
d3x

∂L
∂(∂0Ψσ(x, t))

(
N jk

)σ
τ

Ψτ (xλ) , (7.55)

so that the spin angular momentum vector

Si =
1

2
εjkS

jk (7.56)

can be expressed with the help of (6.164) according to

Si =
−i
c

∫
d3x

∂L
∂(∂0Ψσ(x, t))

(Si)
σ
τ Ψτ (xλ) . (7.57)

7.8 Symmetrizing Canonical Energy-Momentum Tensor

In general the canonical energy-momentum tensor Θνκ(xλ) following from (7.35) due to the

Noether theorem turns out to be not symmetric with respect to its indices ν, κ. This repre-

sents at a first glance a quite fundamental theoretical problem as in Albert Einstein’s general

relativity a symmetric energy-momentum tensor T νκ(xλ) appears as an inhomogeneity of the

field equations defining the underlying metric of space-time. In the following we show how

this problem can generically be solved in a constructive way. To this end we work out the so-

called Belifante construction, which allows for any underlying field theory to determine for each

canonical energy-momentum tensor Θνκ(xλ) a symmetrized energy-momentum tensor T νκ(xλ)

by adding an additional tensor of second rank tνκ:

T νκ(xλ) = Θνκ(xλ) + tνκ(xλ) . (7.58)

Demanding that the modified energy-momentum tensor T νκ(xλ) is symmetric, i.e. that

T νκ(xλ)− T κν(xλ) = 0 (7.59)

holds, we obtain from (7.50) and (7.58) a relation between the tensor of second rank tνκ and

the spin angular momentum tensor Sµνκ

tνκ(xλ)− tκν(xλ) = ∂µS
µνκ(xλ) . (7.60)

In order to solve (7.60) for the tensor of second rank tνκ we perform the ansatz that it follows

from the four-divergence of a tensor of third rank χµνκ

tνκ(xλ) = ∂µχ
µνκ(xλ) , (7.61)
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where the tensor of third rank χµνκ is anti-symmetric with respect to its first two indices, i.e.

χµνκ(xλ) = −χνµκ(xλ) . (7.62)

In case that such a tensor of third rank χµνκ would exist, the symmetric energy-momentum ten-

sor T νκ(xλ) would be physically equivalent to the canonical energy-momentum tensor Θνκ(xλ).

On the one hand we read off from (7.58), (7.61), and (7.62) that the differential energy-

momentum conservation law (7.34) for the canonical energy-momentum tensor Θνκ(xλ) implies

a similar one for the symmetrized energy-momentum tensor T νκ(xλ):

∂νT
νκ(xλ) = 0 . (7.63)

On the other hand it also follows from (7.58), (7.61), and (7.62) that the conserved quantities

of energy and momentum following from the canonical energy-momentum tensor Θνκ(xλ) agree

with the ones from the symmetrized energy-momentum tensor T νκ(xλ)
∫
d3xT 0κ(xλ) =

∫
d3xΘ0κ(xλ) , (7.64)

as the Gauß law implies
∫
d3x ∂jχ

j0κ(xλ) = 0 . (7.65)

Inserting the ansatz (7.61) into (7.60) one obtains the following relation between the tensor

χµνκ and the spin angular momentum tensor Sµνκ:

χµνκ(xλ)− χµκν(xλ) = Sµνκ(xλ) . (7.66)

Now we uniquely determine the tensor χµνκ by taking into account (7.62) and (7.66). To this

end we decompose the tensor χµνκ via

χµνκ(xλ) = χµνκs (xλ) + χµνκa (xλ) (7.67)

into the two tensors χµνκs and χµνκa , which are symmetric and anti-symmetric with respect to

the indices ν, κ, respectively:

χµνκs (xλ) = χµκνs (xλ) , (7.68)

χµνκa (xλ) = −χµκνa (xλ) . (7.69)

Inserting (7.67)–(7.69) into (7.66) the tensor χµνκs drops out and the tensor χµνκa follows to be

χµνκa (xλ) =
1

2
Sµνκ(xλ) . (7.70)

Here the anti-symmetry (7.69) of the tensor χµνκa is guaranteed due to the anti-symmetry (7.49)

of the spin angular momentum tensor Sµνκ. Taking into account (7.67)–(7.70) one deduces from

(7.62)

χµνκs (xλ) + χνµκs (xλ) = −1

2
Sµνκ(xλ)− 1

2
Sνµκ(xλ) . (7.71)
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Due to (7.49) we find that (7.71) is straightforwardly solved by

χµνκs (xλ) = −1

2
Sνµκ(xλ)− 1

2
Sκµν(xλ) . (7.72)

And the tensor of third rank χµνκ follows, finally, from combining (7.49), (7.67), (7.70), and

(7.72):

χµνκ(xλ) =
1

2

[
Sµνκ(xλ) + Sνκµ(xλ)− Sκµν(xλ)

]
. (7.73)

7.9 Modified Angular Momentum Tensor

Finally, we show for the sake of completeness that the symmetrization of the energy-momentum

tensor also leads to a simplied angular momentum tensor. To this end we consider a modified

angular momentum tensor Iµνκ, which follows from the symmetrized energy-momentum tensor

T νκ in the same way as the orbital angular momentum tensor (7.47):

Iµνκ(xλ) = T µκ(xλ)xν − T µν(xλ)xκ . (7.74)

Combining (7.45), (7.49), (7.58), (7.61), (7.73), and (7.74) it turns out that the canonical

angular momentum tensor Jµνκ and the modified angular momentum temsor Iµνκ differ by the

four-divergence of a tensor of fourth rank ηρµνκ:

Iµνκ(xλ) = Jµνκ(xλ) + ∂ρη
ρµνκ(xλ) . (7.75)

Here the tensor of fourth rank ηρµνκ turns out to be

ηρµνκ(xλ) = χρµκ(xλ)xν − χρµν(xλ)xκ , (7.76)

which is anti-symmetric with respect to its first two indices due to (7.62):

ηρµνκ(xλ) = −ηµρνκ(xλ) . (7.77)

Therefore, both angular momentum tensors Iµνκ and Jµνκ are physically equivalent. On the one

hand we read off from (7.75) and (7.77) that the differential angular momentum conservation

law (7.44) for the canonical angular momentum tensor Jµνκ(xλ) implies a similar one for the

modified angular momentum tensor Iµνκ(xλ):

∂µI
µνκ(xλ) = 0 . (7.78)

On the other hand it also follows from (7.75), (7.77), and the Gauß law that the conserved

angular momenta (7.51) following from the canonical angular momentum tensor Jµνκ(xλ) agree

with the ones from the modified angular momentum tensor Iµνκ(xλ):
∫
d3x J0νκ(xλ) =

∫
d3x I0νκ(xλ) . (7.79)



Chapter 8

Klein-Gordon Field

The first relativistic quantum field, which we deal with here, is the Klein-Gordon field. It

represents a free scalar field and describes in its second-quantized form particles with spin 0.

One example for such particles within the realm of the standard model of elementary particles

is the Higgs particle H, which is electrically neutral and gives all particles their mass due to

its interaction with them. Another example is provided by the pions, which were originally

introduced by Hideki Yukawa as the exchange particles giving rise to the nuclear force. There

exists a neutral pion π0 and two charged pions, namely π+ and its antiparticle π−. Note that

the pions turned out to be the lightest mesons, i.e. they consist of two quarks. Therefore, they

are unstable, decay via weak or electromagnetic interaction, and are considered nowadays no

longer as elementary particles.

Coupling the charged pions minimally to the electromagnetic field yields a theory, which is

called scalar electrodynamics. In its second quantized form it microscopically describes the

interaction between charged pions due to the exchange of photons. From a pedagogical point

of view it would be reasonable to introduce scalar QED before QED as the description of matter

by the Klein-Gordon theory is much simpler than the Dirac theory. Therefore, starting with

scalar QED would make it easier to understand several technical issues as, for instance, the

Feynman diagrams of QED without having to deal with the intricate spinor algebra of the

Dirac theory. Another motivation to study scalar electrodynamics would be that it represents

the relativistic generalization of the Ginzburg-Landau theory of superconductivity. However,

due to time constraints, we will not be able to work out scalar electrodynamics, so here we can

only refer the interested reader to the relevant literature.

8.1 Action and Equations of Motions

The action of the Schrödinger fields ψ(x, t) and ψ∗(x, t) in (4.8)–(4.10) is not invariant with

respect to Lorentz transformations as it contains partial derivatives of first (second) order with

respect to the time (space) coordinate(s). In contrast to that a relativistic action must treat
101
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Figure 8.1: Relativistic and non-relativistic energy scales differ according to (8.5) by the rest

energy Mc2.

temporal and spatial partial derivatives on an equal footing. Depending on the respective

internal spin degrees of freedom there are different ways how to convert the non-relativistic

Schrödinger action (4.8)–(4.10) into a relativistic one.

In the following we deal with charged relativistic particles like the pions π+ and π−, which

do not have any internal spin degree of freedom. Such particles are described by scalar fields

Ψ(xλ) and Ψ∗(xλ). The corresponding action

A = A [Ψ∗(•); Ψ(•)] (8.1)

is defined by a spatio-temporal integral over the Lagrange density according to

A =
1

c

∫
d4xL

(
Ψ∗(xλ), ∂µΨ∗(xλ); Ψ(xλ), ∂µΨ(xλ)

)
, (8.2)

where we have d4x = cdt d3x. The Lagrange density of the Klein-Gordon fields is given by the

real-valued Lorentz invariant

L = Agµν ∂µΨ∗(xλ) ∂νΨ(xλ) +BΨ∗(xλ)Ψ(xλ) . (8.3)

In the following we choose the yet unknown constants A and B in such a way that the Lagrange

density of the Klein-Gordon fields (8.3) goes over in the non-relativistic limit into the Lagrange

density (4.10) of the Schrödinger fields. To this end we decompose at first the derivatives in

(8.3) into their respective temporal and spatial contributions:

L = A

[
1

c2

∂Ψ∗(x, t)

∂t

∂Ψ(x, t)

∂t
−∇Ψ∗(x, t)∇Ψ(x, t)

]
+BΨ∗(x, t) Ψ(x, t) . (8.4)

Performing the transition from a relativistic to the corresponding non-relativistic theory one

has to take into account that the corresponding energy scales are shifted by the rest energy

Mc2 of the particles with mass M with respect to each other as is illustrated in Fig. 8.1:

Erel = Enon−rel +Mc2 . (8.5)

This becomes apparent from Fig. 6.1, where the relativistic dispersion relation is compared

with its non-relativistic limit. As a quantum mechanical wave function depends exponentially
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via e−iEt/h̄ from the energy E, (8.5) suggests to perform the separation ansatz

Ψ(x, t) = e−iMc2t/h̄ ψ(x, t) , (8.6)

Ψ∗(x, t) = eiMc2t/h̄ ψ∗(x, t) . (8.7)

Inserting (8.6), (8.7) into the Lagrange density of the Klein-Gordon fields (8.4), we obtain

L =
A

c2

{
∂ψ∗(x, t)

∂t

∂ψ(x, t)

∂t
+
i

h̄
Mc2

[
ψ∗(x, t)

∂ψ(x, t)

∂t
− ∂ψ∗(x, t)

∂t
ψ(x, t)

]}

−A∇ψ∗(x, t)∇ψ(x, t) +

(
B +

M2c2

h̄2 A

)
ψ∗(x, t)ψ(x, t) . (8.8)

In the non-relativistic limit c→∞ we have now to guarantee that (8.8) reduces term by term

to (4.10):

• Due to a partial integration in time the second and third term in (8.8) can be merged. A

comparison with (4.10) then fixes the constant A:

2Mi

h̄
A = ih̄ =⇒ A =

h̄2

2M
. (8.9)

• With this choice of A the first term in (8.8) vanishes in the non-relativistic limit c→∞
and the fourth term turns out to yield the correct kinetic energy of the Schrödinger field.

• The last term in (8.8) must vanish as the Schrödinger field does not have such a mass

term, so also the constant B is determined by taking into account (8.9):

B = −M
2c2

h̄2 A =⇒ B = −1

2
Mc2 . (8.10)

Inserting (8.9) and (8.10) into (8.4) the action of the Klein-Gordon field

A = A [Ψ∗(•, •); Ψ(•, •)] (8.11)

is given by a spatio-temporal integral

A =

∫
dt

∫
d3xL

(
Ψ∗(x, t),∇Ψ∗(x, t),

∂Ψ∗(x, t),

∂t
; Ψ(x, t),∇Ψ(x, t),

∂Ψ(x, t)

∂t

)
(8.12)

with the Lagrange density

L =
h̄2

2Mc2

∂Ψ∗(x, t)

∂t

∂Ψ(x, t)

∂t
− h̄2

2M
∇Ψ∗(x, t)∇Ψ(x, t)− Mc2

2
Ψ∗(x, t) Ψ(x, t) . (8.13)

Similar to the discussion of the Schrödinger fields in Section 4.4 the Hamilton principle of

classical field theory

δA
δΨ∗(x, t)

= 0 ,
δA

δΨ(x, t)
= 0 (8.14)
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leads to the Euler-Lagrange equations

∂L
∂Ψ∗(x, t)

−∇ ∂L
∂∇Ψ∗(x, t)

− ∂

∂t

∂L
∂ ∂Ψ∗(x,t)

∂t

= 0 , (8.15)

∂L
∂Ψ(x, t)

−∇ ∂L
∂∇Ψ(x, t)

− ∂

∂t

∂L
∂ ∂Ψ(x,t)

∂t

= 0 . (8.16)

In order to evaluate (8.15), (8.16) we need the following partial derivatives from the Lagrange

density (8.13):

∂L
∂Ψ∗(x, t)

= −1

2
Mc2Ψ(x, t) ,

∂L
∂∇Ψ∗(x, t)

= − h̄2

2M
∇Ψ(x, t) ,

∂L
∂ ∂Ψ∗(x,t)

∂t

=
h̄2

2Mc2

∂Ψ(x, t)

∂t
, (8.17)

∂L
∂Ψ(x, t)

= −1

2
Mc2Ψ∗(x, t) ,

∂L
∂∇Ψ(x, t)

= − h̄2

2M
∇Ψ∗(x, t) ,

∂L
∂ ∂Ψ(x,t)

∂t

=
h̄2

2Mc2

∂Ψ∗(x, t)

∂t
.(8.18)

Inserting the additional calculation (8.17) and (8.18) into the Euler-Lagrange equations (8.15),

(8.16), we obtain the Klein-Gordon equations for the fields Ψ(x, t) and Ψ∗(x, t):

1

c2

∂2Ψ(x, t)

∂t2
−∇2Ψ(x, t) +

M2c2

h̄2 Ψ(x, t) = 0 , (8.19)

1

c2

∂2Ψ∗(x, t)

∂t2
−∇2Ψ∗(x, t) +

M2c2

h̄2 Ψ∗(x, t) = 0 . (8.20)

They represent wave equations, which contain an additional term due to the finiteness of the

Compton wave length of the particles

λC = 2π
h̄

Mc
. (8.21)

For a pion π+ or π− with the rest energy Mc2 = 139.6 MeV the Compton wave length (8.21)

amounts to λC ≈ 9 fm, which is of the order of magnitude of the size of the atomic nucleus.

The appearance of the Compton wave length (8.21) can be physically understood as follows.

A relativistic particle with the momentum uncertainty ∆p = Mc yields via the Heisenberg

uncertainty relation a corresponding spatial uncertainty

∆x =
h̄

Mc
, (8.22)

which is of the order of the Compton wave length (8.21). Wherever a relativistic particle is

confined to a region, which is of the order of the Compton wave length, the resulting energy

uncertainty becomes so large that particle-antiparticle pairs are generated out of the vacuum.

This peculiar phenomenon is best illustrated by the Klein paradox, which arises for a pion

π+ running against a potential step of height V , see Fig. 8.2. Provided that the potential

height V reaches the order of the rest energy 2Mc2 of two pions, the wave function falls off

exponentially in the region of the potential threshold. This then leads to the generation of

particle-antiparticle pairs, which have to move due to momentum conservation in opposite

directions. As a consequence, one observes within the potential threshold a negative charge
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Figure 8.2: The scattering of a pion π+ at a potential threshold with height V ∼ 2Mc2 leads

to the Klein paradox that the reflection coefficient becomes larger than one. This is due to the

creation of particle-antiparticle pairs within a region, which has the extension of the Compton

wave length (8.22).

density, so that the situation emerges as depicted in Fig. 8.2. Surprisingly, this leads to a

reflection coefficient of this one-particle scattering problem, which is larger than one. The

Klein paradox has, therefore, the consequence that a relativistic quantum theory can never be

restricted to a one-particle theory. Instead, it has to be extended to a relativistic quantum field

theory in order to incorporate adequately the inherent many-body phenomena. Inserting the

ansatz (8.6), (8.7) in the Klein-Gordon equations (8.19), (8.20) for the wave functions Ψ(x, t),

Ψ∗(x, t), we obtain

1

c2

∂2ψ(x, t)

∂t2
− 2iM

h̄

∂ψ(x, t)

∂t
−∇2ψ(x, t) = 0 , (8.23)

1

c2

∂2ψ∗(x, t)

∂t2
+

2iM

h̄

∂ψ∗(x, t)

∂t
−∇2ψ∗(x, t) = 0 . (8.24)

In the non-relativistic limit c → ∞ both (8.23) and (8.24) go over into the corresponding

Schrödinger equations for the wave functions ψ(x, t) and ψ∗(x, t), as expected:

ih̄
∂ψ(x, t)

∂t
= − h̄2

2M
∇2ψ(x, t) , (8.25)

−ih̄ ∂ψ
∗(x, t)

∂t
= − h̄2

2M
∇2 ψ∗(x, t) . (8.26)

Note that, historically, Erwin Schrödinger discovered on his quest for a quantum mechanical

wave equation in 1926 at first the Klein-Gordon equation. But solving this relativistic wave

equation for the example of the Coulomb potential he found that the resulting energy eigenval-

ues disagreed with the measured spectral lines of the hydrogen atom. In retrospect we know

that this is due to the fact that the Klein-Gordon equation does not take into account the

spin 1/2 degree of freedom of the electron in the hydrogen atom. Due to this discrepancy

he abandoned the Klein-Gordon equation and derived instead in the non-relativistic limit the
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Schrödinger equation, where he obtained a much better agreement between the corresponding

solution of the Coulomb problem and the measured spectral lines of the hydrogen atom.

8.2 Continuity Equation

Now we multiply (8.19) with Ψ∗(x, t) and (8.20) with Ψ(x, t) and subtract both from each

other, yielding at first

1

c2
Ψ∗(x, t)

∂2Ψ(x, t)

∂t2
− 1

c2
Ψ(x, t)

∂2Ψ∗(x, t)

∂t2
−Ψ∗(x, t)∇2Ψ(x, t) + Ψ(x, t)∇2Ψ∗(x, t) = 0 , (8.27)

where the mass terms have dropped out. This can be recast into the form

∂

∂t

[
Ψ∗(x, t)

∂Ψ(x, t)

∂t
− ∂Ψ∗(x, t)

∂t
Ψ(x, t)

]

+∇
[
Ψ(x, t)∇Ψ∗(x, t)−Ψ∗(x, t)∇Ψ(x, t)

]
= 0 , (8.28)

which corresponds to a continuity equation:

∂ρ(x, t)

∂t
+ ∇j(x, t) = 0 . (8.29)

Here both density ρ(x, t) and current density j(x, t) are only determined up to a yet unknown

constant K:

ρ(x, t) =
K

c2

[
Ψ∗(x, t)

∂Ψ(x, t)

∂t
− ∂Ψ∗(x, t)

∂t
Ψ(x, t)

]
, (8.30)

j(x, t) = K
[
Ψ(x, t)∇Ψ∗(x, t)−Ψ∗(x, t)∇Ψ(x, t)

]
. (8.31)

The constant K can now be fixed uniquely by considering the non-relativistic limit c→∞. To

this end one inserts the ansatz (8.19), (8.20) into (8.30), (8.31) and gets

ρ(x, t) =
K

c2

[
ψ∗(x, t)

∂ψ(x, t)

∂t
− ∂ψ∗(x, t)

∂t
ψ(x, t)− 2iMc2

h̄
ψ∗(x, t)ψ(x, t)

]
, (8.32)

j(x, t) = K
[
ψ(x, t)∇ψ∗(x, t)− ψ∗(x, t)∇ψ(x, t)

]
. (8.33)

We have then to demand that (8.32), (8.33) go over in the non-relativistic limit c→∞ to the

corresponding non-relativistic expressions:

ρ(x, t) = ψ∗(x, t)ψ(x, t) , (8.34)

j(x, t) =
ih̄

2M

[
ψ(x, t)∇ψ∗(x, t)− ψ∗(x, t)∇ψ(x, t)

]
. (8.35)

This fixes the constant K to the value

K =
ih̄

2M
. (8.36)
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Thus, we obtain from (8.30), (8.31), and (8.36) for the density ρ(x, t) and the current density

j(x, t) of the Klein-Gordon fields

ρ(x, t) =
ih̄

2Mc2

[
Ψ∗(x, t)

∂Ψ(x, t)

∂t
− ∂Ψ∗(x, t)

∂t
Ψ(x, t)

]
, (8.37)

j(x, t) =
ih̄

2M

[
Ψ(x, t)∇Ψ∗(x, t)−Ψ∗(x, t)∇Ψ(x, t)

]
. (8.38)

From the continuity equation (8.29) follows the existence of the conserved quantity. Namely,

considering the time derivative of the quantity

Q =

∫
d3x ρ(x, t) , (8.39)

we obtain from (8.29) and applying the theorem of Gauß

∂Q

∂t
= −

∮
df · j(x, t) . (8.40)

Here the surface integral at infinity vanishes as the fields Ψ∗(x, t), Ψ(x, t) as well as the current

density j(x, t) in (8.38) are assumed to vanish fast enough at infinity, yielding

∂Q

∂t
= 0 . (8.41)

Now it turns out to be useful to define a scalar product between two arbitrary fields Ψ1(x, t)

and Ψ2(x, t) according to

〈Ψ1,Ψ2〉 =
ih̄

2Mc2

∫
d3x

[
Ψ∗1(x, t)

∂Ψ2(x, t)

∂t
− ∂Ψ∗1(x, t)

∂t
Ψ2(x, t)

]
. (8.42)

But note that this scalar product is not positive definite. For instance, choosing the ansatz

Ψ1(x, t) = Ψ2(x, t) = N eiMc2t/h̄ (8.43)

we obtain

〈Ψ1,Ψ2〉 = −N2 < 0 . (8.44)

In order to investigate the non-relativistic limit of this scalar product, we insert (8.6), (8.7)

into (8.42):

〈Ψ1,Ψ2〉 =
ih̄

2Mc2

∫
d3x

[
ψ∗1(x, t)

∂ψ2(x, t)

∂t
− ∂ψ1(x, t)

∂t
ψ2(x, t)− 2iMc2

h̄
ψ∗1(x, t)ψ2(x, t)

]
. (8.45)

Performing the limit c→∞, we conclude

〈Ψ1,Ψ2〉 = lim
c→∞
〈Ψ1,Ψ2〉 =

∫
d3xψ∗1(x, t)ψ2(x, t) , (8.46)

which is just the positive definite scalar product used in the Schrödinger theory. Thus, from

the fact, that the scalar products of the Klein-Gordon and the Schrödinger theory differ, we
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read off that each quantum field theory has its own natural scalar product. It turns out that

this conclusion has far-reaching consequences, as the natural scalar product of a quantum field

theory represents a central technical tool. For instance, in the present case of the Klein-Gordon

theory, taking into account (8.37) we finally obtain a useful relation between the conserved

quantity (8.42) and the scalar product (8.39):

Q = 〈Ψ,Ψ〉 . (8.47)

As the scalar product is not positive definite, the conserved quantity can have both positive

and negative values. This makes it possible to identify Q, or more precisely eQ with the

electric charge of a complex-valued Klein-Gordon field, where e denotes the elementary charge.

Furthermore, we conclude that a real-valued Klein-Gordon field, where Ψ∗(x, t) = Ψ(x, t) holds,

leads to a vanishing charge Q due to (8.42) and (8.47).

8.3 Canonical Field Quantization

The two independent Klein-Gordon fields Ψ∗(x, t) and Ψ(x, t) have the two following two canon-

ically conjugated momentum fields:

Π∗(x, t) =
∂L

∂Ψ∗(x,t)
∂t

=
h̄2

2Mc2

∂Ψ(x, t)

∂t
, (8.48)

Π(x, t) =
∂L

∂Ψ(x,t)
∂t

=
h̄2

2Mc2

∂Ψ∗(x, t)

∂t
, (8.49)

where L denotes the Lagrange density of the Klein-Gordon field from (8.13). With the help of

a Legendre transformation we then obtain the Hamilton density from the Lagrange density:

H = Π∗(x, t)
∂Ψ∗(x, t)

∂t
+ Π(x, t)

∂Ψ(x, t)

∂t
− L . (8.50)

Inserting therein (8.13) together with (8.48), (8.49) this yields

H =
2Mc2

h̄2 Π∗(x, t)Π(x, t) +
h̄2

2M
∇Ψ∗(x, t)∇Ψ(x, t) +

Mc2

2
Ψ∗(x, t)Ψ(x, t) . (8.51)

The Hamilton function H of the charged Klein-Gordon field then follows from spatially inte-

grating this Hamilton density H:

H =

∫
d3xH . (8.52)

With this one can perform a canonical field quantization along the lines outlined in Chapter

4. For the sake of brevity we do not work this out in detail for the Klein-Gordon field but

mention instead the result. At first, one assigns to the classical fields Ψ∗(x, t), Ψ(x, t), Π∗(x, t),

and Π(x, t) corresponding second-quantized operators Ψ̂†(x, t), Ψ̂(x, t), Π̂†(x, t), and Π̂(x, t).
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Due to the spin-statistic theorem of Pauli one performs for the Klein-Gordon field a bosonic

field quantization and obtains between both Ψ̂(x, t), Π̂(x, t) and Ψ̂†(x, t), Π̂†(x, t) equal-time

canonical commutation relations:

[
Ψ̂(x, t), Ψ̂(x′, t)

]
−

=
[
Π̂(x, t), Π̂(x′, t)

]
−

= 0,
[
Ψ̂(x, t), Π̂(x′, t)

]
−

= ih̄ δ(x− x′) , (8.53)
[
Ψ̂†(x, t), Ψ̂†(x′, t)

]
−

=
[
Π̂†(x, t), Π̂†(x′, t)

]
−

= 0,
[
Ψ̂†(x, t), Π̂†(x′, t)

]
−

= ih̄ δ(x− x′) . (8.54)

Due to the independence of the quantized degrees of freedom all mixed equal-time commutator

relations vanish:

[
Ψ̂(x, t), Ψ̂†(x′, t)

]
−

=
[
Ψ̂(x, t), Π̂†(x′, t)

]
−

= 0 ,
[
Π̂(x, t), Ψ̂†(x′, t)

]
−

=
[
Π̂(x, t), Π̂†(x′, t)

]
−

= 0. (8.55)

Furthermore, the canonical field quantization converts the classical Hamilton function (8.51),

(8.52) to the Hamilton operator:

Ĥ =

∫
d3x

[
2Mc2

h̄2 Π̂†(x, t)Π̂(x, t) +
h̄2

2M
∇Ψ̂†(x, t)∇Ψ̂(x, t) +

Mc2

2
Ψ̂†(x, t)Ψ̂(x, t)

]
. (8.56)

Note that the respective order of the operators in (8.56) does not play a role due to (8.55).

With the Hamilton operator we then obtain the following Heisenberg equations:

ih̄
∂Ψ̂(x, t)

∂t
=
[
Ψ̂(x, t), Ĥ

]
−

=⇒ ∂Ψ̂(x, t)

∂t
=

2Mc2

h̄2 Π̂†(x, t) , (8.57)

ih̄
∂Ψ̂†(x, t)

∂t
=
[
Ψ̂†(x, t), Ĥ

]
−

=⇒ ∂Ψ̂†(x, t)

∂t
=

2Mc2

h̄2 Π̂(x, t) , (8.58)

ih̄
∂Π̂(x, t)

∂t
=
[
Π̂(x, t), Ĥ

]
−

=⇒ ∂Π̂(x, t)

∂t
=

h̄2

2M
∆ Ψ̂†(x, t)− Mc2

2
Ψ̂†(x, t) , (8.59)

ih̄
∂Π̂†(x, t)

∂t
=
[
Π̂†(x, t), Ĥ

]
−

=⇒ ∂Π̂†(x, t)

∂t
=

h̄2

2M
∆ Ψ̂(x, t)− Mc2

2
Ψ̂(x, t) . (8.60)

Note that the respective commutators are evaluated either with the operator identity (3.43) or

with functional derivatives similar to Section 4.3. Furthermore, combining (8.57) and (8.60) as

well as (8.58) and (8.59), we read off that both field operators Ψ̂†(x, t) and Ψ̂(x, t) obey the

Klein-Gordon equation:

(
1

c2

∂2

∂t2
−∆ +

M2c2

h̄2

)
Ψ̂(x, t) = 0 , (8.61)

(
1

c2

∂2

∂t2
−∆ +

M2c2

h̄2

)
Ψ̂†(x, t) = 0 . (8.62)

In the following we determine the solutions of the operator-valued partial differential equations

(8.61), (8.62) and work out their corresponding physical interpretation.
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8.4 Plane Waves

The field operator Ψ̂(x, t) as a function of its spatial degree of freedom x is now expanded into

plane waves:

Ψ̂(x, t) =

∫
d3p âp(t)Np exp

(
i

h̄
p x

)
. (8.63)

Here Np denotes a normalization constant, which is fixed later on appropriately. Inserting

the decomposition (8.63) into the Klein-Gordon equation (8.61) of the field operator, yields an

ordinary differential equation of second order for the respective Fourier operators âp(t):

∂

∂t2
âp(t) +

p2c2 +M2c4

h̄2 âp(t) = 0 . (8.64)

The general solution of (8.64) reads

âp(t) = â(1)
p exp

(
− i
h̄
Ept

)
+ â(2)

p exp

(
i

h̄
Ept

)
. (8.65)

Here we have introduced as an abbreviation the relativistic energy-momentum dispersion

Ep =
√

p2c2 +M2c4 , (8.66)

which obeys the symmetry

Ep = E−p . (8.67)

Inserting (8.65) into the plane wave expansion (8.63), we obtain at first

Ψ̂(x, t) =

∫
d3pNp

{
â(1)
p exp

[
i

h̄
(px− Ept)

]
+ â(2)

p exp

[
i

h̄
(px + Ept)

]}
. (8.68)

Performing in the second term the substitution p → −p, taking into account (8.67), and

assuming

Np = N−p (8.69)

converts (8.68) into

Ψ̂(x, t) =

∫
d3pNp

{
â(1)
p exp

[
i

h̄
(px− Ept)

]
+ â

(2)
−p exp

[
− i
h̄

(px− Ept)

]}
. (8.70)

Thus, redefining â
(2)
−p as â

(2)
p allows to compactly summarize (8.70) as

Ψ̂(x, t) =
2∑

r=1

∫
d3p â(r)

p u(r)
p (x, t) . (8.71)

Here we have introduced u
(r)
p (x, t) as an abbreviation for the plane waves

u(r)
p (x, t) = Np exp

[
εr
i

h̄
(px− Ept)

]
(8.72)
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with the notation

εr =

{
+1; r = 1

−1; r = 2
. (8.73)

The normalization constant Np is now fixed by demanding for the scalar product between the

plane waves u
(r)
p (x, t) and u

(r′)
p′ (x, t):

〈u(r)
p , u

(r′)
p′ 〉 = εr δr,r′ δ(p− p′) . (8.74)

Thus, this condition amounts to demanding that the plane waves (8.72) with r = 1 and r = 2

correspond to the charge +1 and −1, respectively, as follows from (8.47) and (8.73). Taking

into account the scalar product of the Klein-Gordon theory defined in (8.42) as well as (8.72),

we get at first

〈u(r)
p , u

(r′)
p′ 〉 =

εrEp + εr′Ep′

2Mc2
NpNp′ exp

[
i

h̄
(εrEp − εr′Ep′) t

]

×
∫
d3x exp

[
i

h̄
(εr′p

′ − εrp) x

]
. (8.75)

Performing the spatial integral yields δ(εr′p
′ − εrp) = δ(p′ − εrεr′p), so we conclude from the

symmetries (8.67) and (8.69):

〈u(r)
p , u

(r′)
p′ 〉 =

(2πh̄)3Ep

Mc2
N2

p

εr + εr′

2
exp

[
i

h̄
(εr − εr′)Ept

]
δ(p′ − εrεr′p) . (8.76)

Due to the observation

εr + εr′

2
=

{
εr; r = r′

0; r 6= r′
= εr δr,r′ , (8.77)

which follows from (8.73), Eq. (8.76) reduces to (8.74) provided the normalization is fixed by

Np =

√
Mc2

(2πh̄)3Ep

. (8.78)

Indeed, the normalization (8.78) obeys the imposed symmetry (8.69) due to (8.67).

For the following calculations we need another technical result. Namely, considering the com-

plex conjugated plane wave u
(r)∗
p (x, t), this just corresponds to exchanging the indices r = 1

and r = 2 according to (8.72):

u(1)∗
p (x, t) = u(2)

p (x, t) , u(2)∗
p (x, t) = u(1)

p (x, t) . (8.79)

Therefore, we read off from (8.74) and (8.79) the scalar product between two complex conju-

gated plane waves:

〈u(r)∗
p , u

(r′)∗
p′ 〉 = −εr δr,r′ δ(p− p′) . (8.80)
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8.5 Fourier Operators

According to (8.71) and its adjoint

Ψ̂†(x, t) =
2∑

r=1

∫
d3p â(r)

p
† u(r)∗

p (x, t) . (8.81)

both field operator Ψ̂(x, t) and Ψ̂†(x, t) are expanded in plane waves with time-independent

Fourier operators â
(r)
p and â

(r)†
p . With the help of the scalar product of the Klein-Gordon

field both relations can be inverted so that, conversely, the Fourier operators â
(r)
p and â

(r)†
p are

expressed in terms of the field operator Ψ̂(x, t) and its adjoint Ψ̂†(x, t). Taking into account

(8.74) and (8.80) we get at first

â(r)
p = εr 〈u(r)

p , Ψ̂〉 , (8.82)

â(r)†
p = −εr 〈u(r)∗

p , Ψ̂†〉 , (8.83)

which reduces due to (8.42) to

â(r)
p =

ih̄εr
2Mc2

∫
d3x

[
u(r)∗(x, t)

∂Ψ̂(x, t)

∂t
− ∂u(r)∗(x, t)

∂t
Ψ̂(x, t)

]
, (8.84)

â(r)†
p =

−ih̄εr
2Mc2

∫
d3x

[
u(r)(x, t)

∂Ψ̂†(x, t)

∂t
− ∂u(r)(x, t)

∂t
Ψ̂†(x, t)

]
. (8.85)

Applying the Heisenberg equations of motion (8.57) and (8.58) we arrive at the following

representation for the Fourier operators:

â(r)
p =

ih̄εr
2Mc2

∫
d3x

[
2Mc2

h̄2 u(r)∗(x, t) Π̂†(x, t)− ∂u(r)∗(x, t)

∂t
Ψ̂(x, t)

]
, (8.86)

â(r)†
p =

−ih̄εr
2Mc2

∫
d3x

[
2Mc2

h̄2 u(r)(x, t) Π̂(x, t)− ∂u(r)(x, t)

∂t
Ψ̂†(x, t)

]
. (8.87)

With this and the canonical equal-time commutator relations between the field operators and

the momentum operators (8.53)–(8.55) we determine the commutation relations between the

Fourier operators â
(r)
p and â

(r)†
p . At first we get straight-forwardly the trivial commutators
[
â(r)
p , â

(r′)
p′

]
−

=
[
â(r)†
p , â

(r′)†
p′

]
−

= 0 . (8.88)

And for the non-trivial commutator we obtain at first

[
â(r)
p , â

(r′)†
p′

]
−

= εrεr′
ih̄

2Mc2

∫
d3x

[
u(r)
p (x, t)

∂u
(r′)
p′ (x, t)

∂t
− ∂u

(r)
p (x, t)

∂t
u

(r′)
p′ (x, t)

]
, (8.89)

so taking into account (8.42), ε2
r = 1 due to (8.73), and (8.74) finally yields

[
â(r)
p , â

(r′)†
p′

]
−

= εr δr,r′ δ(p− p′) . (8.90)

Here the appearance of the factor εr indicates due to (8.73) that â
(2)
p and â

(2)†
p do not represent

a creation and annihilation operator, respectively. We come back to this observation in due

course, but before we determine how both the Hamilton operator and the charge operator are

decomposed in terms of the Fourier operators â
(r)
p and â

(r)†
p .



8.6. HAMILTON OPERATOR 113

8.6 Hamilton Operator

The plane wave expansions (8.71) and (8.81) of the field operators Ψ̂(x, t) and Ψ̂†(x, t) have

together with (8.57), (8.58), and (8.72), the following consequences:

∇Ψ̂(x, t) =
i

h̄

2∑

r=1

∫
d3p εrp â

(r)
p u(r)

p (x, t) , (8.91)

∇Ψ̂†(x, t) = − i
h̄

2∑

r=1

∫
d3p εrp â

(r)†
p u(r)∗

p (x, t) , (8.92)

Π̂(x, t) =
ih̄

2Mc2

2∑

r=1

∫
d3p εrEp â

(r)†
p u(r)∗

p (x, t) , (8.93)

Π̂†(x, t) =
−ih̄

2Mc2

2∑

r=1

∫
d3p εrEp â

(r)
p u(r)

p (x, t) . (8.94)

Using now all plane wave expansions (8.71), (8.81) and (8.91)–(8.94) in the Hamilton operator

of the Klein-Gordon field (8.56) we get at first

Ĥ =
2∑

r=1

2∑

r′=1

∫
d3p

∫
d3p′

(
εrεr′EpE

′
p

2Mc2
+
εrεr′pp′

2M
+
Mc2

2

)
â(r)†
p â

(r′)
p′

×
∫
d3xu(r)∗

p (x, t)u
(r′)
p′ (x, t) . (8.95)

The remaining spatial integral is evaluated with (8.67), (8.72), and (8.78), yielding
∫
d3xu(r)∗

p (x, t)u
(r′)
p′ (x, t) =

Mc2

Ep

exp

[
i

h̄
(εr − εr′)Ept

]
δ(p′ − εrεr′p) . (8.96)

Inserting (8.96) into (8.95) the integration with respect to the momenta p′ can be evaluated by

taking into account the symmetry (8.67)

Ĥ =
2∑

r=1

2∑

r′=1

∫
d3p

(
εrεr′E

2
p

2Mc2
+

p2

2M
+
Mc2

2

)
Mc2

Ep

exp

[
i

h̄
(εr − εr′)Ept

]
â(r)†
p â(r′)

εrεr′p
. (8.97)

With the relativistic energy-momentum dispersion (8.66) this simplifies to

Ĥ =
2∑

r=1

2∑

r′=1

∫
d3p

εrεr′ + 1

2
Ep exp

[
i

h̄
(εr − εr′)Ept

]
â(r)†
p â(r′)

εrεr′p
. (8.98)

As Eq. (8.73) implies the auxiliary calculation

εrεr′ + 1

2
=

{
1; r = r′

0; r 6= r′
= δr,r′ , (8.99)

the Hamilton operator of the Klein-Gordon field (8.98) finally reduces to

Ĥ =
2∑

r=1

∫
d3pEp â

(r)†
p â(r)

p . (8.100)
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Thus, whereas the intermediate results (8.97) and (8.98) suggest that the second-quantized

Hamilton operator Ĥ of the Klein-Gordon theory may explicitly depend on time, the result

(8.100) reveals that it turns out to be time-independent. This is consistent with the fact

that the energy of the Klein-Gordon theory is a conserved quantity due its time translational

invariance.

8.7 Charge Operator

According to (8.37), (8.39) and (8.42), (8.47), respectively, the charge of the Klein-Gordon field

is defined by

Q =
ih̄

2Mc2

∫
d3x

[
Ψ∗(x, t)

∂Ψ(x, t)

∂t
− ∂Ψ∗(x, t)

∂t
Ψ(x, t)

]
. (8.101)

Due to (8.48) and (8.49) the charge (8.101) can be reexpressed as follows:

Q =
i

h̄

∫
d3x

[
Ψ∗(x, t) Π∗(x, t)− Π(x, t) Ψ(x, t)

]
. (8.102)

Within the second quantization we assign to the charge (8.102) a corresponding operator:

Q̂ =
i

h̄

∫
d3x

[
Ψ̂†(x, t) Π̂†(x, t)− Π̂(x, t) Ψ̂(x, t)

]
. (8.103)

Note that also here the respective order of the operators does play a role due to (8.53) and

(8.54). The particular operator order chosen in (8.103) guarantees that the charge operator Q̂

commutes with the Hamilton operator (8.56) due to applying (3.10) and (3.43):

[
Q̂, Ĥ

]
−

= 0 . (8.104)

Thus energy and charge remain to be both conserved quantities also in the second quantized

Klein-Gordon theory. Inserting in (8.103) the plane wave expansions (8.71), (8.81) and (8.93),

(8.94) we get at first

Q̂ =
2∑

r=1

2∑

r′=1

∫
d3p

∫
d3p′

εrEp + εr′Ep′

2Mc2
â(r)†
p â

(r′)
p′

∫
d3xu(r)∗

p (x, t)u
(r′)
p′ (x, t) . (8.105)

Taking into account the symmetry (8.67), the integral (8.96), and the auxiliary calculation

(8.77), the charge operator (8.105) reduces finally to the form

Q̂ =
2∑

r=1

∫
d3p εr â

(r)†
p â(r)

p . (8.106)

Thus, also the charge operator Q̂ turns out to be time independent, which confirms that the

charge is a conserved quantity for the Klein-Gordon field.
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8.8 Redefinition of Fourier Operators

Now we aim for a consistent physical interpretation of the results obtained so far within the

second quantization of the Klein-Gordon field. From the commutation relations (8.88) and

(8.90) we read off that the Fourier operators â
(1)
p , â

(2)†
p and â

(1)†
p , â

(2)
p have to be interpreted as

annihilation and creation operators, respectively. This observation suggests to reinterpret the

Fourier operators as follows:

âp = â(1)
p , â†p = â(1)†

p , b̂p = â(2)†
p , b̂†p = â(2)

p . (8.107)

By using different letters a and b we express that the corresponding operators âp, b̂p and â†p,

b̂†p describe the annihilation and the creation of different kinds of particles. Furthermore, this

redefinition leaves the trivial commutation relations (8.88) invariant:
[
âp, âp′

]
−

=
[
â†p, â

†
p′

]
−

=
[
b̂p, b̂p′

]
−

=
[
b̂†p, b̂

†
p′

]
−

= 0 ,
[
âp, b̂p′

]
−

=
[
âp, b̂

†
p′

]
−

=
[
â†p, b̂p′

]
−

=
[
â†p, b̂

†
p′

]
−

= 0 . (8.108)

But the non-trivial commutation relations (8.90) are converted to
[
âp, â

†
p′

]
−

=
[
b̂p, b̂

†
p′

]
−

= δ(p− p′) . (8.109)

And the plane wave expansions (8.71) and (8.81) of the field operators Ψ̂(x, t) and Ψ̂†(x, t) then

read due to (8.79):

Ψ̂(x, t) =

∫
d3p
[
âp up(x, t) + b̂†p u

∗
p(x, t)

]
, (8.110)

Ψ̂†(x, t) =

∫
d3p
[
â†p u

∗
p(x, t) + b̂p up(x, t)

]
. (8.111)

Here we have introduced according to (8.72) and (8.78)

up(x, t) = u(1)
p (x, t) =

√
Mc2

(2πh̄)3Ep

exp

[
i

h̄
(px− Ept)

]
. (8.112)

In addition, the Hamilton operator (8.100) and the charge operator (8.106) read due to the

redefinition (8.107)

Ĥ =

∫
d3pEp

(
â†pâp + b̂pb̂

†
p

)
, (8.113)

Q̂ =

∫
d3p
(
â†pâp − b̂pb̂†p

)
. (8.114)

In order to obtain a normal ordering of the operators we have to use the commutator (8.109),

yielding

Ĥ =

∫
d3pEp

(
â†pâp + b̂†pb̂p

)
+ δ(0)

∫
d3pEp , (8.115)

Q̂ =

∫
d3p
(
â†pâp − b̂†pb̂p

)
− δ(0)

∫
d3p . (8.116)
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The vacuum state is defined here as usual

âp|0〉 = 0 , b̂p|0〉 = 0 . (8.117)

With this the vacuum expectation values of both the Hamilton operator and the charge operator

result to

〈0|Ĥ|0〉 = δ(0)

∫
d3pEp , (8.118)

〈0|Q̂|0〉 = −δ(0)

∫
d3p , (8.119)

which are divergent due to two reasons. On the one hand, the factor δ(0) is divergent and,

on the other hand, the respective momentum integrals are divergent as well. Therefore, one

considers instead of the Hamilton operator and the charge operator the respective renormalized

quantities:

: Ĥ : = Ĥ − 〈0|Ĥ|0〉 =

∫
d3pEp

(
â†pâp + b̂†pb̂p

)
, (8.120)

: Q̂ : = Q̂− 〈0|Q̂|0〉 =

∫
d3p
(
â†pâp − b̂†pb̂p

)
. (8.121)

We recognize that both renormalized operators : 〈0|Ĥ|0〉 : and : 〈0|Q̂|0〉 : are normal ordered,

i.e. the creation (annihilation) operators stand on the left-hand (right-hand) side.

The results (8.120) and (8.121) allow now for the following physical interpretation. The op-

erators â†p, âp (b̂†p, b̂p) describe particles of charge 1 (-1) and energy Ep. As the two particle

types only differ by their charge, they represent particles and their respective antiparticles. The

particle type a (b) can be identified with the pion π+ (π−). On the basis of this insight, we

recognize in (8.110) that the field operator Ψ̂(x, t) contains both the annihilation of particles a

with charge 1 and the creation of antiparticles b with charge −1. These microscopic processes

act together such that the field operator Ψ̂(x, t) describes the annihilation of a charge 1 and,

correspondingly, the adjoint field operator Ψ̂†(x, t) represents the creation of a charge 1 at the

space-point (x, t). This physical interpretation of the second-quantized operators Ψ̂(x, t) and

Ψ̂†(x, t) turns out to be crucial for the corresponding propagator of the Klein-Gordon theory.

8.9 Definition of Propagator

In the following we investigate in more detail the Klein-Gordon propagator, which is an im-

portant ingredient of quantum field theory when the interaction of the Klein-Gordon field with

other quantum fields is treated perturbatively. For instance, the Klein-Gordon propagator is an

essential building block of scalar quantum electrodynamics, where the photon exchange between

charged pions is described graphically in terms of corresponding Feynman diagrams. But the

Klein-Gordon propagator turns out to be also central for this lecture from a technical point of
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view. On the one hand, its non-relativistic limit leads to the Schrödinger propagator, which is

used in the context of non-relativistic quantum many-body theory. On the other hand, we will

see later on that the propagator of the Dirac theory is determined by partial derivatives from

the Klein-Gordon propagator. Thus, having a profound understanding of the Klein-Gordon

propagator represents a prerequisite for the Dirac propagator, which is a key element of the

Feynman diagrams of quantum electrodynamics.

Let us start with defining the Klein-Gordon propagator as the vacuum expectation value of the

product of two field operators:

G(x, t; x′, t′) =
〈

0
∣∣∣T̂
(

Ψ̂(x, t) Ψ̂†(x′, t′)
)∣∣∣ 0

〉
. (8.122)

The symbol T̂ denotes the time-ordered product of the field operators Ψ̂(x, t) and Ψ̂†(x′, t′).

Given two time-dependent bosonic operators Â(t) and B̂(t′), their time-ordered product reads

T̂
(
Â(t) B̂(t′)

)
= Θ(t− t′) Â(t) B̂(t′) + Θ(t′ − t) B̂(t′) Â(t) , (8.123)

where we have used the Heaviside function

Θ(t) =

{
1 ; t > 0

0 ; t < 0
. (8.124)

Thus, the operator-valued factors in (8.123) are put into chronological order so that the operator

having the later time argument is put first, i.e. to the left. If the two time arguments happen

to be equal, problems might arise since the operator ordering is then not well defined. In the

present case (8.122), however, this is not the case since the operators Ψ̂(x, t) and Ψ̂†(x′, t) at

equal time commute due to (8.55). Taking into account (8.123) in (8.122) leads to

G(x, t; x′, t′) = Θ(t− t′)
〈

0
∣∣∣Ψ̂(x, t) Ψ̂†(x′, t′)

∣∣∣ 0
〉

+ Θ(t′ − t)
〈

0
∣∣∣Ψ̂†(x′, t′) Ψ̂(x, t)

∣∣∣ 0
〉
. (8.125)

Note that this introduction of the Klein-Gordon propagator with a time-ordered product of field

operators appears admittedly to be quite unmotivated at this stage of the lecture. But it will be

justified a posteriori when dealing perturbatively with interacting quantum fields. Namely, such

a perturbative treatment is performed systematically in the so-called Dirac interaction picture,

where the unperturbed Hamiltonian determines the time dependence of the field operators, so

that their interpretation of representing creation and annihilation operators is preserved, and

the perturbative Hamiltonian affects the quantum states. And the latter turns out to lead to the

time evolution operator in the Dirac interaction picture, whose perturbative expansion naturally

involves the time-ordered product of field operators. Thus, in conclusion, any perturbative

treatment in quantum field theory is based on the time-ordered product of field operators.

In order to determine the equation of motion for the Klein-Gordon propagator we calculate the

first time derivative:

∂G(x, t; x′, t′)

∂t
= δ(t− t′)

〈
0

∣∣∣∣
[
Ψ̂(x, t), Ψ̂†(x′, t′)

]
−

∣∣∣∣ 0
〉

(8.126)

+Θ(t− t′)
〈

0

∣∣∣∣∣
∂Ψ̂(x, t)

∂t
Ψ̂†(x′, t′)

∣∣∣∣∣ 0
〉

+ Θ(t′ − t)
〈

0

∣∣∣∣∣Ψ̂
†(x′, t′)

∂Ψ̂(x, t)

∂t

∣∣∣∣∣ 0
〉
.
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Here we have used the fact that the time derivative of the Heaviside function yields the delta

function:

∂Θ(t)

∂t
= δ(t) . (8.127)

As the commutator of the field operators Ψ̂(x, t) and Ψ̂†(x′, t) at the same time t vanish ac-

cording to (8.55), the first term in (8.126) vanishes. Another time derivative leads then with

(8.127) to

∂2G(x, t; x′, t′)

∂t2
= δ(t− t′)

〈
0|
[
∂Ψ̂(x, t)

∂t
, Ψ̂†(x′, t′)

]

−

|0
〉

(8.128)

+Θ(t− t′)
〈

0

∣∣∣∣∣
∂2Ψ̂(x, t)

∂t2
Ψ̂†(x′, t′)

∣∣∣∣∣ 0
〉

+ Θ(t′ − t)
〈

0

∣∣∣∣∣Ψ̂
†(x′, t′)

∂2Ψ̂(x, t)

∂t2

∣∣∣∣∣ 0
〉
.

Taking into account (8.54), (8.57), (8.61), and (8.125) we finally obtain
(

1

c2

∂2

∂t2
−∆ +

M2c2

h̄2

)
G(x, t; x′, t′) = −i 2M

h̄
δ(t− t′) δ(x− x′) . (8.129)

Thus, we recognize that the Klein-Gordon propagator represents the Green function of the

Klein-Gordon equation. As a coupling of the Klein-Gordon field to other quantum fields yields

as a Heisenberg equation an inhomogeneous Klein-Gordon equation, its perturbative solution is

based on the knowledge of the corresponding Green function, i.e. the Klein-Gordon propagator.

In view of the non-relativistic limit c → ∞ we have to separate the rest energy from the

Klein-Gordon propagator due to (8.5):

G(x, t; x′, t′) = g(x, t; x′, t′) exp

(
− i
h̄
Mc2t

)
. (8.130)

Inserting the ansatz (8.130) in the equation of motion (8.129) we get
(

1

c2

∂2

∂t2
− 2iM

h̄

∂

∂t
−∆

)
g(x, t; x′, t′) = −i 2M

h̄
δ(t− t′) δ(x− x′) . (8.131)

Performing then the non-relativistic limit c→∞ Eq. (8.131) reduces to
(
ih̄

∂

∂t
+

h̄2

2M
∆

)
g(x, t; x′, t′) = ih̄ δ(t− t′) δ(x− x′) . (8.132)

Thus, g(x, t; x′, t′) coincides with the Green function of the Schrödinger equation and can be

identified with the Schrödinger propagator.

8.10 Interpretation of Propagator

Now we deal with the physical interpretation of the Klein-Gordon propagator (8.125). To this

end we state two commutation relations for the charge operator (8.103):
[
Q̂, Ψ̂(x, t)

]
−

= −Ψ̂(x, t) , (8.133)
[
Q̂, Ψ̂†(x, t)

]
−

= Ψ̂†(x, t) . (8.134)
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Figure 8.3: Graphical representation of the Klein-Gordon propagator (8.125) describing the

propagation of the charge 1 from (x′, t′) to (x, t).

Thus, the field operators Ψ̂(x, t) and Ψ̂†(x, t) decrease and increase the charge by one unit,

respectively, as was already anticipated at the end of Section 8.8. Namely, denoting with |q〉
an eigenstate of the charge operator Q̂ with eigenvalue q, i.e.

Q̂|q〉 = q |q〉 , (8.135)

we conclude with the help of the commutator relations (8.133), (8.134):

Q̂Ψ̂(x, t)|q〉 = Ψ̂(x, t)
(
Q̂− 1

)
|q〉 = (q − 1)Ψ̂(x, t)|q〉 =⇒ |q − 1〉 ∼ Ψ̂(x, t)|q〉 , (8.136)

Q̂Ψ̂†(x, t)|q〉 = Ψ̂†(x, t)
(
Q̂+ 1

)
|q〉 = (q + 1)Ψ̂†(x, t)|q〉 =⇒ |q + 1〉 ∼ Ψ̂†(x, t)|q〉 . (8.137)

Against this background the Klein-Gordon propagator (8.125) describes the propagation of

the charge 1 from (x′, t′) to (x, t), see Fig. 8.3, via two microscopic processes. Taking into

account the plane wave decompositions (8.110), (8.111) the first term in (8.125) describes the

propagation of a particle of charge +1 from (x′, t′) to (x, t), whereas the second term considers

the propagation of an antiparticle of charge −1 from (x, t) to (x′, t′). Thus, the Klein-Gordon

propagator (8.125) takes both processes of particle and antiparticle propagation into account.

But, according to the intuitive physical picture of Richard Feynman, particles with positive

energy propagate forward in time, whereas antiparticles are considered to have negative energy,

which move backwards in time.

8.11 Calculation of Propagator

Now we insert the plane wave decompositions (8.110), (8.111) of the field operators Ψ̂(x, t),

Ψ̂†(x, t) into the definition of the Klein-Gordon propagator (8.125). Due to the commutation

relations (8.108)–(8.109) and the definition of the vacuum state (8.117) we obtain the plane

wave representation

G(x, t; x′, t′) =

∫
d3p
[
Θ(t− t′)up(x, t)u∗p(x′, t′) + Θ(t′ − t)up(x′, t′)u∗p(x, t)

]
. (8.138)
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Inserting the plane wave (8.112) together with the relativistic energy-momentum dispersion

(8.66), one obtains the following Fourier representation of the Klein-Gordon propagator:

G(x, t; x′, t′) =
Mc2

(2πh̄)3

∫
d3p

1√
p2c2 +M2c4

×
(

Θ(t− t′) exp

{
i

h̄

[
p(x− x′)−

√
p2c2 +M2c4 (t− t′)

]}

+Θ(t′ − t) exp

{
i

h̄

[
p(x′ − x)−

√
p2c2 +M2c4 (t′ − t)

]})
. (8.139)

In the following we evaluate this momentum integral analytically. At first, substituting in the

second term p→ −p, both terms are combined as follows:

G(x, t; x′, t′) =
Mc2

(2πh̄)3

∫
d3p

1√
p2c2 +M2c4

× exp

[
i

h̄
p(x− x′)− i

h̄

√
p2c2 +M2c4 |t− t′|

]
. (8.140)

Introducing subsequently spherical coordinates for the momentum integral, we obtain at first

G(x, t; x′, t′) =
Mc2

(2πh̄)3

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ ∞

0

dp p2 1√
p2c2 +M2c4

× exp

[
i

h̄
p|x− x′| cos θ − i

h̄

√
p2c2 +M2c4 |t− t′|

]
. (8.141)

Evaluating the angle integrals explicitly, one gets two remaining integrals over the absolute

value of the momentum. Performing the substitution p → −p in the second integral, both

integrals over half axis can be combined into a single one over the whole real axis, yielding

G(x, t; x′, t′) =
−iMc2

4π2h̄2|x− x′|

∫ ∞

−∞
dp

p√
p2c2 +M2c4

× exp

{
i

h̄

[
p|x− x′| −

√
p2c2 +M2c4 |t− t′|

]}
. (8.142)

Here the factor p in the integrand can be represented in terms of a partial derivative with

respect to the distance |x− x′|:

G(x, t; x′, t′) =
−Mc2

4π2h̄|x− x′|
∂

∂|x− x′|

∫ ∞

−∞
dp

1√
p2c2 +M2c4

× exp

{
i

h̄

[
p|x− x′| −

√
p2c2 +M2c4 |t− t′|

]}
. (8.143)

Due to the substitution

p (z) = Mc sinh z , (8.144)

where we have

dp (z)

dz
= Mc cosh z = Mc

√
1 + sinh2 z =

1

c

√
p2c2 +M2c4 , (8.145)
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Eq. (8.143) is converted to

G(x, t; x′, t′) =
−Mc

4π2h̄|x− x′|
∂

∂|x− x′|

×
∫ ∞

−∞
dz exp

{
iMc

h̄

[
|x− x′| sinh z − c|t− t′| cosh z

]}
. (8.146)

We now aim at simplifying the integral (8.146) by combining the two terms in the argument

of the exponential function into a single one. This is accomplished by the trick to perform the

substitution z = z′ + z0, which introduces a new variable z0 into the calculation:

G(x, t; x′, t′) =
−Mc

4π2h̄|x− x′|
∂

∂|x− x′|

×
∫ ∞

−∞
dz exp

{
iMc

h̄

[
|x− x′| sinh (z + z0)− c|t− t′| cosh (z + z0)

]}
. (8.147)

Taking into account the addition theorems of hyperbolic functions

sinh (z + z0) = sinh z cosh z0 + cosh z sinh z0 , (8.148)

cosh (z + z0) = cosh z cosh z0 + sinh z sinh z0 , (8.149)

the integral (8.147) gets at first more involved:

G(x, t; x′, t′) =
−Mc

4π2h̄|x− x′|
∂

∂|x− x′|

∫ ∞

−∞
dz

× exp

{
iMc

h̄

[(
|x− x′| cosh z0 − c|t− t′| sinh z0

)
sinh z

+
(
|x− x′| sinh z0 − c|t− t′| cosh z0

)
cosh z

]}
. (8.150)

But a closer inspection then reveals that the yet undetermined parameter z0 can be chosen in

such a way that the argument of the exponential function in (8.150) does only depend on one

term, for instance on the cosh z function:

tanh z0 =
sinh z0

cosh z0

=
|x− x′|
c|t− t′| . (8.151)

The subsequent hyperbolic side calculations

sinh z0 =
tanh z0√

1− tanh2 z0

=
|x− x′|√

c2 (t− t′)2 − (x− x′)2
, (8.152)

cosh z0 =
1√

1− tanh2 z0

=
c|t− t′|√

c2 (t− t′)2 − (x− x′)2
(8.153)

together with (8.151) then simplify the integral in (8.150) to

G(x, t; x′, t′) =
−Mc

4π2h̄|x− x′|
∂

∂|x− x′|

∫ ∞

−∞
dz

× exp

[
−i Mc

h̄

√
c2 (t− t′)2 − (x− x′)2 cosh z

]
. (8.154)
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Here we can use the Hankel function of second kind [(8.405.2), Gradshteyn/Ryzhik]

H(2)
ν (x) = Jν(x)− iNν(x) , (8.155)

which consists of the Bessel function Jν(x) and the von Neumann function Nν(x), due to its

integral representation [(8.421.2), Gradshteyn/Ryzhik]

H(2)
ν (x) = −e

iνπ/2

π i

∫ ∞

−∞
dt e−ix cosh t−νt . (8.156)

With this we obtain from (8.154)

G(x, t; x′, t′) =
iMc

4πh̄|x− x′|
∂

∂|x− x′| H
(2)
0

(
Mc

h̄

√
c2 (t− t′)2 − (x− x′)2

)
. (8.157)

Thus, it remains to evaluate the derivative, where we have to take into account [(8.473.6),

Gradshteyn/Ryzhik]

d

dx
H

(2)
0 (x) = −H(2)

1 (x) . (8.158)

Thus we get for the Klein-Gordon propagator the following explicit result:

G(x, t; x′, t′) =
i(Mc/h̄)2

4π
√
c2 (t− t′)2 − (x− x′)2

H
(2)
1

(
Mc

h̄

√
c2 (t− t′)2 − (x− x′)2

)
. (8.159)

We note that the particle M enters here only in form of the Compton wave length (8.21).

In the non-relativistic limit c → ∞ the argument of the Hankel function becomes arbitrarily

large, so we use [(8.451.4), Gradshtey/Ryzhik]:

H(2)
ν (x) ≈

√
2

πx
e−i(x−

π
2
ν−π

4 ) , x� 1 . (8.160)

With this the non-relativistic limit of the Klein-Gordon propagator (8.159) is for t > t′ of the

form (8.130) with

g(x, t; x′, t′) =

√(
M

2πih̄ (t− t′)

)3

exp

[
iM (x− x′)2

2h̄ (t− t′)

]
. (8.161)

One can show that Eq. (8.161) represents the solution of the inhomogeneous Schrödinger equa-

tion (8.132). Thus, indeed, the Klein-Gordon propagator reduces in the non-relativistic limit

to the Schrödinger propagator.

8.12 Covariant Form of Propagator

In view of obtaining a manifestly covariant form of the Klein-Gordon propagator, we extend

now its three-dimensional Fourier representation (8.140) to a four-dimensional one. To this end

we consider the auxiliary integral

I (t− t′) = lim
η↓0

∫ ∞

−∞

dE

2πh̄

e−
i
h̄
E(t−t′)

E2 − E2
p + iη

. (8.162)
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Figure 8.4: Shift of energy poles according to the iη prescription of Richard Feynman.

Here the term iη with η > 0 shifts infinitesimally the poles of the integrand on the real axis into

the complex plane in a particular way. According to this iη prescription, which was introduced

by Richard Feynman, the pole at E = Ep is shifted below the real axis, whereas the pole at

E = −Ep is shifted above the real axis, see Fig. 8.4. As we see in due course this guarantees

that particles (antiparticles) move forward (backward) in time. To this end we evaluate the

integral (8.162) with the help of the residue theorem. In order to guarantee the convergence of

the integral one has to close the integration contour along the real axis for t > t′ (t < t′) in the

lower (upper) part of the complex plane, yielding

t > t′ : I (t− t′) =
−2πi

2πh̄
lim
η↓0

Res
E=
√
E2

p−iη

e−
i
h̄
E(t−t′)

E2 − E2
p + iη

= − i

2h̄Ep

e−
i
h̄
Ep(t−t′) , (8.163)

t < t′ : I (t− t′) =
2πi

2πh̄
lim
η↓0

Res
E=−
√
E2

p−iη

e−
i
h̄
E(t−t′)

E2 − E2
p + iη

= − i

2h̄Ep

e
i
h̄
Ep(t−t′) . (8.164)

Here we have used the fact that the residue of a function f(z) with a simple pole at z = z0 is

determined via

Res
z = z0

f(z) = lim
z→z0

(z − z0) f(z) . (8.165)

Both results (8.163), (8.164) can be summarized as follows:

I (t− t′) = − i

2h̄Ep

[
Θ(t− t′) e− i

h̄
Ep(t−t′) + Θ(t′ − t) e ih̄Ep(t−t′)

]
= − i

2h̄Ep

e−
i
h̄
Ep|t−t′| . (8.166)

Inserting (8.162) and (8.166) into (8.140) leads at first to

G(x, t; x′, t′) = 2ih̄Mc2 lim
η↓0

∫
d3p

(2πh̄)3

∫
dE

2πh̄

1

E2 − p2c2 −M2c4 + iη

× exp

{
− i
h̄

[
E (t− t′)− p (x− x′)

]}
. (8.167)

This can be rewritten in a manifestly Lorentz covariant form as follows:

G(xλ;x′λ) = 2ih̄Mc lim
η↓0

∫
d4p

(2πh̄)4

1

gµνpµpν −M2c2 + iη
exp

[
− i
h̄
gµν p

µ (xν − x′ν)
]
. (8.168)
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In this form the equation of motion of the Klein-Gordon propagator (8.129) is obviously fulfilled:

(
gµν p̂

µp̂ν +
M2c2

h̄2

)
G(xλ;x′λ) = 2ih̄Mc lim

η↓0

∫
d4p

(2πh̄)4

gµν
−i
h̄
pµ −i

h̄
pν + M2c2

h̄2

gµνpµpν −M2c2 + iη

× exp

[
− i
h̄
gµν p

µ (xν − x′ν)
]

= −2iMc

h̄

∫
d4p

(2πh̄)4
exp

[
− i
h̄
gµν p

µ (xν − x′ν)
]

= −2iMc

h̄
δ(4)(x− x′) = −2iM

h̄
δ(t− t′) δ (x− x′) . (8.169)

Comparing (8.168) with the four-dimensional Fourier transformation the Klein-Gordon propa-

gator

G(xλ;x′λ) =

∫
d4p

(2πh̄)4
G(pλ) exp

[
− i
h̄
gµν p

µ (xν − x′ν)
]
, (8.170)

we read off

G(pλ) = G(p, E) = lim
η↓0

2ih̄Mc

E2 − p2c2 −M2c4 + iη
. (8.171)

Here a singularity appears when the energy variable E coincides with the physical energy of a

relativistic massive particle, which is given by the energy-momentum dispersion (8.66). In the

non-relativistic limit c → ∞ the Fourier transformed of the Klein-Gordon propagator (8.171)

goes over into the Fourier transformed of the Schrödinger propagator:

g(p, E) = lim
c→∞

1

c
G(p, E +Mc2) = lim

η↓0
lim
c→∞

2ih̄M

(E/c+Mc)2 − p2 −M2c2 + iη

= lim
η↓0

lim
c→∞

ih̄

E − p2

2M
+ E2

2Mc2
+ iη

= lim
η↓0

ih̄

E − p2

2M
+ iη

. (8.172)

Indeed, solving the inhomogeneous Schrödinger equation (8.132) via a four-dimensional Fourier

transformation

g(x, t; x′, t′) =

∫ ∞

−∞

dE

2πh̄

∫
d3p

(2πh̄)3
g(p, E) exp

{
i

h̄

[
p (x− x′)− E(t− t′)

]}
(8.173)

yields straight-forwardly (8.173).



Chapter 9

Maxwell Field

All electrodynamic processes are described by the Maxwell equations. Surprisingly they repre-

sent the equations of motion of a first-quantized theory, although the Planck constant h̄ does

not appear explicitly. This apparent contradiction is resolved by the following consideration.

If the quanta of the Maxwell field, i.e. the photons, had a finite rest mass M , then it would

appear due to dimensional reasons together with spatio-temporal derivatives as a mass term in

the equations of motion in form of the inverse Compton wave length (8.21). Thus, performing

the limit of a vanishing rest mass, i.e. M → 0, also the Planck constant h̄ vanishes automatically

from the respective equations of motion.

In this chapter we first review the relativistic covariant formulation of this first-quantized

Maxwell theory. Afterwards, we invoke the canonical field quantization formalism and work

out systematically the second quantization of the Maxwell theory. In particular, we have to

deal with the intricate consequences of the underlying local gauge symmetry, which occur due

to the vanishing rest mass of the quanta of the Maxwell field. In this way we determine step by

step the respective properties of a single photon as, for instance, its energy, its momentum, and

its spin. Finally, we discuss the photon propagator, which represents an important building

block in the Feynman diagrams of quantum electrodynamics describing the interaction between

light and matter.

9.1 Maxwell Equations

Forces of an electromagnetic field upon electric charges, which are at rest or move, are me-

diated by both the electric field strength E and the magnetic induction B. Physically both

vector fields are generated by the charge density ρ and the current density j. Mathematically

they are determined by partial differential equations, which were first formulated by James

Clerk Maxwell. The general structure of the Maxwell equations is prescribed by the Helmholtz

vector decomposition theorem, which states that any vector field is uniquely determined by its

125
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respective divergence and rotation in combination with appropriate boundary conditions. With

this the electric field strength E follows from

div E =
ρ

ε0

, (9.1)

rot E = −∂B

∂t
, (9.2)

whereas the magnetic induction B is defined by

div B = 0 , (9.3)

rot B = µ0 j +
1

c2

∂E

∂t
. (9.4)

Here the vacuum dielectric constant ε0, the vacuum permeability µ0, and the vacuum light

velocity c are related via

c =
1√
ε0µ0

. (9.5)

We remark that (9.1), (9.4) and (9.2), (9.3) are denoted as the inhomogeneous and homogeneous

Maxwell equations, respectively. Furthermore, we read off from the inhomogeneous Maxwell

equations (9.1) and (9.4) the consistency equation that charge density ρ and current density j

are not independent from each other but must fulfill the continuity equation

∂ρ

∂t
+ div j = 0 , (9.6)

which corresponds to the charge conservation similar to the discussion in (8.39)–(8.41). Note

that we formulate the Maxwell equations (9.1)–(9.4) according to the International System of

Units, which is abbreviated by SI from the French Système International d’Unités. Instead,

in quantum field theory quite often the rational Lorentz-Heaviside unit system is used, where

one assumes ε0 = µ0 = c = 1 in order to simplify the notation. But we stick consistently to

the SI unit system, although this might be considered to be more cumbersome, as this has

the advantage that at each stage of the calculation one obtains results, which are, at least in

principle, directly accessible in an experiment.

9.2 Local Gauge Symmetry

From the homogeneous Maxwell equations (9.2) and (9.3) we conclude straight-forwardly that

both the electric field strength E and the magnetic induction B follow from differentiation of

a scalar field ϕ and a vector potential A:

B = rot A , (9.7)

E = −gradϕ− ∂A

∂t
. (9.8)
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From the inhomogeneous Maxwell equations (9.1) and (9.4) as well as from (9.7) and (9.8)

we then determine coupled partial differential equations for the scalar field ϕ and the vector

potential A:

−∆ϕ− ∂

∂t
div A =

ρ

ε0

, (9.9)

1

c2

∂2A

∂t2
−∆A + grad

(
1

c2

∂ϕ

∂t
+ div A

)
= µ0 j . (9.10)

The equations (9.7)–(9.10) turn out to be invariant with respect to a local gauge transformation

with an arbitrary gauge function Λ:

ϕ′ = ϕ+
∂Λ

∂t
, (9.11)

A′ = A− grad Λ . (9.12)

Thus, a local gauge transformation does not have any physical consequences, but it changes

the mathematical description of the electromagnetic field. For instance, choosing a particular

gauge allows to decouple the coupled equations of motion (9.9) and (9.10). In the following we

briefly discuss the two most prominent gauges.

The Coulomb gauge assumes that the longitudinal part of the vector potential A vanishes, i.e.

div A = 0 . (9.13)

With this (9.9) and (9.10) reduce to

∆ϕ = − ρ

ε0

, (9.14)

1

c2

∂2A

∂t2
−∆ A = µ0 j− 1

c2

∂

∂t
gradϕ . (9.15)

As the scalar potential ϕ(x, t) obeys the Poisson equation (9.14), it is determined at each time

instant t by the corresponding value of the charge density ρ(x, t) according to

ϕ(x, t) =

∫
d3x′

ρ(x′, t)

4πε0|x− x′| . (9.16)

Due to (9.13) and (9.16) we conclude that from the original four fields ϕ and A only two

of them represent dynamical degrees of freedom. As a consequence, the quantization of the

electromagnetic field thus yields later on two types of photons. The advantage of the Coulomb

gauge is that the remaining two dynamical degrees of freedom of the electromagnetic field can

be physically identified with the two transversal degrees of freedom of the vector potential A.

The disadvantage of the Coulomb gauge is that it is not manifestly Lorentz invariant. Thus,

the Coulomb gauge is only valid in a particular inertial system.

The Lorentz gauge is defined via

1

c2

∂ϕ

∂t
+ div A = 0 . (9.17)
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With this the coupled equations of motions (9.9) and (9.10) yield uncoupled wave equations:

1

c2

∂2ϕ

∂t2
−∆ϕ =

ρ

ε0

, (9.18)

1

c2

∂2A

∂t2
−∆ A = µ0 j . (9.19)

The advantage is here that the Lorentz gauge (9.17) as well as the decoupled equations of motion

(9.18), (9.19) are Lorentz invariant. On the other hand, the quantization of the electromagnetic

field on the basis of the Lorentz gauge, as worked out by Suraj Gupta and Konrad Bleuler,

turns out to have an essential disadvantage. Namely, apart from the two physical transversal

degrees of freedom also an unphysical longitudinal degree of freedom of the electromagnetic

field emerges, which has to be eliminated afterwards with some effort.

9.3 Field Strength Tensors

In view of a manifestly Lorentz invariant formulation of the Maxwell theory both the electric

field strength E and the magnetic induction B are considered as elements of an anti-symmetric

4 × 4 matrix F , which is called the electromagnetic field strength tensor. Its contravariant

components read

(F µν) =
(
F µν(E,B)

)
=




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


 , (9.20)

which fulfill, indeed, the anti-symmetry condition:

F µν = −F νµ . (9.21)

Its corresponding covariant components

Fµν = gµλgνκ F
λκ (9.22)

are given by

(Fµν) =
(
F µν(−E,B)

)
=




0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0


 . (9.23)

Furthermore, it turns out to be useful to introduce in addition the dual electromagnetic field

strength tensor ∗F by contracting the electromagnetic field strength tensor F with the totally

anti-symmetric unity tensor ε, which was already used in (6.143):

∗F µν =
1

2
εµνλκ Fλκ . (9.24)
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Thus, its contravariant components turn out to be

(∗F µν) =
(
F µν(cB,−E/c)

)
=




0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0


 (9.25)

and the covariant components

∗Fµν = gµλgνκ
∗F λκ (9.26)

result in

(∗Fµν) =
(
F µν(−cB,−E/c)

)
=




0 Bx By Bz

−Bx 0 Ez/c −Ey/c
−By −Ez/c 0 Ex/c

−Bz Ey/c −Ex/c 0


 . (9.27)

With these definitions we can now concisely summarize the homogeneous Maxwell equations

(9.2), (9.3) with the help of the dual electromagnetic field strength tensor ∗F

∂µ
∗F µν = 0 , (9.28)

whereas, correspondingly, the inhomogeneous Maxwell equations (9.1), (9.4) can be united with

the help of the electrodynamic field strength tensor F :

∂µF
µν = µ0 j

ν . (9.29)

Here the contravariant current density four-vector jλ consists of both the charge density ρ in

the temporal component and the current density j in the spatial components:
(
jλ
)

= (cρ, j) . (9.30)

Indeed, taking into account (6.102), an explicit calculation reproduces the homogeneous Maxwell

equations

(∂µ
∗F µν) =

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)



0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0




=

(
div B,−1

c
rot E− 1

c

∂B

∂t

)
= (0,0) (9.31)

as well as also the inhomogeneous Maxwell equations

(∂µF
µν) =

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)



0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0




=

(
1

c
div E, rot B− 1

c2

∂E

∂t

)
= µ0(cρ, j) . (9.32)
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Evaluating the four-divergence of (9.29) one obtains due to the anti-symmetry (9.21) a consis-

tency condition, which is the continuity equation for the contravariant current density

∂ν∂µF
µν = µ0 ∂νj

ν =⇒ ∂νj
ν = 0 . (9.33)

Note that (9.33) represents the manifest Lorentz invariant formulation of (9.6).

9.4 Four-Vector Potential

We now combine both the scalar potential ϕ and the vector potential A to the contravariant

four-vector potential

(
Aλ
)

=
(ϕ
c
,A
)
. (9.34)

With this the relations (9.7) and (9.8) between the electric field strength E and the magnetic

induction B as well as the scalar potential ϕ and the vector potential A are combined into

one single relation between the electromagnetic field strength tensor F µν and the four-vector

potential Aλ:

F µν = ∂µAν − ∂νAµ . (9.35)

Here the contravariant nabla four-vector is defined via

(∂µ) =

(
1

c

∂

∂t
,−∇

)
. (9.36)

For instance, we obtain from (9.34)–(9.36):

F 01 = ∂0A1 − ∂1A0 =
1

c

∂Ax
∂t

+
1

c

∂ϕ

∂x
= −1

c
Ex , (9.37)

F 12 = ∂1A2 − ∂2A1 =
∂Ax
∂y
− ∂Ay

∂x
= −Bz . (9.38)

We remark that the definitions (9.24) and (9.35) have the consequence that the homogeneous

Maxwell equations (9.28) are automatically fulfilled:

∂µ
∗F µν =

1

2
εµνλκ ∂µFλκ =

1

2
εµνλκ (∂µ∂λAκ − ∂µ∂κAλ) = 0 . (9.39)

Note that we have used here the anti-symmetry of the ε tensor and that we have assumed

that the covariant four-vector potential fulfills the theorem of Schwarz, i.e. partial derivatives

commute:

(∂µ∂ν − ∂ν∂µ)Aκ = 0 . (9.40)

Furthermore, due to the definition (9.35) the inhomogeneous Maxwell equations (9.29) go over

into the manifest Lorentz invariant formulation of the coupled equations of motion (9.9) and

(9.10):

∂µ∂
µAν − ∂ν∂µAµ = µ0 j

ν . (9.41)
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And, finally, the manifest Lorentz invariant formulation of the local gauge transformation (9.11),

(9.12) reads

A′
µ

= Aµ + ∂µΛ . (9.42)

Due to such local gauge transformations (9.42) the electromagnetic field strength tensor F

defined via (9.35) does not change

F ′
µν

= ∂µA′
ν − ∂νA′µ = ∂µAν + ∂µ∂νΛ− ∂νAµ − ∂ν∂µΛ = ∂µAν − ∂νAµ = F µν , (9.43)

provided that the gauge function Λ also fulfills the theorem of Schwarz:

(∂µ∂ν − ∂ν∂µ) Λ = 0 . (9.44)

Furthermore, we conclude from (9.24) and (9.43) that then also the dual electromagnetic field

strength tensor ∗F is gauge invariant:

∗F ′
µν

= ∗F µν . (9.45)

Thus, finally, we conclude that the local gauge transformation (9.42) leaves both the homoge-

neous and the inhomogeneous Maxwell equations (9.28) and (9.29) invariant.

9.5 Euler-Lagrange Equations

Now we set up a covariant variational principle, whose Euler-Lagrange equations are equivalent

to the Maxwell equations. According to (9.35) the electromagnetic field strength tensor is

completely determined from the knowledge of the four-vector potential. Therefore, we take here

the point of view that the primary dynamical degree of freedom is provided by the four-vector

potential. As the homogeneous Maxwell equations (9.28) are already automatically fulfilled

by defining (9.35), the covariant variational principle must only reproduce the inhomogeneous

Maxwell equations (9.29) or (9.41).

The action A as a functional of the covariant components Aν of the four-vector potential is

defined as an integral of a Lagrange density L over a volume Ω of the four-dimensional space-

time:

A [Aν(•)] =
1

c

∫

Ω

d4xL . (9.46)

As the inhomogeneous Maxwell equations (9.29) or (9.41) are of second order in the derivatives

of the four-vector potential, the Lagrange density can only contain derivatives up to first order:

L = L
(
Aν
(
xλ
)

; ∂µAν
(
xλ
))
. (9.47)

The corresponding Hamilton principle states that the functional derivative of the action with

respect to the covariant components of the four-vector potential vanishes:

δA
δAν(xλ)

= 0 . (9.48)
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The resulting Euler-Lagrange equations of this classical field theory then read

∂L
∂Aν(xλ)

− ∂µ
∂L

∂(∂µAν (xλ))
= 0 . (9.49)

Thus, it remains to find a Lagrange density, whose Euler-Lagrange equations (9.49) coincide

with the inhomogeneous Maxwell equations (9.29) or (9.41). As the Maxwell equations are

Lorentz invariant, the same must also hold for the Lagrange density. To this end we perform

the following covariant ansatz for the Lagrange density of the electrodynamic field:

L = αF λκ Fλκ + βjλAλ . (9.50)

Here α and β denote some constants, which are fixed below. Taking into account (9.35) the

ansatz (9.50) reduces after some straight-forward algebraic calculations to the expression

L = 2αgλρgκσ (∂ρAσ − ∂σAρ) ∂λAκ + βjλAλ . (9.51)

With this we obtain the partial derivative

∂L
∂Aν

= βjν (9.52)

and, correspondingly, due to (9.35) also

∂L
∂(∂µAν)

= 4αF µν . (9.53)

Thus, with (9.52) and (9.53) the Euler-Lagrange equations (9.49) turn out to be of the form

∂µF
µν =

β

4α
jν . (9.54)

A comparison of (9.54) with the inhomogeneous Maxwell equations (9.29) allows to fix the

constant β according to

β

4α
= µ0 =⇒ β = 4αµ0 . (9.55)

Due to (9.55) the Lagrange density (9.50) is then given by

L = αF µνFµν + 4αµ0 j
νAν , (9.56)

where the constant α is still not yet determined.

9.6 Hamilton Function

We consider now the free electrodynamic field, where neither electric charges nor currents are

present:

ρ(x, t) = 0 , j(x, t) = 0 . (9.57)
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Furthermore, we restrict ourselves from now on to the Coulomb gauge (9.13) as it represents

the basis of the standard formulation for the second quantization of the Maxwell theory and is

commonly used in quantum optics. From (9.13), (9.16), and (9.57) we then conclude that the

scalar potential vanishes:

ϕ(x, t) = 0 . (9.58)

Note that (9.13) and (9.58) together is also known as the radiation gauge. From (9.14), (9.57),

and (9.58) we then read off that the vector potential obeys the wave equation:

1

c2

∂2A(x, t)

∂t2
−∆A(x, t) = 0 . (9.59)

Thus, in radiation gauge the vector potential A(x, t) is determined from solving the wave

equation (9.59) by taking into account the Coulomb gauge (9.13). Once the vector potential is

known, one obtains from (9.7) the magnetic induction, whereas the electric field (9.8) reduces

due to the radiation gauge (9.13) and (9.58) to

E(x, t) = −∂A(x, t)

∂t
. (9.60)

Furthermore, the Lagrange density of the free electrodynamic field reads due to (9.20), (9.23),

(9.56), and (9.57)

L = 2α

(
B2 − E2

c2

)
. (9.61)

Due to (9.7) and (9.60) the Lagrange density (9.61) can be expressed in terms of the vector

potential:

L = 2α

{[
∇×A(x, t)

]2

− 1

c2

[
∂A(x, t)

∂t

]2
}
. (9.62)

With this the momentum field π, which is canonically conjugated to the vector potential A,

follows as

π(x, t) =
δA [A(•, •)]
δ ∂A(x,t)

∂t

=
∂L

∂ ∂A(x,t)
∂t

= −4α

c2

∂A(x, t)

∂t
. (9.63)

A subsequent Legendre transformation

H = π(x, t)
∂A(x, t)

∂t
− L (9.64)

converts then the Lagrange density (9.62) to the Hamilton density

H = − c
2

8α
π(x, t)2 − 2α

[
∇×A(x, t)

]2

, (9.65)

which should coincide with the well-known energy density of the free electromagnetic field in

SI units

H =
ε0

2

[
∂A(x, t)

∂t

]2

+
1

2µ0

[
∇×A(x, t)

]2

. (9.66)
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Here the first term corresponds to the electric field energy density due to (9.60), where the

second terms stands for the magnetic field energy density due to (9.7). By taking into account

(9.5) a comparison of (9.65) and (9.66) fixes the parameter α according to

α = − 1

4µ0

. (9.67)

Thus, we obtain from (9.5), (9.63), and (9.67) the following result for the momentum field:

π(x, t) = ε0
∂A(x, t)

∂t
. (9.68)

This corresponds to the classical expression for the momentum p = mẋ, provided we identify

the coordinate x with the vector potential A and the mass m with the vacuum dielectric

constant ε0. Furthermore, a spatial integral over the Hamilton density yields the Hamilton

function

H =

∫
d3xH , (9.69)

which follows from (9.66) to be

H =
1

2

∫
d3x

{
1

ε0

π(x, t)2 +
1

µ0

[
∇×A(x, t)

]2
}
. (9.70)

Note that the first (second) term represents the kinetic (potential) energy of the electromagnetic

field. With an additional calculation the Hamilton function (9.70) can be simplified. To this

end we consider

(∇×A)2 = εjkl ∂kAl εjmn ∂mAn , (9.71)

which reduces with the help of (6.56) to

(∇×A)2 = ∂kAl∂kAl − ∂k (Al∂lAk) + Al∂l∂kAk . (9.72)

Inserting (9.72) into (9.70), the second term vanishes due to applying the theorem of Gauß and

the third term is zero in the Coulomb gauge (9.13), so we end up with

H =
1

2

∫
d3x

[
1

ε0

πk(x, t)πk(x, t) +
1

µ0

∂kAl(x, t)∂kAl(x, t)

]
. (9.73)

9.7 Canonical Field Quantization

The electrodynamic field is now quantized by exchanging the fields Aj(x, t) and πj(x, t) with

their corresponding field operators Âj(x, t) and π̂j(x, t). To this end we perform a bosonic field

quantization and demand equal-time commutation relations. At first, we demand that the field

operators Âj(x, t) and π̂j(x, t) commute, as usual, among themselves, respectively:
[
Âk(x, t), Âl(x

′, t)
]
−

= 0, (9.74)
[
π̂k(x, t), π̂l(x

′, t)
]
−

= 0. (9.75)
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But when it comes to the equal-time commutation relations between the field operators Âj(x, t)

and their canonical conjugated momentum field operators π̂j(x, t), the situation turns out to

be more intriguing. Let us investigate whether naive equal-time commutation relations of the

form

[
Âk(x, t), π̂l(x

′, t)
]
−

= ih̄ δklδ(x− x′) (9.76)

are possible. On the one hand, a derivative with respect to xk then yields at the left-hand side

of (9.76) to

∂k

[
Âk(x, t), π̂l(x

′, t)
]
−

=
[
∂kÂk(x, t), π̂l(x

′, t)
]
−

= 0 , (9.77)

as we have to demand the quantized version of the Coulomb gauge (9.13):

∂jÂj(x, t) = 0 . (9.78)

On the other, a derivative with respect to xk at the right-hand side of (9.76) leads to

ih̄ δkl∂kδ(x− x′) = ih̄ ∂lδ(x− x′) 6= 0 , (9.79)

i.e. to an expression, which is non-zero in obvious contradiction to (9.77). Therefore, we are

forced to modify the naive equal-time commutation relations (9.76) in such a way that it

becomes compatible with the quantized version of the Coulomb gauge (9.78). To this end we

consider the Fourier transformed of the right-hand side of (9.76)

ih̄ δklδ(x− x′) = ih̄

∫
d3k

(2π)3
δkl e

ik(x−x′) (9.80)

and substitute this expression by a yet to be determined transversal delta function

ih̄ δTkl(x− x′) = ih̄

∫
d3k

(2π)3
δTkl(k) eik(x−x′) . (9.81)

The Fourier transformed of the transversal delta function is then fixed from demanding that

the derivative of (9.81) with respect to xk vanishes, i.e.

ih̄ ∂kδ
T
kl(x− x′) = ih̄

∫
d3k

(2π)3
ikk δ

T
kl(k) eik(x−x′) = 0 . (9.82)

For this to be valid it is sufficient that the transversality condition

kk δ
T
kl(k) = 0 (9.83)

is fulfilled. By comparing (9.80) and (9.81) a suitable ansatz for the Fourier transformed of the

transversal delta function reads

δTkl(k) = δkl + kkkl f(k) . (9.84)
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The yet unknown function f(k) follows then from inserting (9.84) into (9.83):

f(k) = − 1

k2
. (9.85)

Thus, from (9.81), (9.84), and (9.85) we then conclude for the transversal delta function

δTkl(x− x′) = δklδ(x− x′) + ∂′k∂
′
l

∫
d3k

(2π)3

1

k2
eik(x−x′) . (9.86)

The remaining integral is known, for instance, within the realm of electrostatics from deter-

mining the Green function of the Poisson equation and yields the Coulomb potential. Thus,

we obtain for the transversal delta function

δTkl(x− x′) = δkl δ(x− x′) +
1

4π
∂′k∂

′
l

1

|x− x′| . (9.87)

And, finally, we summarize our derivation by stating that the naive equal-time commutation

relations (9.76) have to be modified by

[
Âk(x, t), π̂l(x

′, t)
]
−

= ih̄ δTkl(x− x′) (9.88)

in order to be compatible with the quantized version of the Coulomb gauge (9.78).

However, one should be aware that such a derivation of commutation relations has an essential

caveat. As hard as one tries to consistently determine such basic principles, they are always

attached with heuristic elements. Whether commutation relations are at the end correct or

not can only be verified by checking any prediction following from them against experimental

measurements. In this spirit we will show later on that demanding the bosonic equal-time

commutation relations (9.74), (9.75), and (9.88) leads, indeed, to a consistent description of

the electromagnetic field with the help of usual annihilation and creation operators for photons,

i.e. the quanta of light.

9.8 Heisenberg Equations

Furthermore, proceeding with the second-quantized formalism, we obtain from the Hamilton

function (9.73) the Hamilton operator

Ĥ =
1

2

∫
d3x′

[
1

ε0

π̂k(x
′, t)π̂k(x

′, t) +
1

µ0

∂′kÂl(x
′, t)∂′kÂl(x

′, t)

]
. (9.89)

Note that the order of the operators in (9.89) does not play a role due to the commutation

relations (9.74) and (9.75). Let us now evaluate the Heisenberg equation (3.62) for the field

operator

ih̄
∂Âj(x, t)

∂t
=
[
Âj(x, t), Ĥ

]
−

(9.90)
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by inserting therein the Hamilton operator (9.89). After applying (3.10) as well as the equal-

time commutation relations (9.74), (9.75), and (9.88) we get at first

ih̄
∂Âj(x, t)

∂t
=
ih̄

ε0

∫
d3x′ δTjk(x− x′) π̂k(x

′, t) . (9.91)

Taking into account the transversal delta function (9.87), a partial integration yields

ih̄
∂Âj(x, t)

∂t
=
ih̄

ε0

[
π̂j(x, t)−

1

4π

∫
d3x′

(
∂′j

1

|x− x′|

)
∂′kπ̂k(x

′, t)

]
. (9.92)

With this we reproduce the quantized version of (9.68), as the last term in (9.92) vanishes due

to the quantized version of the Coulomb gauge (9.78):

∂Âj(x, t)

∂t
=

1

ε0

π̂j(x, t) . (9.93)

Correspondingly, the Heisenberg equation (3.62) for the momentum field operator reads

ih̄
∂π̂j(x, t)

∂t
=
[
π̂j(x, t), Ĥ

]
−
. (9.94)

Using (3.10) as well as the equal-time commutation relations (9.74), (9.75), and (9.88) we get

at first

ih̄
∂π̂j(x, t)

∂t
=
−ih̄
µ0

∫
d3x′ ∂′kδ

T
jl(x− x′) ∂′kÂl(x

′, t) , (9.95)

so a partial integration yields

ih̄
∂π̂j(x, t)

∂t
=
ih̄

µ0

∫
d3x′ δTjl(x− x′) ∆′Âl(x

′, t) , (9.96)

Due to the explicit form of the transversal delta function (9.87) and a partial integration we

then get

ih̄
∂π̂j(x, t)

∂t
=
ih̄

µ0

[
∂k∂kÂj(x, t)−

1

4π

∫
d3x′

(
∂′j

1

|x− x′|

)
∆′ ∂′lÂl(x

′, t)

]
. (9.97)

With the quantized version of the Coulomb gauge (9.78) this reduces finally to

∂π̂j(x, t)

∂t
=

1

µ0

∆Âj(x, t) . (9.98)

Thus, we conclude from (9.5), (9.93), and (9.98) that the field operator Â(x, t) obeys like the

classical field A(x, t) in (9.59) the wave equation:

1

c2

∂2Â(x, t)

∂t2
−∆Â(x, t) = 0 . (9.99)
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9.9 Decomposition in Plane Waves

The wave equation (9.99) can be solved with a Fourier decomposition into plane waves:

Â(x, t) =

∫
d3k Â(k, t) eikx . (9.100)

Inserting (9.100) into (9.99) one obtains for the expansion operators Â(k, t) the differential

equation of a harmonic oscillator:

∂2Â(k, t)

∂t2
+ ω2

k Â(k, t) = 0 , (9.101)

where the dispersion relation is given by

ωk = c|k| . (9.102)

The general solution of (9.101) reads

Â(k, t) = Â(1)(k) e−iωkt + Â(2)(k) eiωkt . (9.103)

so that the field operator (9.100) results in

Â(x, t) =

∫
d3k

[
Â(1)(k)ei(kx−ωkt) + Â(2)(k)ei(kx+ωkt)

]
. (9.104)

Performing in the second integral the substitution k → −k and taking into account the sym-

metry of the dispersion relation (9.102), i.e.

ωk = ω−k , (9.105)

the Fourier decomposition (9.104) is converted into

Â(x, t) =

∫
d3k

[
Â(1)(k)ei(kx−ωkt) + Â(2)(−k)e−i(kx−ωkt)

]
. (9.106)

Thus, the adjoint field operator reads

Â†(x, t) =

∫
d3k

[
Â(1)†(k)e−i(kx−ωkt) + Â(2)†(−k)ei(kx−ωkt)

]
. (9.107)

As the vector potential of electrodynamics is real, we demand that the field operator as its

second-quantized counterpart is self-adjoint, i.e.

Â(x, t) = Â†(x, t) , (9.108)

and conclude from (9.106) and (9.107):

Â(k) = Â(1)(k) , Â†(k) = Â(2)(−k) , (9.109)

Inserting the finding (9.109) into the Fourier decomposition (9.106), we finally obtain

Â(x, t) =

∫
d3k

[
Â(k)ei(kx−ωkt) + Â†(k)e−i(kx−ωkt)

]
. (9.110)
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9.10 Construction of Polarization Vectors

Before we can continue with working out the second quantization of the Maxwell theory we

have to acquire beforehand a more detailed understanding of the description of plane waves. To

this end we define two linearly polarized plane waves with the wave vector k and the dispersion

(9.102) via

A1(x, t) = A1ε1e
i(kx−ωkt) , A2(x, t) = A2ε2e

i(kx−ωkt) . (9.111)

Here A1, A2 represent the respective complex-valued amplitudes and ε1, ε2 denote two complex-

valued polarization vectors, which are orthonormal according to

ε1ε
∗
1 = ε2ε

∗
2 = 1 , ε1ε

∗
2 = 0 . (9.112)

Let us consider now the sum of those two linearly polarized plane waves:

A(x, t) = A1(x, t) + A2(x, t) = (A1ε1 + A2ε2) ei(kx−ωkt) . (9.113)

Provided that both complex amplitudes A1 = |A1|eiϕ and A2 = |A2|eiϕ have the same phase ϕ,

also their sum (9.113) is linearly polarized and we get

A(x, t) = Aεei(kx−ωkt) . (9.114)

Here the resulting amplitude A is given by

A =
√
|A1|2 + |A2|2 eiϕ (9.115)

and the resulting polarization vector ε has the angle

ϑ = arctan
|A2|
|A1|

(9.116)

with respect to ε1, see Fig. 9.1. However, in the more general case that both complex amplitudes

A1 = |A1|eiϕ1 and A2 = |A2|eiϕ2 have different phases ϕ1 6= ϕ2, the sum (9.113) represents an

ellipticly polarized plane wave. Let us illustrate this for the simpler situation of a circularly

polarized plane wave, which occurs provided that both complex amplitudes A1 and A2 have

the same absolute value and their phases differ by 90◦:

A1 =
A0√

2
, A2 = ±i A0√

2
. (9.117)

Inserting (9.117) into (9.113) we obtain for the sum of the two linearly polarized plane waves

A(x, t) =
A0√

2
(ε1 ± iε2) ei(kx−ωkt) . (9.118)
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Figure 9.1: Adding two linearly polarized plane waves according to (9.113) with complex am-

plitudes A1 and A2, which have the same phase.

In order to be concrete we choose now the coordinate axes in such a way that the plane wave

propagates in z-direction, whereas the two polarization vectors ε1 and ε2, which are orthonormal

according to (9.112), point in x- and y-direction:

k = k




0

0

1


 , ε1 =




1

0

0


 , ε2 =




0

1

0


 . (9.119)

With this Eq. (9.118) reduces to

A(x, t) =
A0√

2




1

±i
0


 ei(kezx−ωkez t) . (9.120)

Considering the real part of the vector potential A(x, t) at a fixed space point x, it represents

a vector in the xy-plane with constant absolute value A0, which rotates on a circle with the

frequency ωkez :

ReAx(x, t) =
A0√

2
cos (kz − ωkezt) ,ReAy(x, t) = ∓A0√

2
sin (kz − ωkezt) ,ReAz(x, t) = 0 .(9.121)

For the upper (lower) sign the rotation is performed anti-clockwise (clockwise) for an observer

looking in the direction of the oncoming light beam. Such a plane wave is called in optics

left-(right-) circularly polarized light, whereas in elementary particle physics one says that such

a plane wave has positive (negative) helicity, see Fig. 9.2.

In view of a more detailed discussion of the helicity we remind us upon its definition in

Eq. (6.188). Here the spin vector (6.166) of the electromagnetic field is given by the repre-

sentation matrices Nαβ of the Lorentz algebra in the space of the four-vector potential, which

coincide with the representation matrices Lαβ of the Lorentz algebra in the Minkowskian space-

time according to (6.111) and (6.116). Thus, taking into account (6.53) and restricting us upon

the spatial components, the helicity operator

ĥ(k) =
k

k
L (9.122)
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Figure 9.2: Adding two linearly polarized plane waves according to (9.113) with complex am-

plitudes A1 and A2 with the same absolute value and phases, which differ by 90◦.

turns out to be defined by

ĥ(k) =
i

k




0 −kz ky

kz 0 −kx
−ky kx 0


 . (9.123)

Now we introduce the polariation vectors ε(k, λ) for plane waves which propagate with the

wave vector k and the helicity λ = ±1:

A(x, t) = Aε(k, λ)ei(kx−ωkt) . (9.124)

Here the polarization vectors ε(k, λ) represent the eigenvectors of the helicity operator (9.122)

with the eigenvalues λ:

ĥ(k)ε(k, λ) = λε(k, λ) . (9.125)

From (9.120) and (9.124) we read off the polarization vectors ε(kez, λ) for a propagation in

z-direction:

ε(kez, λ) =
1√
2




1

λi

0


 . (9.126)

Indeed, the polarization vectors (9.126) fulfill due to (9.123) the eigenvalue problem

ĥ(kez)ε(kez, λ) = λε(kez, λ) . (9.127)

Now we construct the polarization vectors ε(k, λ) with a general wave vector k by rotating the

polarization vectors ε(kez, λ) in the same way as the original wave vector kez. To this end

we need the rotation matrix R(θ, φ), which rotates the original wave vector kez to the general

wave vector k, where the latter is described in terms of spherical coordinates k, θ, and φ:

k = k




sin θ cosφ

sin θ sinφ

cosφ


 . (9.128)
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Here the rotation matrix R(θ, φ) is constructed such that first the rotation Ry(θ) around the

y-axis with angle θ and then the rotation Rz(φ) around the z-axis with angle φ is applied:

R(θ, φ) = Rz(φ)Ry(θ) . (9.129)

The individual rotation matrices follow from evaluating matrix exponential functions

Rz(φ) = e−iL3φ =




cosφ sinφ 0

− sinφ cosφ 0

0 0 1


 , (9.130)

Ry(θ) = e−iL2θ =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 , (9.131)

where the respective generators stem from (6.53). As a result we obtain for the rotation matrix

(9.129)

R(θ, φ) =




cos θ cosφ − sinφ sin θ cosφ

cos θ sinφ cosφ sin θ sinφ

− sin θ 0 cos θ


 . (9.132)

Indeed, the rotation matrix R(θ, φ) maps the original wave vector kez to the general wave

vector (9.128) as follows from the third column of (9.132):

R(θ, φ)kez = k . (9.133)

Transforming correspondingly also the polarization vectors ε(kez, λ) from (9.126) with the

rotation matrix R(θ, φ), i.e.

ε(k, λ) = R(θ, φ)ε(kez, λ) , (9.134)

we obtain the explicit result

ε(k, λ) =
1√
2




cos θ cosφ− λi sinφ

cos θ sinφ+ λi cosφ

− sin θ


 . (9.135)

Indeed, taking into account (9.123) and (9.128) one can show that the polarization vectors

(9.135) fulfill the eigenvalue problem of the helicity operator (9.125). Furthermore, as expected,

the polarization vectors (9.135) reduce for the special case θ = φ = 0 to the original polarization

vectors (9.126).

9.11 Properties of Polarization Vectors

Due to the second-quantized formulation of the Coulomb gauge (9.78) the Fourier operators

Â(k) in the decomposition (9.110) must obey the transversality condition

kÂ(k) = 0 . (9.136)
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This means that the Fourier operators Â(k) have two transversal dynamical degrees of freedom.

Performing the ansatz

Â(k) = Nk

∑

λ=±1

ε(k, λ)âk,λ (9.137)

with some normalization constants Nk the transversality condition (9.136) is fulfilled provided

that the polarization vectors ε(k, λ) are perpendicular to the propagation direction, which is

defined by the wave vector k:

kε(k, λ) = 0 . (9.138)

Due to (9.128) it is straight-forward to show that the polarization vectors determined in (9.135)

obey (9.138).

As another property of the polarization vectors (9.135) we investigate whether they obey or-

thonormality relations. Showing separately

ε(k, λ)ε(k, λ)∗ = 1 , (9.139)

ε(k, λ)ε(k,−λ)∗ = 0 , (9.140)

we arrive, indeed, due to λ = ±1 at the orthonormality relations

ε(k, λ)ε(k, λ′)∗ = δλ,λ′ . (9.141)

Another property of the polarization vectors (9.135), which will turn out to be quite useful

for later calculations, is their behaviour concerning the inversion k→ −k. Obviously, such an

inversion is obtained in spherical coordinates (9.126) via

φ→ φ+ π : sinφ→ − sinφ , cosφ→ − cosφ , (9.142)

θ → θ − π : sin θ → sin θ , cos θ → − cos θ . (9.143)

With this we then conclude from (9.135

ε(−k, λ) =
1√
2




cos θ cosφ+ λi sinφ

cos θ sinφ− λi cosφ

− sin θ


 . (9.144)

Thus, from (9.135) and (9.144) we read off

ε(−k, λ) = ε(k,−λ) = ε(k, λ)∗ . (9.145)

And, inserting the decomposition (9.137) into (9.110) by taking into account (9.145), we finally

get

Â(x, t) =
∑

λ=±1

∫
d3k Nk

[
ε(k, λ)ei(kx−ωkt)âk,λ + ε(k, λ)∗e−i(kx−ωkt)â†k,λ

]
. (9.146)
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Note that this plane wave decomposition fulfills, indeed, the Coulomb gauge (9.78) due to the

transversality condition (9.138). In the following we aim at unravelling the physical interpre-

tation of the Fourier operators âk,λ and â†k,λ in the plane wave decomposition (9.146), which

leads to straight-forward but quite lengthy calculations. Therefore, we relegate the respective

technical details to the exercises and restrict ourselves in the subsequent four sections to present

a concise summary of the corresponding derivations.

9.12 Fourier Operators

We start with noting the plane wave decomposition for the momentum field operator, which

follows from (9.93) and (9.146):

π̂(x, t) =
∑

λ=±1

∫
d3k ε0Nk

[
− iωkε(k, λ)ei(kx−ωkt)âk,λ + iωkε(k, λ)∗e−i(kx−ωkt)â†k,λ

]
. (9.147)

The plane wave decompositions (9.146) and (9.147) for both the field operator Â(x, t) and the

momentum field operator π̂(x, t) can now be solved for the Fourier operators âk,λ and â†k,λ:

âk,λ =
1

2(2π)3Nk

∫
d3x ε(k, λ)∗e−i(kx−ωkt)

[
Â(x, t) + i

π̂(x, t)

ε0ωk

]
, (9.148)

â†k,λ =
1

2(2π)3Nk

∫
d3x ε(k, λ)ei(kx−ωkt)

[
Â(x, t)− i π̂(x, t)

ε0ωk

]
. (9.149)

This allows us now to determine the commutator relations between the Fourier operators âk,λ

and â†k,λ from the equal-time commutator relations (9.74), (9.75), and (9.88) for the field oper-

ator Â(x, t) and the momentum field operator π̂(x, t):
[
âk,λ, âk′,λ′

]
−

= 0 , (9.150)
[
â†k,λ, â

†
k′,λ′

]
−

= 0 , (9.151)

[
âk,λ, â

†
k′,λ′

]
−

=
h̄

2(2π)3ε0ωkN2
k

δλλ′ δ(k− k′) . (9.152)

Thus, fixing the yet undetermined normalization constant according to

Nk =

√
h̄

2(2π)3ε0ωk

, (9.153)

we end up with the bosonic canonical commutation relation
[
âk,λ, â

†
k′,λ′

]
−

= δλλ′ δ(k− k′) . (9.154)

This means that the Fourier operators âk,λ and â†k,λ can be interpreted as the annihilation and

creation operators of bosonic particles, which are characterized by the wave vector k and the

polarization λ. In order to determine the respective properties of these particles we investigate

in the subsequent three sections their contribution to the energy, the momentum, and the spin

angular momentum of the electromagnetic field in second quantization.
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9.13 Energy

Taking into account the normalization constant (9.153) in the plane wave decompositions

(9.146) and (9.147) for both the field operator Â(x, t) and the momentum field operator π̂(x, t)

we get

Â(x, t) =
∑

λ=±1

∫
d3k

√
h̄

2(2π)3ε0ωk

[
ε(k, λ)ei(kx−ωkt)âk,λ + ε(k, λ)∗e−i(kx−ωkt)â†k,λ

]
, (9.155)

π̂(x, t) =
∑

λ=±1

∫
d3k

√
h̄ε0ωk

2(2π)3

[
− iε(k, λ)ei(kx−ωkt)âk,λ + iεk(k, λ)∗e−i(kx−ωkt)â†k,λ

]
. (9.156)

Inserting (9.155) and (9.156) in the expression for the Hamilton operator (9.89) and using (9.5),

(9.102), and (9.105) we yield

Ĥ =
1

2

∑

λ=±1

∫
d3k h̄ωk

(
â†k,λâk,λ + âk,λâ

†
k,λ

)
. (9.157)

Thus, comparing (3.6) with (9.157) we recognize that the second quantized electromagnetic

field consists of independent harmonic oscillators, where each energy h̄ωk is doubly degenerate

due to the polarization degree of freedome λ. Defining the vacuum state as usual

âk,λ|0〉 = 0 ⇐⇒ 〈0|â†k,λ = 0 , (9.158)

we find that the vacuum energy of the electrodynamic field is given by a sum of the zero-point

energy of all independent harmonic oscillators

〈0|Ĥ|0〉 =

∫
d3k h̄ωk , (9.159)

which turns out to be divergent due to the linear dispersion (9.102). Therefore, using the

commutator relation (9.154) we obtain for the renormalized Hamilton operator

Ĥ = Ĥ − 〈0|Ĥ|0〉 (9.160)

the normal ordered result

Ĥ =
∑

λ=±1

∫
d3k h̄ωk â

†
k,λâk,λ . (9.161)

Here â†k,λâk,λ represents the occupation number operator, which counts the number of photons

with wave vector k and polarization λ once it is applied to a photon state.

9.14 Momentum

Applying the Noether theorem from Chapter 7 to the Maxwell field yields according to the

exercises the momentum of the electromagnetic field:

P =

∫
d3x

S(x, t)

c2
(9.162)
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with the Poynting vector

S(x, t) =
1

µ0

E(x, t)×B(x, t) . (9.163)

Taking into account (9.5), (9.7), and (9.60), the momentum (9.163) is expressed in terms of the

vector potential and the canonically conjugated momentum field via

P =

∫
d3x [∇×A(x, t)]× π(x, t) . (9.164)

Thus, in second quantization, the momentum operator of the electromagnetic field reads

P̂ =

∫
d3x

(
∇× Â(x, t)

)
× π̂(x, t) . (9.165)

The further evaluation is based on taking into account the plane wave decompositions (9.155)

and (9.156) for both the field operator Â(x, t) and the momentum field operator π̂(x, t). Fur-

thermore, the symmetry of the dispersion relation (9.105), the vector identity

(a× b)× c = (ac)b− (bc)a , (9.166)

the transversality condition (9.138), the orthonormality relation (9.141), and (9.145) are needed.

Subsequently, performing the substitution k → −k and applying (9.105), (9.150), (9.151), we

get the expression

P̂ =
∑

λ=±1

∫
d3k

h̄k

2

(
â†k,λâk,λ + âk,λâ

†
k,λ

)
. (9.167)

Note that the vacuum state has a vanishing momentum

〈0|P̂|0〉 =

∫
d3k h̄k = 0 (9.168)

due to the odd symmetry of the integrand. Thus, taking into account the commutator relation

(9.154) we recognize that (9.167) coincides with the renormalized momentum operator

P̂ = P̂− 〈0|P̂|0〉 , (9.169)

which finally yields the normal ordered result

P̂ =
∑

λ=±1

∫
d3k h̄k â†k,λâk,λ . (9.170)

9.15 Spin Angular Momentum

According to the Noether theorem from Chapter 7, which is applied to the electromagnetic

field in the exercises, the spin angular momentum of the electromagnetic is given by

S =

∫
d3xA(x, t)× π(x, t) . (9.171)
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Thus, the corresponding second quantized spin angular momentum operator reads

Ŝ =

∫
d3x Â(x, t)× π̂(x, t) . (9.172)

Inserting the plane wave decompositions (9.155) and (9.156) for both the field operator Â(x, t)

and the momentum field operator π̂(x, t) and performing the substitution k→ −k then yields

the intermediate result

Ŝ =
∑

λ=±1

∑

λ′=±1

∫
d3k

ih̄

2

[
ε(k, λ)× ε(k, λ′)∗âk,λâ†k,λ′ + ε(k, λ′)× ε(k, λ)∗â†k,λâk,λ′

]
. (9.173)

Now we evaluate the vector product between two polarization vectors. At first we obtain from

(9.145)

ε(k, λ)× ε(k,−λ)∗ = 0 , (9.174)

whereas we get from (9.128) and (9.135)

ε(k, λ)× ε(k, λ) = −iλ k

k
. (9.175)

Thus, both (9.174) and (9.175) can be summarized by

ε(k, λ)× ε(k, λ′)∗ = −iλ k

k
δλλ′ . (9.176)

With this the intermediate result (9.173) for the spin angular momentum operator of the

electromagnetic field reduces to

Ŝ =
∑

λ=±1

∫
d3k λ

h̄

2

k

k

(
â†k,λâk,λ + âk,λâ

†
k,λ

)
. (9.177)

Thus, the vacuum state has a vanishing spin angular momentum

〈0|Ŝ|0〉 = h̄

(∑

λ=±1

λ

)(∫
d3k

k

k

)
= 0 (9.178)

due to the odd symmetry in both the summand and the integrand. Using the commutator

relation (9.154) we read off that (9.177) coincides with the renormalized spin angular momentum

operator

Ŝ = Ŝ− 〈0|Ŝ|0〉 , (9.179)

leading to the normal ordered result

Ŝ =
∑

λ=±1

∫
d3k λh̄

k

k
â†k,λâk,λ . (9.180)

We observe that the decompositions of the second quantized expressions for the energy (9.161),

the momentum (9.170), and the spin angular momentum (9.180) of the electromagnetic field

turn out to be time independent and, thus, represent conserved quantities. Together with the

commutator relations (9.150), (9.151), and (9.154) we furthermore conclude that the Fourier

operators âk,λ and â†k,λ represent the annihilation and creation operators of photons with the

energy h̄ωk, the momentum h̄k, and the spin angular momentum λh̄k/k, where the latter

amounts to the helicity λh̄.
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9.16 Definition of Maxwell Propagator

In close analogy to the Klein-Gordon propagator (8.122) we now define also the Maxwell prop-

agator as the vacuum expectation value of the time-ordered product of two field operators

Âµ(x, t) and Âν(x′, t′):

Dµν(x, t; x′, t′) =
〈

0
∣∣∣T̂
(
Âµ(x, t)Âν(x′, t′)

)∣∣∣ 0
〉
. (9.181)

Taking into account the definition of the time ordering operator (8.123) the Maxwell propagator

reads explicitly

Dµν(x, t; x′, t′) = Θ(t− t′)〈0|Âµ(x, t)Âν(x′, t′)|0〉+ Θ(t′ − t)〈0|Âν(x′, t′)Âµ(x, t)|0〉 . (9.182)

Due to the radiation gauge (9.13) and (9.58) the zeroth component of the field operator Âµ(x, t)

vanishes, so only the spatial components of the Maxwell propagator can be non-zero:

Dµν(x, t; x′, t′) = 0 if either µ = 0 or ν = 0 . (9.183)

In order to determine the equation of motion for the spatial components of the Maxwell prop-

agator we evaluate initially their first temporal partial derivative. To this end we take into

account (8.124) as well as (9.74) and get from (9.182)

∂Djk(x, t; x′, t′)

∂t
= Θ(t− t′)

〈
0

∣∣∣∣∣
∂Âj(x, t)

∂t
Âk(x

′, t′)

∣∣∣∣∣ 0
〉

+Θ(t′ − t)
〈

0

∣∣∣∣∣Âk(x
′, t′)

∂Âj(x, t)

∂t

∣∣∣∣∣ 0
〉
. (9.184)

A subsequent time derivative then yields by applying (8.124), (9.88), (9.93), and (9.99)

∂2Djk(x, t; x′, t′)

∂t2
=
−ih̄
ε0

δ(t− t′) δTjk(x− x′)

+c2∆
[
Θ(t− t′) 〈0|Âj(x, t)Âk(x′, t′)|0〉+ Θ(t′ − t) 〈0|Âk(x′, t′)Âj(x, t)|0〉

]
. (9.185)

From (9.182) and (9.185) we then obtain the result that the Maxwell propagator represents the

Green function of the wave equation

(
1

c2

∂2

∂t2
−∆

)
Djk(x, t; x′, t′) = −ih̄µ0 δ

T
jk(x− x′)δ(t− t′) . (9.186)

We remark that not the delta function but the transversal delta function appears at the right-

hand side of the inhomogeneous wave equation (9.186) due to the chosen Coulomb gauge.

Therefore, one calls Djk(x, t; x′, t′) more specifically to be the transveral Maxwell propagator.
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9.17 Calculation of Maxwell Propagator

In order to further evaluate the spatial components of the Maxwell propagator (9.182), we insert

the plane wave decomposition (9.155) for the field operator Â(x, t) and use the commutation

relation (9.154):

Djk(x, t; x′, t′) =
∑

λ=±1

∫
d3k

h̄

2(2π)3ε0ωk

[
Θ(t− t′)εj(k, λ)εk(k, λ)∗ ei[k(x−x′)−ωk(t−t′)]

+Θ(t′ − t)εk(k, λ)εj(k, λ)∗ e−i[k(x−x′)−ωk(t−t′)]
]
. (9.187)

Performing in the second term the substitution λ→ −λ, this reduces due to (9.145) to

Djk(x, t; x′, t′) =

∫
d3k

h̄

2(2π)3ε0ωk

P jk(k)
[
Θ(t− t′)ei[k(x−x′)−ωk(t−t′)]

+Θ(t′ − t)e−i[k(x−x′)−ωk(t−t′)]
]
. (9.188)

Here we have introduced the polarization sum

P jk(k) =
∑

λ=±1

εj(k, λ)εk(k, λ)∗ , (9.189)

which is symmetric with respect to the wave vector according to (9.145)

P jk(−k) = P jk(k) . (9.190)

The latter symmetry property allows to simplify (9.188) further by performing the substitution

k→ −k in the second term, yielding

Djk(x, t; x′, t′) =

∫
d3k

h̄P jk(k)

2(2π)3ε0ωk

eik(x−x′)
[
Θ(t− t′)e−iωk(t−t′) + Θ(t′ − t)eiωk(t−t′)

]
. (9.191)

Now we evaluate the polarization sum (9.189) explicitly by taking into account the polar co-

ordinate representations for both the wave vector in (9.128) and the polarization vectors in

(9.135). This yields

(
P jk(k)

)
=




1− k2
x/k

2 −kxky/k2 −kxkz/k2

−kxky/k2 1− k2
y/k

2 −kykz/k2

−kxkz/k2 kykz/k
2 1− k2

z/k
2


 , (9.192)

which is concisely summarized by

P jk(k) = δjk −
kjkk
|k|2 . (9.193)

With this we read off the transversality property of the polarization sum

kjP
jk(k) = 0 , (9.194)
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which implies the corresponding transversality property of the Maxwell propagator (9.191)

∂jD
jk(x, t; x′, t′) = 0 . (9.195)

Due to this transversality property, which originally stems from having chosen the Coulomb

gauge, the transversal Maxwell propagator (9.191) is not Lorentz invariant. Therefore, we aim

now for decomposing the transversal Maxwell propagator into a Lorentz invariant and a Lorentz

non-invariant contribution.

9.18 Four-Dimensional Fourier Representation

To this end we rewrite at first the three-dimensional Fourier representation of the Maxwell

propagator in (9.191) in terms of a four-dimensional Fourier representation by using an integral

identity, which is analogous to one obtained in (8.162) and (8.166):

lim
η↓0

∫ ∞

−∞

dω

2π

e−iω(t−t′)

ω2 − ω2
k + iη

=
−i
2ωk

[
Θ(t− t′)e−iωk(t−t′) + Θ(t′ − t)eiωk(t−t′)

]
. (9.196)

With this we obtain

Djk(x, t; x′, t′) = lim
η↓0

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π

ih̄

ε0
P jk(k)

ei[k(x−x′)−ω(t−t′)]

ω2 − ω2
k + iη

. (9.197)

Note that the four-dimensional Fourier representation of the Maxwell propagator (9.197) solves

evidently the equation of motion (9.186) by taking into account (9.5), (9.87), and (9.193).

Introducing the contravariant four-wave vector

(
kλ
)

=
(
k0,k

)
= (ω/c,k) (9.198)

and edging the spatial components of the Maxwell propagator with zeros, we deduce from

(9.197) by taking into account the dispersion (9.102)

Dµν(xλ;x′λ) = lim
η↓0

∫
d4k

(2π)4

ih̄

cε0

e−ikλ(xλ−x′λ)

kλkλ + iη
P µν(kλ) , (9.199)

where the polarization sum does not explicitly depend on k0:

P µν(kλ) = −gµν +

(
1 0

0 −kjkk/k2

)µν

. (9.200)

This polarization sum projects due to the transversality property (9.194) into the two-dimensional

subspace perpendicular to (0,k). But this projection is not covariant as the zeroth component

of the four-vector potential vanishes due to the radiation gauge (9.13) and (9.58). In order to

investigate the non-covariance of the polarization sum and, thus, of the transversal Maxwell

propagator, in more detail we introduce the time-like vector

(ξλ) =

(
1

0

)
(9.201)
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and a space-like vector perpendicular to it

(k̄λ) =

(
0

k/|k|

)
. (9.202)

An explicit calculation then yields the following decomposition:

k̄λ =
kλ − (kξ)ξλ√

(kξ)2 − k2
. (9.203)

From (9.200)–(9.203) we then obtain for the polarization sum

P µν(kλ) = −gµν − k2 ξµξν

(kξ)2 − k2
− kµkν − (kξ)(kµξν + kνξµ)

(kξ)2 − k2
. (9.204)

All terms, which contain the time-like vector ξ, are not covariant. Inserting the polarization

sum (9.204) into (9.199) the transversal Maxwell propagator decomposes into three terms:

Dµν(x;x′) = Dµν
F (x;x′)−Dµν

C (x;x′)−Dµν
R (x;x′) . (9.205)

The first term is the covariant Maxwell propagator of Feynman

Dµν
F (x;x′) = lim

η↓0

∫
d4k

(2π)4

h̄

cε0

igµν

k2 + iη
e−ik(x−x′) , (9.206)

which also follows from the Gupta-Bleuler quantization of the electromagnetic field. Later on,

when we discuss the perturbative calculation of quantum electrodynamic processes, it turns out

that the Maxwell propagator in Feynman diagrams can be identified without loss of generality

with (9.206). The other two non-covariant terms in the transversal Maxwell propagator (9.205)

turn out to not contribute to any physical result. The second term reads

Dµν
C (x, t; x′, t′) = lim

η↓0

∫
d4k

(2π)4

ih̄

cε0

k2ξµξν

(kξ)2 − k2

e−ik(x−x′)

k2 + iη
. (9.207)

Note that (9.207) reduces due to (9.6), (9.198), and (9.201) to

Dµν
C (x, t; x′, t′) =

ih̄µ0

4π
δµ0δν0 δ(t− t′)

|x− x′| . (9.208)

With this we conclude that this contribution of the transversal Maxwell propagator is instan-

taneous and couples exclusively to the zeroth component of the four-current density, i.e. the

charge density. And the third residual term in (9.205) reads

Dµν
R (x;x′) = lim

η↓0

∫
d4k

(2π)4

ih̄

cε0

kµkν − (kξ)(kµξν + ξµkν)

(kξ)2 − k2

e−ikx

k2 + iη
. (9.209)

It contains contributions, which are proportional to either kµ or kν . As the electromagnetic

field couples to four-current densities, which fulfill the continuity equation (9.33), we have in

Fourier space

jµ(k)kµ = 0 . (9.210)
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Therefore the integral over Dµν
R (x;x′) contracted with conserved currents j

(1)
µ (x) and j

(2)
ν (x′)

produces a vanishing result:

∫
d4x

∫
d4x′ j(1)

µ (x)Dµν
R (xλ;x′λ)j(2)

ν (x′) =

∫
d4k

(2π)4
jµ(−k)Dµν

R (k)jν(k) = 0 . (9.211)

Later on we demonstrate explicitly by discussing the concrete example of a scattering process

that both contributions (9.207) and (9.209) of the transversal Maxwell propagator do, indeed,

not contribute to any observable quantity like the cross section.



Chapter 10

Dirac Field

In particle physics, the Dirac equation is a relativistic wave equation, which was derived by

the British physicist Paul Dirac in 1928 by unifying the principles of both the quantum theory

and the theory of special relativity. It describes massive spin-1/2 particles such as electrons

and quarks. Historically, it was validated by accounting for the fine details of the hydrogen

spectrum in a rigorous way. The equation also implies the existence of a new form of matter,

the so-called antimatter, previously unsuspected as well as unobserved. In 1932 the positron as

the antiparticle of the electron was the first antimatter to be detected in the cosmic radiation

by Carl David Anderson.

The wave function in the Dirac theory consists of four complex fields, which are called a spinor

as it transforms differently with respect to Lorentz transformations than a vector. For instance,

one needs a rotation around a fixed axis by 720◦ in order to recover the original spinor instead

of 360◦ for a vector. In the non-relativistic limit one obtains the Pauli two-component wave

function, whereas the Schrödinger equation deals only with a wave function of one complex

field. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation,

which was supposed to describe massless neutrinos for decades.

In the following we derive at first the Dirac theory group theoretically by systematically work-

ing out the spinor representation of the Lorentz group. Although this derivation does not

correspond to the historic one of Paul Dirac and is technically more involved, it has several

advantages. On the one hand it emphasizes the Lorentz invariance as one of the fundamental

building blocks of any quantum field theory and explains as a side effect why a four-component

Dirac spinor is needed to describe a massive spin 1/2 particle. On the other hand it enables

to construct plane wave solutions by boosting trivial plane wave solutions in the rest frame to

a uniformly moving reference frame as an elegant alternative to plainly solving the underlying

Dirac equation.

Then we show the invariance of the Dirac theory with respect to discrete symmetries like

charge conjugation, parity transformation, and time inversion. With this we prove exemplarily

the seminal CPT theorem, which represents a fundamental property of physical laws. It states

153
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Figure 10.1: Set-up of the Stern-Gerlach experiment: a beam of silver or hydrogen atoms is

split into two parts due to an inhomogeneous magnetic field.

that a mirror universe, where also all matter is replaced by antimatter, would evolve under

exactly the same physical laws. As a consequence the masses and life-times of particles and

antiparticles coincide.

Afterwards, we discuss how to quantize the Dirac theory within the realm of the canonical

field quantization. With this we are able to deal with many massive spin 1/2 particles, whose

description naturally also contains their respective antiparticles. And, finally, we determine the

Dirac propagator, which describes the free motion of massive spin 1/2 particles and becomes

important for a perturbative treatment of the light-matter interaction in terms of Feynman

diagrams.

10.1 Pauli Matrices

The Stern-Gerlach experiment from 1922 involves sending a beam of silver or hydrogen atoms

through an inhomogeneous magnetic field and observing their deflection. As each silver or

hydrogen atom is in the ground state, its valence electron is in the 5s1 or the 1s1 state. Although

the atoms should then not have any angular momentum, the beam is split into two parts, see

Fig. 10.1. The reason for this is the spin angular momentum s = 1/2 of the valence electron,

which leads to a residual magnetic moment of the atom and, thus, to a deflection in the applied

inhomogeneous magnetic field. In order to mathematically describe the multiplicity of 2s+1 = 2

spin degrees of freedom, Wolfgang Pauli introduced three complex 2× 2 matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (10.1)

It is straight-forward to prove that the three Pauli matrices fulfill the following anti-commutators:

[
σk, σl

]
+

= 2 δkl I , (10.2)

where I denotes the 2× 2 unit matrix:

I =

(
1 0

0 1

)
. (10.3)
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Here (10.2) means that the Pauli matrices represent a Clifford algebra with N = 3. Namely, a

Clifford algebra with N generators ξ1, . . . , ξN is defined by the anti-commutators

[
ξk, ξl

]
+

= 2 δkl . (10.4)

But one can also convince oneself that the Pauli matrices additionally obey the commutators

[
σk, σl

]
− = 2i εklm σ

m . (10.5)

Here (10.5) means that the Pauli matrices also represent a Lie algebra with N = 3 generators.

Namely, a Lie algebra with N generators ξ1, . . . , ξN is defined by the commutators

[
ξk, ξl

]
− = i Cklm ξ

m , (10.6)

where Cklm denote the structure constants of the Lie algebra. By adding (10.2) and (10.5) we

result in the important calculation rule

σkσl = δklI + iεklm σ
m , (10.7)

which allows to simplify products of Pauli matrices.

10.2 Spinor Representation of Lorentz Algebra

With the help of the Pauli matrices one can construct two different representations of the

Lorentz algebra. At first, we remark that the matrices

Lk =
1

2
σk (10.8)

obey the commutator relations (6.57) of the generators of rotations. Furthermore, one can

identify the generators of boosts via

Mk = ± i

2
σk , (10.9)

where both signs are possible. In fact with the identifications (10.8), (10.9) also both commu-

tator relations (6.58), (6.59) are valid. With this we define the following two representations of

the Lorentz algebra:

D(1/2,0) : (Lk,Mk) =

(
1

2
σk,− i

2
σk
)
, (10.10)

D(0,1/2) : (Lk,Mk) =

(
1

2
σk,

i

2
σk
)
. (10.11)

A general representation of the Lorentz algebra is characterized by D(s1,s2), where both quantum

numbers s1, s2 can have all possible half-integer or integer values 0, 1/2, 1, 3/2, 2, . . .. It turns

out that the space corresponding to the representation D(s1,s2) contains particles, whose spin
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lies in the interval [|s1− s2|, s1 + s2]. In particular, particles with a single fixed spin s therefore

belong to the representation D(s,0) or D(0,s). The trivial representation D(0,0) for a spinless

particle assigns to each generator of the Lorentz algebra the number 1.

According to the Lie theorem of Section 6.5 the evaluation of the matrix-valued exponential

function

D(Λ) = e−iLϕ−iMξ (10.12)

yields a representation of the Lorentz group, which corresponds to the representation of the

Lorentz algebra. In both cases (10.10) and (10.11) we obtain from (10.12):

D(1/2,0)(Λ) = exp

(
− i

2
σϕ− 1

2
σξ

)
, (10.13)

D(0,1/2)(Λ) = exp

(
− i

2
σϕ+

1

2
σξ

)
. (10.14)

In the following we evaluate the respective matrix-valued exponential functions (10.13), (10.14)

both for rotations ξ = 0 and for boosts ϕ = 0.

10.3 Spinor Representation of Rotations

According to (10.13) and (10.14) the spinor representation of rotations is given in both cases

by

D (R(ϕ)) = exp

(
− i

2
σϕ

)
. (10.15)

Due to the hermiticity of the Pauli matrices (10.1)

(
σk
)†

= σk (10.16)

the representation matrices of the rotations are unitary:

D (R(ϕ))† = D (R(ϕ))−1 . (10.17)

Considering the Taylor series of the exponential function in (10.15) we evaluate separately the

even and the odd terms:

D (R(ϕ)) =
∞∑

n=0

(−1)n

(2n)!

(σϕ)2n

22n
− i

∞∑

n=0

(−1)n

(2n+ 1)!

(σϕ)2n+1

22n+1
. (10.18)

Applying the calculational rule (10.7) we obtain

(σϕ)2 = ϕkϕlσ
kσl = ϕkϕl (δkl I + iεklm σ

m) = ϕ2 I , (10.19)
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so that (10.18) leads to

D (R(ϕ)) =

[
∞∑

n=0

(−1)n

(2n)!

( |ϕ|
2

)2n
]
I − i

[
∞∑

n=0

(−1)n

(2n+ 1)!

( |ϕ|
2

)2n+1
]
σϕ

|ϕ| . (10.20)

Taking into account the Taylor series of the trigonometric functions, one finally yields the spinor

representation matrices for rotations

D (R(ϕ)) = I cos

( |ϕ|
2

)
− i σϕ|ϕ| sin

( |ϕ|
2

)
, (10.21)

which are, indeed, unitary (10.17) due to (10.16). Note that both representations D(1/2,0) and

D(0,1/2) yield the same representation matrices for rotations. Furthermore, we observe that

one needs in (10.21) a rotation of 4π instead of 2π in order to recover the identity. This is a

consequence of the underlying spin 1/2 and represents a characteristic property for a spinor

representation.

10.4 Spinor Representation of Boosts

According to (10.13) and (10.14) the representation of the boosts reads

D (B(ξ)) = exp

(
∓ 1

2
σξ

)
. (10.22)

Due to the hermiticity of the Pauli matrices in (10.16) also the representation matrices of the

boosts are hermitian:

D (B(ξ))† = D (B(ξ)) . (10.23)

The Taylor series of the matrix exponential function (10.22) is evaluated separately for even

and odd terms:

D (B(ξ)) =
∞∑

n=0

1

(2n)!

(σξ)2n

22n
∓
∞∑

n=0

1

(2n+ 1)!

(σξ)2n+1

22n+1
. (10.24)

With the help of (10.19) this changes to

D (B(ξ)) =

[
∞∑

n=0

1

(2n)!

( |ξ|
2

)2n
]
I ∓

[
∞∑

n=0

1

(2n+ 1)!

( |ξ|
2

)2n+1
]
σξ

|ξ| . (10.25)

Taking into account the Taylor series of hyperbolic functions, one gets from (10.25) for the

representation matrices (10.22) of the boosts

D (B(ξ)) = exp

(
∓1

2
σξ

)
= I cosh

( |ξ|
2

)
∓ σξ|ξ| sinh

( |ξ|
2

)
. (10.26)



158 CHAPTER 10. DIRAC FIELD

As a reminder we note again that the upper and the lower sign stands for the representation

D(1/2,0) and D(0,1/2), respectively. Furthermore, we remark that the representation matrices

(10.26) are, indeed, hermitian (10.23) due to (10.16).

In order to simplify (10.26) further we consider now a particle of mass M in the rest frame, so

that its contravariant four-momentum vector is given by

(pµR) = (Mc,0) . (10.27)

Performing an active boost into the inertial frame the contravariant four-momentum vector

(10.27) changes to

pµ = Bµ
ν(ξ)pνR , (10.28)

where the respective matrix elements of the boost Bµ
ν(ξ) were already determined in Section

6.7 in terms of the the rapidity ξ. Using (6.79) we thus obtain

(pµ) =
(
p0,p

)
=

(
Mc cosh |ξ|, ξ|ξ|Mc sinh |ξ|

)
. (10.29)

Combining (10.29) with the hyperbolic Pythagoras

cosh2 α− sinh2 α = 1 (10.30)

and the hyperbolic addition theorems

cosh (α + β) = coshα cosh β + sinh (α) sinh β , (10.31)

sinh (α + β) = sinh (α) cosh β + coshα sinh β , (10.32)

the following relations are derived:

cosh

( |ξ|
2

)
=

√
cosh |ξ|+ 1

2
=

√
p0 +Mc

2Mc
, (10.33)

sinh

( |ξ|
2

)
=

√
cosh |ξ| − 1

2
=

√
p0 −Mc

2Mc
, (10.34)

sinh (|ξ|) = 2 sinh

( |ξ|
2

)
cosh

( |ξ|
2

)
=

√
(p0 −Mc)(p0 +Mc)

Mc
. (10.35)

Using (10.33)–(10.35), the representation matrix (10.26) of the boost can be expressed by the

components of the contravariant four-momentum vector (10.29)

D (B(ξ)) = exp

(
∓1

2
σξ

)
= I

√
p0 +Mc

2Mc
∓ σp

Mc

√
p0 −Mc

2Mc

Mc√
(p0 −Mc)(p0 +Mc)

, (10.36)

yielding finally

D (B(ξ)) =
(p0 +Mc)I ∓ σp√

2Mc(p0 +Mc)
. (10.37)
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In the following it turns out to be technically advantageous to extend the three Pauli matrices

σk by the unit matrix

σ0 = I =

(
1 0

0 1

)
(10.38)

to a four-vector of Pauli matrices:

(σµ) = (σ0, σk) . (10.39)

Then (10.37) implies that the boost of the representation D(1/2,0) can be concisely written as

D(1/2,0) (B(ξ)) = exp

(
−1

2
σξ

)
=

pσ +Mc√
2Mc(p0 +Mc)

, (10.40)

where the scalar product between the four-vector of Pauli matrices (10.39) and the four-

momentum vector is used:

pσ = pµσ
µ = p0σ0 − pσ . (10.41)

Furthermore, we introduce the spatially inverted four-vector

x̃ = (x̃0, x̃k) = (x0,−xk) (10.42)

and, correspondingly, also the spatially inverted four-vector of Pauli matrices

σ̃ = (σ̃0, σ̃k) = (σ0,−σk) . (10.43)

With this we read off from (10.37) that the boost of the representation D(0,1/2 is given by

D(0,1/2) (B(ξ)) = exp

(
+

1

2
σξ

)
=

pσ̃ +Mc√
2Mc(p0 +Mc)

(10.44)

due to the scalar product

pσ̃ = pµσ̃
µ = p0σ0 + pσ . (10.45)

For various later calculations it turns out to be also useful to express the boost representations

(10.40) and (10.44) as the square root of the same expression with a doubled rapidity. Indeed,

taking into account (10.26) and (10.29) we obtain

exp

(
∓1

2
σξ

)
=
√

exp (∓σξ) =

√
cosh |ξ| ∓ σξ|ξ| sinh |ξ| =

√
p0

Mc
∓ pσ

Mc
. (10.46)

Thus, together (10.41) and (10.45) we conclude

exp

(
−1

2
σξ

)
=

√
pσ

Mc
, (10.47)

exp

(
+

1

2
σξ

)
=

√
pσ̃

Mc
. (10.48)

Whenever we will use later on the spinor representations for boosts (10.47) and (10.48) we have

to keep in mind that they present efficient shortcut notations for the more involved concrete

expressions (10.40) and (10.44).
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10.5 Lorentz Invariant Combinations of Weyl Spinors

So far we have constructed with D(1/2,0) and D(0,1/2) the smallest non-trivial representations

of the Lorentz group. Now we define the corresponding Weyl spinors ξα(x) and ηα̇(x) of

type (1/2, 0) and (0, 1/2) upon which the representation matrices of the Lorentz group act.

The different transformation properties of the Weyl spinors ξα(x) and ηα̇(x) under a Lorentz

transformation are expressed by using lower non-dotted and upper dotted indices, respectively:

ξα(x) −→ ξ′α(x′) = D(1/2,0)(Λ)α
β ξβ(x) , (10.49)

ηα̇(x) −→ η′α̇(x′) = D(0,1/2)(Λ)α̇β̇ η
β̇(x) . (10.50)

In the following we aim for constructing a Lorentz invariant action on the basis of using these

Weyl spinors. To this end we restrict ourselves to consider quadratic terms in the Weyl spinors

and their first partial derivatives.

At first, we only deal with quadratic terms in the Weyl spinors without any first partial deriva-

tive, which are needed to describe massive particles. In this case there are in total four different

combinations of two Weyl spinors

ξ†ξ , η†η , η†ξ , ξ†η , (10.51)

which are converted by a Lorentz transformation Λ into

ξ†D(1/2,0)(Λ)†D(1/2,0)(Λ)ξ , η†D(0,1/2)(Λ)†D(0,1/2)(Λ)η ,

η†D(0,1/2)(Λ)†D(1/2,0)(Λ)ξ , ξ†D(1/2,0)(Λ)†D(0,1/2)(Λ)η , (10.52)

respectively. In case of a rotation Λ = R the representation matrices D(1/2,0)(R) and D(0,1/2)(R)

coincide according to (10.13) and (10.14). Furthermore, we conclude from the unitarity (10.17)

of these representation matrices that all four transformed combinations (10.52) are identical

to the original combinations (10.51). But in case of a boost Λ = B we read off from (10.13)

and (10.14) that the representation matrices D(1/2,0)(B) and D(0,1/2)(B) are just inverse with

respect to each other:

D(1/2,0) (B) = D(0,1/2) (B)−1 . (10.53)

In combination with the hermiticity (10.23) of these representation matrices it follows then

that only the last two of the transformed combinations (10.51) match with their corresponding

original combinations (10.51). In summary, we conclude that a Lorentz invariant action without

space-time derivatives is only possible by combining the two Weyl spinors ξ and η.

In order to describe a particle, which moves in space-time, the action must also contain first

partial derivatives of the Weyl spinors. To this end we consider at first spatial derivatives and

form all possible combinations of two Weyl spinors

ξ†σk∂kξ , η†σk∂kη , η†σk∂kξ , ξ†σk∂kη . (10.54)
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They are converted by a Lorentz transformation Λ into

ξ†D(1/2,0)(Λ)† σkD(1/2,0)(Λ) ∂′kξ , η†D(0,1/2)(Λ)† σkD(0,1/2)(Λ) ∂′kη ,

η†D(0,1/2)(Λ)† σkD1/2,0)(Λ) ∂′kξ , ξ†D1/2,0)(Λ)† σkD(0,1/2)(Λ) ∂′kη . (10.55)

In case of a rotation Λ = R, the representation matrices D(1/2,0)(R) and D(0,1/2)(R) are identical,

so that due to (10.55) only the expression

D(R)† σkD(R) (10.56)

has to be examined in detail. Using (10.21) we arrive at first at

D(R)† σkD(R) =

[
cos

( |ϕ|
2

)
+ i
σϕ

|ϕ| sin

( |ϕ|
2

)]
σk
[
cos

( |ϕ|
2

)
− iσϕ|ϕ| sin

( |ϕ|
2

)]

= cos2

( |ϕ|
2

)
σk + i sin

( |ϕ|
2

)
cos

( |ϕ|
2

)
ϕl
|ϕ|
[
σl, σk

]
− + sin2

( |ϕ|
2

)
ϕlϕm
|ϕ|2 σlσkσm . (10.57)

In the last term the product of three Pauli matrices appears, which can be simplified by

successively applying the calculation rule (10.7) and by taking into account the contraction

rule of the three-dimensional Levi-Cività symbol (6.56):

σlσkσm = (δlk + iεlknσ
n)σm = δlkσ

m + iεlknσ
nσm

= δlkσ
m + iεlkn(δnm + iεnmpσ

p) = δlkσ
m + iεlkm − (δmlδkp − δlpδkm)σp . (10.58)

With this we end up with the result

σlσkσm = iεlkm + δlkσ
m + δkmσ

l − δlmσk . (10.59)

Inserting (10.5) and (10.59) in (10.57) and using trigonometric relations then yields

D(R)†σkD(R) = σk cos |ϕ|+ εklm
ϕl
|ϕ| σ

m sin |ϕ|+ ϕkσϕ

|ϕ|2 (1− cos |ϕ|) . (10.60)

This result can be concisely summarized as

D(R)†σkD(R) = Rkl σ
l , (10.61)

where Rkl coincides with the representation matrix of rotations in three-dimensional space as

already determined in (6.69). As the partial derivatives in (10.55) also transform like a vector

∂k −→ ∂′k = Rkl ∂l (10.62)

and the representation matrix R is orthonormal due to (6.72), all combinations (10.55) turn

out to be invariant under rotations:

D(R)† σkD(R) ∂′k = Rkl σ
lRkm ∂m = δlm σ

l ∂m = σk ∂k . (10.63)

Now the question arises, how the combinations of two Weyl spinors (10.54) can be extended to

relativistic invariant combinations. To this end we remember that the Pauli matrices σk can be
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extended to four-vectors in two different ways, namely in the form of the four-vector of Pauli

matrices σµ in (10.39) and in the form of the spatially inverted four-vector of Pauli matrices σ̃µ

in (10.43). Therefore we consider now the following eight combinations of two Weyl spinors:

ξ†σµ∂µξ , η†σµ∂µη , η†σµ∂µξ , ξ†σµ∂µη ,

ξ†σ̃µ∂µξ , η†σ̃µ∂µη , η†σ̃µ∂µξ , ξ†σ̃µ∂µη . (10.64)

Here the additional term σ0∂0 with the time derivative appears, which is trivially invariant

under rotations

D(R)† σ0D(R)∂′0 = D(R)†D(R) ∂′0 = ∂0 = σ0∂0 . (10.65)

Thus it does not destroy the above discussed rotational invariance of the spatial derivative

terms.

With this it remains to investigate, which of the eight combinations (10.64) are invariant under

boost transformations. To this end expressions of the form

D(B)† σµD(B) , D(B)† σ̃µD(B) (10.66)

appear, where both representations (10.22) can occur in the left and the right factor, respec-

tively. Let us first consider the case µ = 0. In the case that the two representations in the left

and right factor of (10.66) are different, then (10.66) is identical to σ0 due to (10.23), (10.38),

and (10.53). As this does not correspond to the transformation behavior, which is characteristic

for boosts, we conclude that the 3rd, the 4th, the 7th, and the 8th combination in (10.64) is

not invariant under boosts. In the case that both representations in the left and right factor of

(10.66) are identical, then we obtain on the one hand for µ = 0 together with (10.23), (10.26),

and (10.38):

D(B)†σ0D(B) = D(B)2 = cosh |ξ| ∓ σξ|ξ| sinh |ξ| . (10.67)

On the other hand we get for µ = k due to (10.23) and (10.26)

D(B)†σkD(B) =

[
cosh

( |ξ|
2

)
∓ σξ|ξ| sinh

( |ξ|
2

)]
σk
[
cosh

( |ξ|
2

)
∓ σξ|ξ| sinh

( |ξ|
2

)]

= cosh2

( |ξ|
2

)
σk ∓ sinh

( |ξ|
2

)
cosh

( |ξ|
2

)
ξl
|ξ|
[
σl, σk

]
+

+ sinh2

( |ξ|
2

)
ξlξm
|ξ|2 σ

lσkσm . (10.68)

Inserting (10.2) and (10.59) in (10.68) and using hyperbolic relations then yields

D(B)† (∓σk)D(B) = ∓σk +
ξk
|ξ| sinh |ξ|+ ξk

|ξ|
(∓σ)ξ

|ξ| (cosh |ξ| − 1) . (10.69)

The two results (10.67) and (10.69) can be concisely summarized by

D(1/2,0)(B)† σ̃µD(1/2,0)(B) = Bµ
ν σ̃

ν , (10.70)

D(0,1/2)(B)† σµD(0,1/2)(B) = Bµ
ν σ

ν , (10.71)
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where Bµ
ν coincides with the representation matrix of boost in the four-dimensional space-

time as already determined in (6.79). As the partial derivatives in (10.64) also transform like

a covariant four-vector

∂µ −→ ∂′µ = Bµ
ν ∂ν , (10.72)

and the representation matrix B fulfills the property (6.90), we can prove due to (10.70) and

(10.71) that the 2nd and the 5th term in (10.64) is invariant:

ξ†σ̃µ∂µξ → ξ†D(1/2,0)(B)†σ̃µD(1/2,0)(B)∂′µξ = ξ†Bµ
ν σ̃

νBµ
κ∂κξ = ξ†δν

κσ̃ν∂κξ = ξ†σ̃ν∂νξ, (10.73)

η†σµ∂µη → η†D(0,1/2)(B)†σµD(0,1/2)(B)∂′µη = η†Bµ
νσ

νBµ
κ∂κη = η†δν

κσν∂κη = η†σν∂νη.(10.74)

For the two remaining combinations η†σ̃µ∂µη and ξ†σµ∂µξ, i.e. the 1st and the 6th term in

(10.64), a boost invariance can not be proved, because both σ̃µ and σµ transform due to (10.70)

and (10.71)) as a four-vector under the representations D(1/2,0)(B) and D(0,1/2)(B), respectively.

10.6 Dirac Action

From the considerations of the previous section follows the most general Lorentz-invariant

action for describing a massive spin 1/2 particle

A = A[ξ(•), ξ†(•); η(•), η†(•)] , (10.75)

which contains only quadratic terms in the Weyl spinors and their first partial derivatives:

A =
1

c

∫
d4xL

(
ξ(x), ∂µξ(x); ξ†(x), ∂µξ

†(x); η(x), ∂µη(x); η†(x) , ∂µη
†(x)

)
. (10.76)

Here the Lagrange density

L = Aiξ†σ̃µ∂µξ +Biη†σµ∂µη + Cξ†η +Dη†ξ , (10.77)

contains constants A, B, C, D, which are not yet defined. Below in Section 10.8 we show that

the additional demand for an invariance of the Lagrange density under parity transformation

leads to the fact, that both Weyl spinors ξ and η have to appear on equal footing. This reduces

(10.77) to

L = A
(
iξ†σ̃µ∂µξ + iη†σµ∂µη −mξ†η −mη†ξ

)
. (10.78)

The still undetermined parameters A, m define the physical dimension of the action and are

only fixed at a later stage by considering the non-relativistic limit. Due to the non-zero rest

mass M of the particle, the action (10.78) necessarily contains both Weyl spinors ξ and η. Only

in the case that the rest mass of the particle vanishes, a Lorentz-invariant action can be formed

with just one of the two Weyl spinors, as is discussed below in Section 10.9.
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Due to the action (10.78) the Weyl spinors ξ and η satisfy the equations of motion

δA
δξ†(x)

=
∂L

∂ξ†(x)
− ∂µ

∂L
∂ (∂µξ†(x))

= A
{
iσ̃µ∂µξ(x)−mη(x)

}
= 0 , (10.79)

δA
δη†(x)

=
∂L

∂η†(x)
− ∂µ

∂L
∂ (∂µη†(x))

= A
{
iσµ∂µη(x)−mξ(x)

}
= 0 . (10.80)

In order to combine these two equations of motion one needs the calculation rules

σµσ̃ν + σν σ̃µ = 2gµνI, (10.81)

σ̃µσν + σ̃νσµ = 2gµνI , (10.82)

which can be explicitly shown by specializing µ, ν to spatial and temporal indices. To this

end one has to take into account the Clifford algebra property (10.2), the definitions (10.38),

(10.39), and (10.43), as well as the components of the Minkowski metric in (6.3):

σ0σ̃0 + σ0σ̃0 = 2σ0 = 2I = 2g00I , (10.83)

σ0σ̃k + σkσ̃0 = −σ0σk + σkσ0 = 0 = 2g0kI , (10.84)

σkσ̃l + σlσ̃k = −σkσl − σlσk = −2δklI = 2gklI . (10.85)

Multiplying (10.79) with iσν∂ν and using (10.80) or, vice versa, multiplying (10.80) with iσ̃ν∂ν

and using (10.79), we obtain due to (10.81) and (10.82)

−σν σ̃ν∂ν∂µξ(x)−miσν∂νη(x) = −gµν∂µ∂νξ(x)−m2ξ(x) = 0 , (10.86)

−σ̃νσν∂ν∂µη(x)−miσ̃ν∂νξ(x) = −gµν∂µ∂νη(x)−m2η(x) = 0 . (10.87)

Thus, both Weyl spinors ξ and η satisfy the Klein-Gordon equation of a particle (8.19), provided

that the parameter m is identified according to

m =
Mc

h̄
, (10.88)

i.e. being inversely proportional to the Compton wave length (8.21).

Since the description of a massive spin 1/2 particle necessarily involves both Weyl spinors ξ

and η, it is suggestive to combine them to a Dirac spinor:

ψ(x) =

(
ξ(x)

η(x)

)
. (10.89)

In view of that we rewrite the Lagrange density (10.78)

L = A

{
(ξ†, η†)

(
σ̃µ O

O σµ

)
i∂µ

(
ξ

η

)
− (ξ†, η†)

(
O mI

mI O

)(
ξ

η

)}
, (10.90)

where we used the 2× 2 unit matrix (10.3) and introduced in addition the 2× 2 zero matrix

O =

(
0 0

0 0

)
. (10.91)
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Furthermore, we define the Dirac adjoint of the Dirac spinor (10.89) according to

ψ(x) =
(
η†(x), ξ†(x)

)
= ψ†(x)

(
O I

I O

)
↔ ψ†(x) = (ξ†(x), η†(x)) = ψ(x)

(
O I

I O

)
.(10.92)

With this the Lagrange density (10.90) changes into

L = A

{
ψ

(
O I

I O

)(
σ̃µ O

O σµ

)
i∂µψ − ψ

(
O I

I O

)(
O mI

mI O

)
ψ

}
, (10.93)

which finally reduces to

L = Aψ (iγµ∂µ −m)ψ . (10.94)

Here we have introduced the Dirac matrices

γµ =

(
O σµ

σ̃µ O

)
, (10.95)

which turn out to obey the property of a Clifford algebra, see Eq. (10.4), due to the calculational

rules (10.81) and (10.82):

[γµ, γν ]+ = γµγν + γνγµ =

(
O σµ

σ̃µ O

)(
O σν

σ̃ν O

)
+

(
O σν

σ̃ν O

)(
O σµ

σ̃µ O

)

=

(
σµσ̃ν + σν σ̃µ O

O σ̃νσµ + σ̃νσµ

)
= 2gµν

(
I O

O I

)
. (10.96)

The action (10.75), (10.76) can, thus, be interpreted as a functional of the Dirac spinor ψ(x)

and the Dirac adjoint Dirac spinor ψ(x):

A[ψ(•);ψ(•)] =
1

c

∫
d4xL

(
ψ(x), ∂µψ(x);ψ(x); ∂µψ(x)

)
. (10.97)

The equation of motion of the Dirac spinor is thus given by

δA
δψ(x)

=
∂L

∂ψ(x)
− ∂µ

∂L
∂(∂µψ(x))

= A
{
iγµ∂µψ(x)−mψ(x)

}
= 0 . (10.98)

This reduces to

(
i/∂ −m

)
ψ(x) = 0 (10.99)

with introducing the Feynman dagger as another widespread shortcut notation

/∂ = γµ∂µ . (10.100)
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10.7 Spinor Representation of Lorentz Group

By construction the Dirac action (10.94), (10.97) is invariant under Lorentz transformations.

Nevertheless we now aim for proving this again from a different point of view by studying the

representation of the Lorentz group in the space of the Dirac spinors. To this end we deduce

from the representations of the Lorentz group in the space of the Weyl spinors in (10.49) and

(10.50)

ψ(x) =

(
ξ(x)

η(x)

)
−→ ψ′(x′) =

(
ξ′(x′)

η′(x′)

)
= D(Λ)ψ(x) . (10.101)

Here the representation matrices D(Λ) of the Lorentz group for the Dirac spinor are composed

of the respective representation matrices D(1/2,0)(Λ) and D(0,1/2)(Λ) for the Weyl spinors:

D(Λ) =

(
D(1/2,0)(Λ) O

O D(0,1/2)(Λ)

)
. (10.102)

Furthermore, we note that the relation (10.92) between the Dirac adjoint Dirac spinor ψ and

the adjoint Dirac spinor ψ† simplifies due to (10.38) and (10.95):

ψ(x) = ψ†(x)γ0 ⇐⇒ ψ†(x) = ψ(x)γ0 . (10.103)

Due to (10.101) and (10.103) the Lorentz transformation of the Dirac adjoint Dirac spinor reads

ψ
′
(x′) = ψ′†(x′)γ0 = ψ†(x)D(Λ)†γ0 = ψ(x)D(Λ) . (10.104)

Here we have introduced the Dirac adjoint representation matrices of the Lorentz group

D(Λ) = γ0D(Λ)†γ0 , (10.105)

for which we obtain due to (10.38), (10.95), and (10.102) the explicit result

D(Λ) =

(
D(0,1/2)(Λ)† O

O D(1/2,0)(Λ)†

)
. (10.106)

Thus, taking into account (10.13), (10.14), (10.16), (10.102), and (10.106) we conclude

D(Λ) = D(Λ)−1 . (10.107)

Furthermore, we note that we showed in Section 10.5

D(1/2,0)(Λ)† σ̃µD(1/2,0)(Λ) = Λµ
ν σ̃

µ , (10.108)

D(0,1/2)(Λ)† σµD(0,1/2)(Λ) = Λµ
νσ

µ (10.109)

for Λ = R and Λ = B in (10.63), (10.65) and (10.70), (10.71), respectively. But since every

Lorentz transformation can be understood as a successive execution of a boost and a rotation

Λ = BR , (10.110)
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the corresponding representation matrices factorize, i.e. we have

D(1/2,0)(Λ) = D(1/2,0)(B)D(1/2,0)(R) , D(0,1/2)(Λ) = D(0,1/2)(B)D(0,1/2)(R) . (10.111)

With this we can show that (10.108) and (10.109) are even valid for any Lorentz transformation.

At first we obtain for the representation D(1/2,0)

D(1/2,0)(Λ)† σ̃µD(1/2,0)(Λ) = D(1/2,0)(R)†D(1/2,0)(B)† σ̃µD(1/2,0)(B)D(1/2,0)(R)

= Bµ
ν D

(1/2,0)(R)† σ̃ν D(1/2,0)(R) = Bµ
ν R

ν
κ σ̃

κ = Λµ
ν σ̃

ν , (10.112)

and, correspondingly, we get for the representation D(0,1/2)

D(0,1/2)(Λ)† σµD(0,1/2)(Λ) = D(0,1/2)(R)†D(0,1/2)(B)† σµD(0,1/2)(B)D(0,1/2)(R)

= Bµ
ν D

(0,1/2)(R)† σν D(0,1/2)(R) = Bµ
ν R

ν
κ σ

κ = Λµ
ν σ

ν . (10.113)

Note that we have used (10.110) in the last step of both (10.112) and (10.113). The two

transformation laws (10.108) and (10.109) can now be combined into one for the Dirac matrices

(10.95). Taking into account (10.102) and (10.106) a direct multiplication of the involved 4× 4

matrices yields

D(Λ)γµD(Λ) =

(
D(0,1/2)(Λ)† O

O D(1/2,0)(Λ)†

)(
O σµ

σ̃µ O

)(
D(1/2,0)(Λ) O

O D(0,1/2)(Λ)

)

=

(
O D(0,1/2)(Λ)†σµD(0,1/2)(Λ)

D(1/2,0)(Λ)†σ̃µD(1/2,0)(Λ) O

)
= Λµ

ν

(
O σν

σ̃ν O

)
= Λµ

νγ
ν .(10.114)

After these preparations the invariance of the Dirac action can be shown as follows. At first

we obtain for the Lorentz transformation of the action (10.94), (10.97)

A′ = A

c

∫
d4x′ ψ

′
(x′)

(
iγµ∂′µ −m

)
ψ′(x′) , (10.115)

which reads due to (10.101), (10.104), and the property d4x′ = d4x of special Lorentz transfor-

mations:

A′ = A

c

∫
d4xψ(x)

[
iD(Λ)γµD(Λ)∂′µ −mD(Λ)D(Λ)

]
ψ(x) . (10.116)

Using (10.107) and (10.114) as well as taking into account that the partial derivatives in (10.116)

transform like a covariant four vector

∂µ −→ ∂′µ = Λµ
ν ∂ν , (10.117)

we get

A′ = A

c

∫
d4x ψ(x) (iΛµ

νΛµ
κγν∂κ −m)ψ(x) . (10.118)

From (6.28) we then conclude that the Lorentz transformed action (10.118) coincides with the

original action (10.94), (10.97).
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Let us further investigate the representation (10.102) of the Lorentz group in the space of the

Dirac spinors. To this end we use (10.13) as well as (10.14) and bring it to the following form:

D(Λ) = exp

[
−i
(
σk/2 O

O σk/2

)
ϕk − i

(
−iσk/2 O

O iσk/2

)
ξk

]
. (10.119)

Comparing this with a covariant formulation of the Lie theorem as in (6.61)–(6.64)

D(Λ) = exp

(
− i

2
ωµνS

µν

)
= exp

(
− i

2
εkijS

ijϕk − iS0kξk

)
, (10.120)

the representation matrices for the generators of the boosts are given by

D(Mk) = S0k =

(
−iσk/2 O

O iσk/2

)
, (10.121)

while the representation matrices for the generators of the rotations follow from

D(Lk) = Sk =
1

2
εkijS

ij =

(
σk/2 O

O σk/2

)
(10.122)

and read

Sij = εijk

(
σk/2 O

O σk/2

)
. (10.123)

According to (6.164) we read off that (10.122) just represents the spin vector for spin 1/2

particles. Furthermore, the two results (10.121) and (10.123) can be summarized in a covariant

form with the help of the Dirac matrices (10.95) as follows:

Sµν =
i

4
[γµ, γν ]− . (10.124)

Indeed, whereas Eq. (10.121) follows directly from (10.124), the corresponding derivation of

(10.123) needs to take into account the Lie algebra property of the Pauli matrices (10.5).

Now we aim for determining the commutator between two representation matrices Sµν of the

Lorentz algebra in the space of the Dirac spinors. To this end we apply the calculation rule

(3.94), the definition (10.123) as well as the Clifford algebra property of the Dirac matrices in

(10.96) and calculate at first the commutator

[
Sµν , γλ

]
− = i

(
gνλγµ − gµλγν

)
. (10.125)

Then we use (3.10) and (10.123)–(10.125) for obtaining

[
Sµν , Sκλ

]
− = i

(
gµλSνκ + gνκSµλ − gµκSνλ − gνλSµκ

)
. (10.126)

Thus, we read off from (10.126) that the representation matrices Sµν satisfy, indeed, the usual

commutation relations of the Lorentz algebra, see Eqs. (6.48) and (6.49). Furthermore, (10.125)

and (10.126) show that γλ and Sκλ represent a tensor operator of rank n = 1 and n = 2 in the

sense of (6.105).
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10.8 Parity Transformation

Due to a parity transformation P the four-vector x is mapped to the spatially inverted four-

vector x̃ introduced in (10.42):

x′P = Px = x̃ . (10.127)

Performing a parity transformation P two times in a row, the original four-vector is reproduced.

Thus, the parity transformation P is involutoric:

P 2 = 1 ⇐⇒ P−1 = P . (10.128)

The representation matrix for such a parity transformation reads as follows:

P =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 . (10.129)

Furthermore, it can be straight-forwardly shown that the representation matrix of the par-

ity transformation (10.129) commutates with the matrix representations for the generators of

rotations (6.53)

P−1LkP = Lk ⇐⇒ [P,Lk]− = 0 (10.130)

and anti-commutates with the matrix representations for the generators of boosts (6.54)

P−1MkP = −Mk ⇐⇒ [P,Mk]+ = 0 . (10.131)

For instance, we have

P−1L1P =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 = L1 , (10.132)

P−1M1P =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







0 −i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 = −M1.(10.133)

Performing a parity transformation upon a Dirac spinor yields

ψ(x) −→ ψ′P (x) = D(P )ψ(x̃) , (10.134)

where D(P ) denotes the corresponding representation matrix of the parity transformation in

the space of Dirac spinors. Thus, D(P ) must possess the same properties as P . For instance,

due to (10.128), D(P ) must be involutoric:

D(P )2 = 1 . (10.135)
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Furthermore, D(P ) must satisfy both a commutator and an anti-commutator relation with the

representation matrices D(Lk) and D(Mk) of the rotations and boosts in the space of Dirac

spinors analogous to (10.130) and (10.131), respectively:

D(P )−1D(Lk)D(P ) = D(Lk) , (10.136)

D(P )−1D(Mk)D(P ) = −D(Mk) . (10.137)

We now determine the representation matrix D(P ) from the requirement that the Dirac equa-

tion is invariant under a parity transformation. To this end we rewrite at first the Dirac

equation (10.98) by the applying the substitution x→ x̃ :
(
iγµ∂̃µ −m

)
ψ(x̃) = 0 . (10.138)

Then we replace ψ(x̃) in (10.138) with ψ′P (x) according to (10.134) and use the property of the

scalar product that γµ∂̃µ = γ̃µ∂µ holds, yielding
[
iD(P )γ̃µD(P )−1∂µ −m

]
ψ′P (x) = 0 . (10.139)

Thus, Eq. (10.139) reduces to the Dirac equation for the parity transformed mirrored Dirac

spinor ψ′P (x), i.e.

(iγµ∂µ −m)ψ′P (x) = 0 , (10.140)

provided that the representation matrix D(P ) satisfies the condition

D(P )γ̃µD(P )−1 = γµ . (10.141)

Let us define the representation matrix D(P ) according to

D(P ) = γ0 . (10.142)

Then the involution property (10.135) is valid

D(P )2 = (γ0)2 =

(
O I

I O

)(
O I

I O

)
=

(
I O

O I

)
(10.143)

and the condition (10.141) is fulfilled due to the Clifford algebra (10.96):

γ0γ̃0γ0 = (γ0)3 = γ0 , (10.144)

γ0γ̃kγ0 = −γ0γkγ0 = γk . (10.145)

Furthermore, taking into account (10.95), (10.121), (10.122) as well as (10.142) both the com-

mutators (10.136) and the anti-commutators (10.137) can straight-forwardly be shown:

D(P )−1D(Lk)D(P ) =

(
O I

I O

)(
σk/2 O

O σk/2

)(
O I

I O

)
= D(Lk) , (10.146)

D(P )−1D(Mk)D(P ) =

(
O I

I O

)(
−iσk/2 O

O iσk/2

)(
O I

I O

)
= −D(Mk) . (10.147)
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Additionally, we read off from the definition of γ0 in (10.95) that a parity transformation

(10.134) has the effect of interchanging the Weyl spinors ξ and η in the Dirac spinor (10.89):

ψ(x) =

(
ξ(x)

η(x)

)
−→ ψ′P (x) =

(
O I

I O

)(
ξ(x̃)

η(x̃)

)
=

(
η(x̃)

ξ(x̃)

)
. (10.148)

Thus, in a theory, where both ψ(x) and ψ′p(x) represent physically realized states, one needs

both Weyl spinors ξ and η. And from the Lorentz invariance considerations in Section 10.5

follows then that the corresponding action must necessarily have a mass term. Furthermore,

we conclude from (10.148) that in a parity transformation invariant theory both Weyl spinors

ξ and η have to appear on equal footing. This result was already applied in Section 10.6 in

order to simplify the Lagrange density (10.77) according to (10.78).

10.9 Neutrinos

A neutrino is an elementary particle with spin 1/2, which interacts only via the weak force

and gravity. Historically, the neutrino was postulated first by Wolfgang Pauli in 1930 as an

additional particle being involved in the beta decay of a neutron into a proton and an electron in

order explain the conservation of energy, momentum, and angular momentum. The neutrino is

so named because it is electrically neutral and its rest mass is so small that it was long thought to

be zero, leading to the suffix -ino. Therefore, in accordance with previous experimental results,

neutrinos were considered for decades to be massless spin 1/2-particles, which are described by

a single Weyl spinor ξ or η. According to (10.77), their Lagrangian density is then given by

either

L = Aiξ†σ̃µ∂µξ (10.149)

or by

L = Aiη†σµ∂µη . (10.150)

Like in the Maxwell theory also the Lagrangians (10.149) and (10.150) of the Weyl theory do not

contain a Planck constant but still represent a valid first-quantized theory due to the vanishing

rest mass. In both cases, the Lagrangian density is invariant under Lorentz transformations

according to Section 10.5 but not invariant under parity transformations due to Section 10.8.

In order to describe neutrinos also with a Dirac spinor ψ, one must project out the upper or

the lower Weyl spinor ξ or η. To this end one introduces the matrix

γ5 = iγ0γ1γ2γ3 (10.151)

for which we obtain due to the definition of the Dirac matrices in (10.95)

γ5 = i

(
O I

I O

)(
O σ1

−σ1 I

)(
O σ2

−σ2 O

)(
O σ3

−σ3 O

)
= i

(
σ1σ2σ3 O

O −σ1σ2σ3

)
. (10.152)
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Here the product of the Pauli matrices (10.1) turns out to be

σ1σ2σ3 =

(
0 1

1 0

)(
0 −i
i 0

)(
1 0

0 −1

)
=

(
i 0

0 i

)
, (10.153)

so that (10.152) reduces to

γ5 =

(
−I O

O I

)
. (10.154)

Thus, we read off that also γ5 is involutoric:

(
γ5
)2

= 1 =⇒
(
γ5
)−1

= γ5 . (10.155)

Furthermore, with the help of the γ5 matrix we can construct projection matrices

Pu =
1

2

(
1− γ5

)
=

(
I O

O O

)
, (10.156)

Pl =
1

2

(
1 + γ5

)
=

(
O O

O I

)
, (10.157)

which possess the desired effect:

Puψ =

(
I O

O O

)(
ξ

η

)
=

(
ξ

0

)
, (10.158)

Plψ =

(
O O

O I

)(
ξ

η

)
=

(
0

η

)
. (10.159)

Thus, we read off that the Weyl spinors ξ and η represent in form of (1∓ γ5)ψ/2 eigenstates of

the matrix γ5 with the eigenvalues ∓1:

γ5 1

2

(
1∓ γ5

)
ψ = ∓ 1

2

(
1∓ γ5

)
ψ . (10.160)

As the neutrino states can be classified according to the eigenvalues of the matrix γ5, it is of

special importance. One calls γ5 the chirality operator and speaks of left (−1) or right (+1)

chirality for the states (1∓ γ5)ψ/2.

We note that the chirality operator γ5 from (10.151) can also be written as

γ5 =
i

24
εµνκλ γ

µγνγκγλ . (10.161)

Indeed, due to the anti-symmetry (6.144) of the ε-tensor only 4! = 24 non-vanishing terms

contribute to (10.161), where each term consists of a product of 4 different Dirac matrices.

Furthermore, all 24 terms agree due to the anti-symmetry γµγν = −γνγµ for µ 6= ν following

from the Clifford algebra (10.96) and due to the anti-symmetry (6.144) of the ε-tensor, yielding
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(10.151). Since the Dirac matrices γµ transform according to (10.114) like a contravariant four-

vector under Lorentz transformations, Eq. (10.161) has due to (10.107) the consequence that

the chirality operator γ5 is Lorentz invariant:

D(Λ)γ5D(Λ) =
i

24
εµνκλ

[
D(Λ)γµD(Λ)

][
D(Λ)γνD(Λ)

][
D(Λ)γκD(Λ)

][
D(Λ)γλD(Λ)

]

=
i

24
εµνκλΛ

µ
µ′Λ

ν
ν′Λ

κ
κ′Λ

λ
λ′γ

µ′γν
′
γκ
′
γλ
′
=

i

24
εµ′ν′κ′λ′γ

µ′γν
′
γκ
′
γλ
′
= γ5 . (10.162)

Here we used the Weierstraß expansion of the determinant a 4× 4-matrix Λ = (Λµ
ν)

(Det Λ)εµ′ν′κ′λ′ = εµνκλΛ
µ
µ′Λ

ν
ν′Λ

κ
κ′Λ

λ
λ′ , (10.163)

where the property Det Λ = 1 of the special Lorentz transformations implies that the four-

dimensional Levi-Cività tensor has the same components in all inertial systems:

ε′µνκλ = εµνκλ . (10.164)

With the help of (10.156)–(10.159) the two neutrino Lagrangians (10.149) and (10.150) can be

expressed by Dirac spinors:

L = Aiψ(x)γµ∂µ
1

2
(1∓ γ5)ψ(x) . (10.165)

In fact, taking into account (10.89), (10.93), and (10.95) an explicit calculation yields for the

upper Weyl spinor

L = Aiψ(x)γµ∂µ
1

2

(
1− γ5

)
ψ(x) = Ai(ξ†, η†)

(
O I

I O

)(
O σµ

σ̃µ O

)
∂µ

1

2

(
1− γ5

)
(
ξ

η

)

= Ai(ξ†, η†)

(
σ̃µ O

O σµ

)
∂µ

(
ξ

0

)
= Aiξ†σ̃µ∂µξ (10.166)

and, correspondingly, for the lower Weyl spinor

L = Aiψ(x)γµ∂µ
1

2
(1 + γ5)ψ(x) = Ai(ξ†, η†)

(
O I

I O

)(
O σµ

σ̃µ O

)
∂µ

1

2
(1 + γ5)

(
ξ

η

)

= Ai(ξ†, η†)

(
σ̃µ O

O σµ

)
∂µ

(
0

η

)
= Aiη†σµ∂µη . (10.167)

The two neutrino Lagrangians (10.165) are manifestly Lorentz-invariant due to (10.101), (10.104),

(10.114), and (10.162). Furthermore, we have due to (10.135), (10.141), (10.151), and (10.161)

D(P )−1γ5D(P ) =
i

24
εµνκλ

[
D(P )−1γµD(P )

][
D(P )−1γνD(P )

][
D(P )−1γκD(P )

]

×
[
D(P )−1γλD(P )

]
=

i

24
εµνκλγ̃

µγ̃ν γ̃κγ̃λ =
−i
24

εµνκλγ
µγνγκγλ = −γ5 , (10.168)

so that a parity transformation maps the two neutrino Lagrangians (10.165) into each other.
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We remark that the Lagrangians (10.165) were proposed for the first time by the mathemati-

cian Hermann Weyl in 1929 to describe massless spin 1/2-particles. But since the neutrino

Lagrangians (10.165) are not invariant under parity transformations and at that time only in-

teractions like the electromagnetic or the strong one were known, which are invariant under

parity transformations, the Lagrangians (10.165) were not considered to be physical for a long

time. Only in 1956 it was shown by Chien-Shiung Wu in a β-decay experiment of 60
27Co that the

weak interaction is not invariant under parity transformations and, thus, violates parity. Since

this discovery neutrinos were assumed to be described by the Lagrangians (10.165) for decades.

But in 1987 one managed to resolve the flavour of sun neutrinos in the Kamiokande experiment

and one showed that they oscillate between the electron, the myuon, and the tauon flavour.

From this observation it was concluded that neutrinos must have finite masses although their

precise values have not yet been determined. Therefore, the Lagrangians (10.165) have been

abandoned for describing neutrinos. But, due to their charge neutrality, until today it has not

yet been finally decided how to describe theoretically neutrinos as massive spin 1/2 particles.

Currently there exist two alternative descriptions, which go back to proposals of Paul Dirac

and Ettore Majorana, respectively. In the first case neutrinos and anti-matter neutrinos are

considered to be different particles, whereas in the second case they are assumed to be one

and the same particle masquerading as two. An experimental decision between both possible

theoretical descriptions is still lacking.

Subsequently, we consider the Weyl equation, that is, i.e. the equation of motion for massless

spin 1/2 particles, which follows from (10.165):

δA
δψ(x)

=
∂L

∂ψ(x)
− ∂µ

∂L
∂(∂µψ(x))

= Aiγµ∂µ
1

2

(
1∓ γ5

)
ψ(x) = 0 . (10.169)

In the case of a particle with a fixed four-momentum vector p = (pµ)

ψ(x) = ψ e−ipx (10.170)

the Weyl equation (10.169) changes into

γp
1

2

(
1∓ γ5

)
ψ = γ0p0 1

2

(
1∓ γ5

)
ψ . (10.171)

Multiplying (10.171) from the left by γ5γ0, we obtain due to (10.95) and (10.154)

γ5γ0γk =

(
−I O

O I

)(
O I

I O

)(
O σk

−σk O

)
=

(
σk O

O σk

)
, (10.172)

thus, taking into account the spin operator (10.122) the result is

Sp

|p0|
1

2

(
1∓ γ5

)
=

1

2
sgn(p0) γ5 1

2

(
1∓ γ5

)
. (10.173)

Due to the energy-momentum dispersion relation p0 = ±|p| the eigenstates (1 ∓ γ5)ψ/2 of

the chirality operator γ5 with the eigenvalues ∓1, see Eq. (10.160), are also eigenstates of the

helicity operator with the eigenvalues ∓sgn(p0)/2. Thus, we conclude that chirality and helicity

are identical for massless spin 1/2 particles.
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10.10 Charge conjugation

The Lagrange density (10.94) of the Dirac field is also invariant with respect to another discrete

symmetry transformation, where the components of the Dirac spinor ψ(x) are replaced by the

components of the complex conjugate Dirac spinor ψ∗(x). In order to perform such a symmetry

transformation we make the ansatz

ψ′C(x) = C ψ
T

(x) = Cγ0ψ∗(x) , (10.174)

where the row spinor ψ(x) from (10.92) goes over into the corresponding column spinor ψ
T

(x)

by transposition and we have used that (γ0)T = γ0 due to (10.95). Furthermore, C denotes

a complex 4 × 4-matrix which mixes these components and is defined by the fact that the

transformed Dirac spinor (10.174) obeys the same Dirac equation

(iγµ∂µ −m)ψ′C(x) = 0 (10.175)

as the original Dirac spinor ψ(x) in (10.98). Inserting (10.174) into (10.175) and multiplying

from the left by C−1, then we obtain at first

iC−1γµC∂µψ
T

(x)−mψT (x) = 0 , (10.176)

which changes due to a subsequent transposition T into

i∂µψ(x)
(
C−1γµC

)T −mψ(x) = 0 . (10.177)

This equation of motion is now compared with the Dirac equation for the Dirac adjoint Dirac

spinor ψ(x). In order to derive it we start from the Dirac equation (10.98) and go over to the

adjoint, yielding

−i∂µψ†(x)(γµ)† −mψ†(x) = 0 . (10.178)

Taking into account the Clifford algebra (10.96) for µ = ν = 0 and (10.103) changes (10.178)

into

−i∂µψ(x)γ0(γµ)†γ0 −mψ(x) = 0 . (10.179)

Here we note that the Dirac matrices (10.95) have due to (10.16) the property

γ0(γµ)†γ0 =

(
O I

I O

)(
O σ̃µ

σµ O

)(
O I

I O

)
=

(
O σµ

σ̃µ O

)
= γµ , (10.180)

so that the Dirac equation for the Dirac-adjoint spinor (10.179) reduces to

i∂µψ(x)γµ +mψ(x) = 0 . (10.181)



176 CHAPTER 10. DIRAC FIELD

We remark that this equation of motion for the Dirac adjoint Dirac spinor ψ(x) corresponds to

the Euler-Lagrange equation of the Dirac Lagrange density (10.93):

δA
δψ(x)

=
∂L

∂ψ(x)
− ∂µ

∂L
∂(∂µψ(x))

= A
[
i∂µψ(x)γµ +mψ(x)

]
= 0 . (10.182)

The comparison of (10.177) and (10.181) then leads to the following equation for determining

the matrix C:

(
C−1γµC

)T
= −γµ =⇒ C−1γµC = − (γµ)T . (10.183)

In order to solve (10.183) we make the following diagonal ansatz for the matrix C

C =

(
c O

O −c

)
, C−1 =

(
c−1 O

O −c−1

)
. (10.184)

With this we obtain from (10.95) for the left-hand side of (10.183)
(
c−1 O

O −c−1

)(
O σµ

σ̃µ O

)(
c O

O −c

)
=

(
O −c−1σµc

−c−1σ̃µc O

)
, (10.185)

so we conclude from (10.183)

c−1σµc = (σ̃µ)T , c−1σ̃µc = (σµ)T . (10.186)

Splitting both equations (10.186) into µ = 0 and µ = k, they yield the conditions

c−1σ0c = (σ0)T , (10.187)

c−1σkc = −(σk)T . (10.188)

Here the transposed Pauli matrices (10.1) and (10.38) are given by

(
σ0
)T

= σ0 ,
(
σ1
)T

= σ1 ,
(
σ2
)T

= −σ2 ,
(
σ3
)T

= σ3 . (10.189)

Let us now define the matrix c according to

c = −iσ2 = −i
(

0 −i
i 0

)
=

(
0 −1

1 0

)
. (10.190)

As it has the properties

c† = c−1 = cT = −c = −c∗ , (10.191)

we read off that (10.187) and (10.188) are, indeed, fulfilled due to (10.2) and (10.189)–(10.191)

c−1σ0c = iσ2σ0(−iσ2) = σ2σ0σ2 = (σ2)2 = σ0 = (σ0)T , (10.192)

c−1σ1c = iσ2σ1(−iσ2) = σ2σ1σ2 = −(σ2)2σ1 = −σ1 = −(σ1)T , (10.193)

c−1σ2c = iσ2σ2(−iσ2) = (σ2)2σ2 = σ2 = −(σ2)T , (10.194)

c−1σ3c = iσ2σ3(−iσ2) = σ2σ3σ2 = −(σ2)2σ3 = −σ3 = −(σ3)T . (10.195)
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Thus, in conclusion, taking into account (10.190) and (10.191) the matrix C defined in (10.184)

has the properties

C† = C−1 = CT = −C = −C∗ (10.196)

and can be represented as a product of Dirac matrices (10.95):

iγ0γ2 = i

(
O I

I O

)(
O σ2

−σ2 O

)
=

(
−iσ2 O

O iσ2

)
=

(
c O

O −c

)
= C . (10.197)

Moreover, taking into account (10.95), (10.184), (10.191), and (10.196), it follows that also the

discrete symmetry transformation (10.174) is involutoric:

ψ′′C(x) = Cγ0ψ′∗C (x) = Cγ0C∗γ0ψ(x) =

(
c O

O −c

)(
O I

I O

)(
c∗ O

O −c∗

)(
O I

I O

)
ψ(x)

=

(
O c

−c O

)(
O c∗

−c∗ O

)
ψ(x) =

(
−cc∗ O

O −cc∗

)
ψ(x) = ψ(x) . (10.198)

And, finally, we investigate how the discrete symmetry transformation (10.174) affects the four-

vector current density of the Dirac field invariant. Multiplying the equations of motion (10.98)

and (10.179) for ψ(x) and ψ(x) with ψ(x) and ψ(x), respectively, we yield

iψ(x)γµ∂µψ(x)−mψ(x)ψ(x) = 0 , (10.199)

i∂µψ(x)γµψ(x) +mψ(x)ψ(x) = 0 , (10.200)

so we read off the continuity equation

i∂µ

[
ψ(x)γµψ(x)

]
= 0 =⇒ ∂µj

µ(x) = 0 . (10.201)

Here the four-vector current density jµ(x) is fixed except for a constant K:

jµ(x) = K ψ(x)γµψ(x) . (10.202)

Thus, the conserved charge reads due to (10.95) and (10.202)

Q =

∫
d3x j0(x, t) = K

∫
d3xψ†(x, t)ψ(x, t) . (10.203)

In order to apply the discrete symmetry transformation (10.174) to the four-vector current

density (10.202), we need to know how the Dirac adjoint Dirac spinor (10.103) is transformed.

Thus, applying (10.95), (10.184), (10.191), and (10.196) we yield

ψ
′
C(x) = ψ′†C(x)γ0 = ψT (x)(γ0)†C†γ0 = −ψT (x)γ0Cγ0 = −ψT (x)

(
O I

I O

)(
c O

O −c

)

×
(
O I

I O

)
= −ψT (x)

(
O I

I O

)(
O c

−c O

)
= −ψT (x)

(
−c O

O c

)
= ψT (x)C . (10.204)
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Transforming the four-vector current density (10.202) with (10.174) and (10.204) we then con-

clude at first

j′µC (x) = Kψ
′
Cγ

µψ′C(x) = KψT (x)CγµCγ0ψ∗(x) . (10.205)

As each individual component of the transformed four-vector current density (10.205) coin-

cides with its transposition, i.e. j′µC (x) = (j′µC (x))T , it follows from (10.95), (10.103), (10.183),

(10.196), and (10.202) that

j′µC (x) = Kψ†(x)(γ0)T (CγµC)Tψ(x) = Kψ†(x)γ0γµψ(x) = Kψ(x)γµψ(x) = jµ(x) .(10.206)

Thus, we conclude that the discrete symmetry transformation (10.174) turns out not to change

the four-vector current density. Note that the physical meaning of the discrete symmetry

transformation (10.174) as a charge conjugation becomes clear only after having implemented

the second quantization of the Dirac field, as then the four-vector density operator changes its

sign in contrast to (10.206),

10.11 Time Inversion

Performing a time inversion T , the space-time four-vector x is mapped into the time-inverted

space-time four-vector −x̃:

x′T = Tx = −x̃ . (10.207)

Executing a time inversion T successively twice, one reproduces the original state, so the time

inversion T is also involutoric:

T 2 = 1 ⇐⇒ T−1 = T . (10.208)

The representation matrix for such a time inversion reads as follows

T =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 . (10.209)

Thus, we conclude that the representation matrix of the time inversion (10.209) commutates

with the matrix representations for the generators of rotations (6.53)

T−1LkT = Lk (10.210)

and anti-commutates with the matrix representations for the generators of boosts (6.54)

T−1MkT = −Mk . (10.211)
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For instance, we have

T−1L1T =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0







−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 = L1 , (10.212)

T−1M1T =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







0 −i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0







−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 = −M1 . (10.213)

As the time inversion is more intriguing to interpret physicallys, we investigate at first its

consequences for the Schrödinger equation

(
ih̄
∂

∂t
+

h̄2

2M
∆

)
ψ(x, t) = 0 . (10.214)

Obviously, the time inverted wave function

ψ′T (x, t) = ψ∗(x,−t) (10.215)

also obeys the Schrödinger equation:

(
ih̄
∂

∂t
+

h̄2

2M
∆

)
ψ′T (x, t) = 0 . (10.216)

In analogy to (10.215) we now perform the time inversion for a Dirac spinor via

ψ(x) −→ ψ′T (x) = D(T )ψ∗(−x̃) , (10.217)

where D(T ) stands for the representation matrix of the time inversion in the space of Dirac

spinors. Then D(T ) must also fulfill the involutoric property (10.208)

D(T )2 = 1 (10.218)

and we expect that also the commutator and anti-commutator relations (10.210) and (10.211)

are satisfied by the representation matrices D(Lk) and D(Mk) of rotations and boosts in the

space of Dirac spinors, respectively:

D(T )−1D(Lk)D(T ) = D(Lk) , (10.219)

D(T )−1D(Mk)D(T ) = −D(Mk) . (10.220)

In analogy with (10.216), we also require that the time inverted Dirac spinor (10.217) satisfies

the Dirac equation (10.98):

(iγµ∂µ −m)ψ′T (x) = 0 . (10.221)
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Inserting (10.217) into (10.221), we obtain

−i
[
D(T )−1γµD(T )

]∗
∂µψ(−x̃)−mψ(−x̃) = 0 . (10.222)

Comparing (10.222) with the time-inverted Dirac equation (10.98)

−iγ̃µ∂µψ(−x̃)−mψ(−x̃) = 0 , (10.223)

where we used γµ∂̃µ = γ̃µ∂µ, the representation matrix D(T ) of the time inversion is determined

by the equation

D(T )−1γµD(T ) = (γ̃µ)∗ . (10.224)

On the one hand we calculate the conjugate complex of the Dirac matrices (10.95) by taking

into account the Pauli matrices (10.1), yielding

(
γ0
)∗

=

(
O σ0

σ0 O

)
,

(
γ1
)∗

=

(
O σ1

−σ1 O

)
,

(
γ2
)∗

=

(
O −σ2

σ2 O

)
,

(
γ3
)∗

=

(
O σ3

−σ3 O

)
. (10.225)

On the other hand we obtain for the quantities (γ̃µ)T :

(
γ̃0
)T

=
(
γ0
)T

=

(
O (σ0)T

(σ0)T O

)
=

(
O σ0

σ0 O

)
,

(
γ̃1
)T

= −
(
γ1
)T

= −
(

O −(σ1)T

(σ1)T O

)
=

(
O σ1

−σ1 O

)
,

(
γ̃2
)T

= −
(
γ2
)T

= −
(

O −(σ2)T

(σ2)T O

)
=

(
O −σ2

σ2 O

)
,

(
γ̃3
)T

= −
(
γ3
)T

= −
(

O −(σ3)T

(σ3)T O

)
=

(
O σ3

−σ3 O

)
. (10.226)

Thus, from (10.225) and (10.226) we read off the following identity

(γµ)∗ = (γ̃µ)T =⇒ (γµ)† = γ̃µ . (10.227)

Inserting (10.227) into (10.224) then results in

D(T )−1γµD(T ) = (γµ)T . (10.228)

Now we take into account the property (10.183), which relates the Dirac matrices γµ with the

representation matrix C of charge conjugation in the space of Dirac spinors. With this the

equation (10.228) for determining D(T ) leads to

D(T )−1γµD(T ) = −C−1γµC =⇒
[
D(T )C−1

]−1

γµ
[
D(T )C−1

]
= −γµ . (10.229)
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A solution of (10.229) is given by

D(T )C−1 = −iγ5 (10.230)

together with its inverted matrix following from (10.155)
[
D(T )C−1

]−1

= iγ5 , (10.231)

as is verified by an explicit calculation due to (10.95) and (10.154):

γ5γµγ5 =

(
−I O

O I

)(
O σµ

σ̃µ O

)(
−I O

O I

)
= −

(
O σµ

σ̃µ O

)
= −γµ . (10.232)

Note that (10.230) represents a quite subtle relation, which involves with the matrices γ5, C,

and D(T ) technical ingredients of all three discrete transformation, i.e. the parity, the charge

conjugation, and the time inversion. Thus, taking into account (10.154) and (10.184), the

representation matrix D(T ) follows from (10.230)

D(T ) = −iγ5C = −i
(
−I O

O I

)(
c O

O −c

)
= i

(
c O

O c

)
, (10.233)

which has due to (10.191) the properties

D(T ) = D(T )−1 = D(T )† = −D(T )∗ = −D(T )T . (10.234)

According to (10.234) the representation matrixD(T ) satisfies the involutoric property (10.218),

but the time inversion of the Dirac spinor is not involutoric due to (10.217) and (10.234):

ψ′′T (x) = D(T )ψ′∗T (−x̃) = D(T )D(T )∗ψ(x) = −ψ(x) . (10.235)

This behavior of Dirac spinors under time inversion corresponds to that under a rotation, where

we read off from (10.21) and (10.102) that the original Dirac spinor is only recovered after a

rotation with the angle 4π. Furthermore, we obtain for the commutators of D(T ) with the

generators of rotation D(Lk) due to (10.16), (10.122), (10.188), and (10.191)

D(T )−1D(Lk)D(T ) = −
(

c O

O c

)(
σk/2 O

O σk/2

)(
c O

O c

)
=

(
−cσkc/2 O

O −cσkc/2

)

=

(
(σk)T/2 O

O (σk)T/2

)
=

(
(σk)∗/2 O

O (σk)∗/2

)
= D(Lk)

∗ , (10.236)

and, correspondingly, the commutators of D(T ) with D(Mk) yield with (10.121) and (10.233)

D(T )−1D(Mk)D(T ) =
i

2

(
c O

O c

)(
σk O

O −σk/2

)(
c O

O c

)
=
i

2

(
cσkc O

O −cσkc

)

=
−i
2

(
(σk)T O

O −(σk)T

)
=
−i
2

(
(σk)∗ 0

0 −(σk)∗

)
= −D(Mk)

∗ . (10.237)

The results (10.236) and (10.237) do not match the original expectations (10.219) and (10.220).

Instead, they indicate that the time inversion represents an anti-linear operation as is further

discussed in the exercises in the context of the second quantization of the Dirac field.
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10.12 Dirac Representation

The representation (10.95) of the Dirac matrices used so far is called the chiral representation

or the Weyl representation, as then the chirality operator γ5 is diagonal according to (10.154).

From a group-theoretical point of view this representation has the advantage that the repre-

sentation matrices of the Lorentz transformation in the space of the Dirac spinors have a block

diagonal shape according to (10.102), i.e. both Weyl spinors are treated on equal footing. An-

other common representation of the Dirac matrices is the so-called Dirac representation or the

standard representation

ψD(x) = SDψ(x) , (10.238)

where the transformation matrix SD is given by

SD =
1√
2

(
I I

−I I

)
(10.239)

with the inverse

S−1
D =

1√
2

(
I −I
I I

)
= STD . (10.240)

Thus, the transformation matrix SD is orthonormal or, more precisely, unitary. For the Dirac

adjoint Dirac spinor ψ(x) one obtains in the Dirac representation from (10.92), (10.95), (10.239),

and (10.240):

ψD(x) = ψ†D(x)γ0 = ψ†(x)S†Dγ
0 = ψ(x)γ0S†Dγ

0 = ψ(x)
1√
2

(
O I

I O

)(
I I

−I I

)(
O I

I O

)

= ψ(x)
1√
2

(
I −I
I I

)
= ψ(x)S−1

D . (10.241)

In the same way one obtains for the Dirac matrices γµ in the Dirac representation

γ0
D = SDγ

0S−1
D =

1

2

(
I I

−I I

)(
O I

I O

)(
I −I
I I

)
=

(
I O

O −I

)
, (10.242)

γkD = SDγ
kS−1

D =
1

2

(
I I

−I I

)(
O σk

−σk O

)(
I −I
I I

)
=

(
O σk

−σk O

)
. (10.243)

And, correspondingly, the chirality operator (10.154) in the Dirac representation turns out to

be no longer diagonal:

γ5
D = SDγ

5S−1
D =

1

2

(
I I

−I I

)(
−I O

O I

)(
I −I
I I

)
=

(
O I

I O

)
. (10.244)
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Conversely, the Dirac matrix γ0 is not diagonal in the Weyl representation (10.95), while it is

diagonal in the Dirac representation (10.242). Furthermore, the generators of the rotations in

the spinor space (10.122) are invariant under the change of representation

D(Lk)D = SDD(Lk)S
−1
D =

1

4

(
I I

−I I

)(
σk O

O σk

)(
I −I
I I

)
=

1

2

(
σk O

O σk

)
, (10.245)

whereas the generators of the boosts in the spinor space (10.121) result in the Dirac represen-

tation to be given by

D(Mk)D = SDD(Mk)S
−1
D =

i

4

(
I I

−I I

)(
−σk O

O σk

)(
I −I
I I

)
=
i

2

(
O −σk
σk O

)
. (10.246)

10.13 Non-Relativistic Limit

The Dirac representation has the advantage that the non-relativistic limit is straight-forwardly

carried out. To this end we transform the Dirac equation (10.98) according to (10.238) into the

Dirac representation:

iγµD∂µψD(x)−mψD(x) = 0 . (10.247)

In this manifestly covariant formulation of the Dirac equation, we separate now explicitly the

respective temporal and spatial contributions

iγ0
D

1

c

∂

∂t
ψD(x, t) + iγkD∂kψD(x, t)−mψD(x, t) = 0 . (10.248)

The Dirac equation (10.248) can then be rewritten in the form of a Schrödinger equation

ih̄
∂

∂t
ψD(x, t) = HD(x)ψD(x, t) , (10.249)

where the Dirac Hamiltonian is given by

HD(x) = −ich̄α∇ + ch̄mβ . (10.250)

Here we have introduced the matrices

β = γ0
D =

(
I O

O −I

)
, (10.251)

αk = γ0
Dγ

k
D =

(
I O

O −I

)(
O σk

−σk O

)
=

(
O σk

σk O

)
, (10.252)
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where we used (10.242) and (10.243). With this we obtain the anti-commutator relations

[β, β]+ = 2

(
I O

O −I

)(
I O

O −I

)
= 2 I , (10.253)

[
αk, β

]
+

=

(
O σk

σk O

)(
I O

O −I

)
+

(
I O

O −I

)(
O σk

σk O

)
= O , (10.254)

[
αk, αl

]
+

=

(
O σk

σk O

)(
O σl

σl O

)
+

(
O σl

σl O

)(
O σk

σk O

)

=

( [
σk, σl

]
+

O

O
[
σl, σk

]
+

)
= 2δkl I , (10.255)

where in the latter case we applied the Clifford algebra of the Pauli matrices (10.2). Further-

more, we introduced as new abbreviations both the 4× 4 unit matrix

I =

(
I O

O I

)
(10.256)

and the 4× 4 zero matrix

O =

(
O O

O O

)
. (10.257)

Thus, we read off from (10.253)–(10.255) that the 4 × 4 matrices β, αk represent a Clifford

algebra with N = 4 generators in the sense of (10.4).

In close analogy to the Weyl representation in (10.89), we now decompose also in the Dirac

representation the four-component Dirac spinor into two two-component Weyl spinors

ψD(x, t) =

(
ξD(x, t)

ηD(x, t)

)
. (10.258)

Inserting (10.258) into (10.249) and (10.250) as well as taking into account (10.251) and (10.252)

then leads to

ih̄
∂

∂t

(
ξD(x, t)

ηD(x, t)

)
= −ich̄

(
O σ

σ O

)
∇
(
ξD(x, t)

ηD(x, t)

)
+ ch̄m

(
I O

O −I

)(
ξD(x, t)

ηD(x, t)

)
, (10.259)

which reduces to two coupled equations of motion for these Weyl spinors in the Dirac repre-

sentation:

ih̄
∂

∂t
ξD(x, t) = −ich̄σ∇ηD(x, t) + ch̄mξD(x, t) , (10.260)

ih̄
∂

∂t
ηD(x, t) = −ich̄σ∇ξD(x, t) + ch̄mηD(x, t) . (10.261)

As discussed already in Fig. 8.1 we now take into account that the relativistic and the non-

relativistic energy scales are shifted against each other by the rest energy Mc2, which leads to

the ansatz

ψD(x, t) =

(
ξD(x, t)

ηD(x, t)

)
=

(
ξ̃D(x, t) e−iMc2t/h̄

η̃D(x, t) e−iMc2t/h̄

)
. (10.262)
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Thus the coupled equations of motion (10.260), (10.261) go over into

ih̄
∂

∂t
ξ̃D(x, t) = −ich̄σ∇η̃D(x, t) +

(
ch̄m−Mc2

)
ξ̃D(x, t) , (10.263)

ih̄
∂

∂t
η̃D(x, t) = −ich̄σ∇ξ̃D(x, t) +

(
−ch̄m−Mc2

)
η̃D(x, t) . (10.264)

As the parameter m was determined according to (10.88) to be inversely proportional to the

Compton wave length (8.21), the rest energy Mc2 turns out to appear only in the second

equation of motion:

ih̄
∂

∂t
ξ̃D(x, t) = −ich̄σ∇η̃D(x, t) , (10.265)

ih̄
∂

∂t
η̃D(x, t) = −ich̄σ∇ξ̃D(x, t)− 2Mc2η̃D(x, t) . (10.266)

Performing now the non-relativistic limes c → ∞ the kinetic energy of the Weyl spinor η̃D is

negligible in comparison with its rest energy, i.e.
∣∣∣∣ih̄

∂

∂t
η̃D(x, t)

∣∣∣∣�
∣∣Mc2η̃D(x, t)

∣∣ , (10.267)

so that the Weyl spinor η̃D can approximately be expressed by the Weyl spinor ξ̃D:

η̃D(x, t) =
−ih̄
2Mc

σ∇ξ̃D(x, t) . (10.268)

Neglecting the temporal derivative in (10.266) thus leads to an adiabatic elimination of the Weyl

spinor η̃D(x, t), i.e. it now longer has an independent dynamics but its temporal evolution follows

quasi-instantaneously the corresponding one of the Weyl spinor ξ̃D(x, t). Note that similar

applications of an adiabatic elimination of degrees of freedom are ubiquitous in theoretical

physics:

• One prominent example is provided by the Born-Oppenheimer approximation in molec-

ular physics. It is based on recognizing the large difference between the electron mass

and the masses of atomic nuclei, and correspondingly the respective time scales of their

motion. Given the same amount of kinetic energy, the nuclei move much more slowly

than the electrons. Therefore, it is a valid assumption that the wave functions of atomic

nuclei and electrons in a molecule can be treated separately. This enables a separation of

the Hamiltonian operator into electronic and nuclear terms, where cross-terms between

electrons and nuclei are neglected, so that the two smaller and decoupled systems can be

solved more efficiently. As a result an effective electronic Hamilton operator for the elec-

tronic degrees of freedom is solved, where the positions of the nuclei are fixed quantities.

In the second step of the Born-Oppenheimer approximation the Schrödinger equation for

the nuclear motion is treated.

• Another important example is the semi-classical laser theory, where the electric field de-

scribed by the Maxwell theory couples to the matter degrees of freedom, which are dealt
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with quantum mechanically. For the laser it turns out that the electric field evolves on a

much larger time scale than the matter degrees of freedom. This allows to adiabatically

eliminate the matter degrees of freedom from the dynamics and obtain an effective evolu-

tion equation for the electric field, which describes the spontaneous emergence of coherent

laser light from an originally incoherent lamp light by increasing the pump power. This

adiabatic elimination of fast (stable) degrees of freedom in favour of obtaining a result-

ing order parameter equation for slow (unstable) degrees of freedom was recognized by

Hermann Haken in the realm of synergetics, which is a theory of self-organization. This

fundamental discovery leads to many fascinating applications in natural and, partially,

also in social sciences.

After this excursion we return to working out the non-relativistic limit of the Dirac equation.

Substituting (10.268) into (10.265) leads to a Schrödinger equation for the Weyl spinor ξ̃D(x, t):

ih̄
∂

∂t
ξ̃D(x, t) = − h̄2

2M
σk∂kσ

l∂lξ̃D(x, t) = − h̄2

4M

[
σk, σl

]
+
∂l∂kξ̃D(x, t) = − h̄2

2M
∆ξ̃D(x, t) (10.269)

with applying the Clifford algebra of the Pauli matrices (10.2). In the exercises we work out

the non-relativistic limit of the Dirac equation in the presence of a minimal coupling to the

electromagnetic field in a more systematic way by performing the so-called Foldy-Wouthuysen

transformation. This leads then not to the Schrödinger equation (10.269) but to the Pauli

equation for the Weyl spinor ξ̃D(x, t) containing automatically the correct Landé factor gs = 2

for a point-like massive spin 1/2 particle. Note that both the proton and the neutron are also

massive spin 1/2 particles but measurements show that their respective Landé factors 2.79 and

- 1.91 deviate significantly from 2.0 which indicates that they are not point-like but composite

particles. Indeed, according to the standard model of elementary particle physics, each of these

nucleons consists of three quarks, which are point-like massive spin 1/2 particles according to

the present day knowledge.

Let us consider now the non-relativistic limit of the Dirac action (10.93), (10.97) in the Dirac

representation

A =
A

c

∫
d4xψD(x) (iγµD∂µ −m)ψD(x) . (10.270)

As a first preparatory step we separate explicitly the respective temporal and spatial contribu-

tions:

A =
A

c

∫
d4x

[
iψD(x, t)γ0

D

1

c

∂

∂t
ψD(x, t) + iψD(x, t)γD∇ψD(x, t)−mψD(x, t)ψD(x, t)

]
. (10.271)

Then we take into account how the Dirac spinor decomposes into the Weyl spinors according

to (10.262) and the corresponding expression for the Dirac adjoint Dirac spinor following from

(10.103) and (10.242):

ψD(x, t) = ψ†D(x, t)γ0
D =

(
ξ̃†D(x, t)eiMc2t/h̄,−η̃†D(x, t)eiMc2t/h̄

)
. (10.272)
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Using in addition (10.88), (10.242), and (10.243) as well as (10.262) and (10.272), the Dirac

action (10.270) reduces to

A = A

∫
dt

∫
d3x

{
i

c

[
ξ̃†D(x, t)

∂ξ̃D(x, t)

∂t
+ η̃†D(x, t)

∂η̃D(x, t)

∂t

]

+i
[
ξ̃†D(x, t)σ∇η̃D(x, t) + η̃†D(x, t)σ∇ξ̃D(x, t)

]
+

2Mc

h̄
η̃†D(x, t)η̃D(x, t)

}
. (10.273)

If one now expresses the Weyl spinor η̃D according to (10.268) by the Weyl spinor ξ̃D and takes

into account the calculation rule (10.7), then (10.273) goes over in the non-relativistic limes

c→∞ into

A = A

∫
dt

∫
d3x

[
i

c
ξ̃†D(x, t)

∂ξ̃(x, t)

∂t
+

h̄

2Mc
ξ̃†D(x, t)∆ξ̃D(x, t)

]
. (10.274)

Fixing the yet undetermined parameter A according to

α = ch̄ , (10.275)

then (10.274) reduces to the Schrödinger action for the Weyl spinor ξ̃D:

A =

∫
dt

∫
d3x

[
ih̄ ξ̃†D(x, t)

∂ξ̃D(x, t)

∂t
+

h̄2

2M
ξ̃†D(x, t)∆ξ̃D(x, t)

]
. (10.276)

Furthermore, according to (10.88) and (10.275), we then conclude that the Dirac Lagrange

density in the Weyl representation (10.94) reads

L = ψ(x)
(
ih̄cγµ∂µ −Mc2

)
ψ(x) . (10.277)

And finally, inserting (10.262) and (10.268) into the conserved charge (10.203), we read off in

the non-relativistic limit c → ∞ that the yet undetermined parameter K has to be identified

with

K = 1 , (10.278)

so that we obtain in the Dirac representation the conserved quantity expected for a Schrödinger

theory:

Q =

∫
d3x ξ̃†D(x, t)ξ̃D(x, t) . (10.279)

Thus, we conclude that the conserved charge (10.203) of the Dirac theory reads

Q =

∫
d3xψ†(x, t)ψ(x, t) . (10.280)
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10.14 Plane Waves

We now determine the fundamental solutions of the Dirac equation in the Weyl representation

(10.98), which reads by taking into account (10.88):
(
iγµ∂µ −

Mc

h̄

)
ψ(x) = 0 . (10.281)

One solution method relies on performing a plane wave ansatz for the Dirac spinor ψ(x), which

converts the differential equation (10.281) into an algebraic equation for the corresponding

spinor amplitudes. The latter would then have to be solved on the basis of the concrete form of

the Dirac matrices in the Weyl representation. In this section, however, we work out a different

solution method, which is group theoretically inspired. To this end we determine at first the

trivial plane wave solutions in the rest frame of the massive spin 1/2 particle and then we boost

them to a uniformly moving reference frame.

10.14.1 Rest Frame

In the rest frame of the massive spin 1/2 particle, the Dirac spinor can only depend on time t:

ψR(x) = ψ(t) . (10.282)

Inserting (10.282) in (10.281) leads to
(
iγ0 ∂

∂t
− Mc2

h̄

)
ψ(t) = 0 . (10.283)

Multiplying (10.283) with the operator (−iγ0∂/∂t−Mc2/h̄) and taking into account (γ0)2 = I
due to (10.95) then yields

(
−iγ0 ∂

∂t
− Mc2

h̄

)(
iγ0 ∂

∂t
− Mc2

h̄

)
ψ(t) =

[
∂2

∂t2
+

(
Mc2

h̄

)2
]
ψ(t) = 0 . (10.284)

Thus, we obtain the two solutions

ψ(t) = ψ e∓iMc2t/h̄ , (10.285)

where the spinor amplitude ψ satisfies due to (10.283) and (10.285) the algebraic equation

(
±γ0 − I

)
ψ = 0 . (10.286)

Taking into account the explicit form of the Dirac matrix γ0 in the Weyl representation (10.95),

then (10.286) reduces to

(γ0 − I)ψ =

[(
O I

I O

)
−
(

I O

O I

)]
ψ =

(
−I I

I −I

)
ψ = 0 , (10.287)

(−γ0 − I)ψ =

[(
O −I
−I O

)
−
(

I O

O I

)]
ψ =

(
−I −I
−I −I

)
ψ = 0 . (10.288)



10.14. PLANE WAVES 189

Assuming that χ(+1/2) and χ(−1/2) are two orthonormal bi-spinors, i.e.

χ†(λ)χ(λ′) = δλλ′ , (10.289)

the two solutions of (10.287) are given by

ψ(1) =
1√
2

(
χ(1/2)

χ(1/2)

)
, ψ(2) =

1√
2

(
χ(−1/2)

χ(−1/2)

)
. (10.290)

Then we construct bi-spinors χc(±1/2), which are charge conjugated with respect to χ(±1/2),

by defining analogous to (10.174) and (10.184)

χc
(
±1

2

)
= c χ∗

(
±1

2

)
. (10.291)

They turn out to be orthonormal as well due to (10.191), (10.289), and (10.291):

χc †(λ)χc(λ′) =
(
χc †(λ)χc(λ′)

)T
=
(
χT (λ) c†c χ∗(λ′)

)T
= χ†(λ′)χ(λ) = δλλ′ . (10.292)

With this we obtain also the two solutions of (10.288) according to

ψ(3) =
1√
2

(
χc(1/2)

−χc(1/2)

)
, ψ(4) =

1√
2

(
χc(−1/2)

−χc(−1/2)

)
. (10.293)

We note that ψ(3) and ψ(4) just represent the charge conjugated Dirac spinors of ψ(1) and ψ(2).

Namely the Dirac adjoint Dirac spinors

ψ
(1,2)

= ψ(1,2)†γ0 (10.294)

read explicitly with (10.290)

ψ
(1,2)

=
1√
2

(
χ†
(
±1

2

)
, χ†
(
±1

2

))(
O I

I O

)
=

1√
2

(
χ†
(
±1

2

)
, χ†
(
±1

2

))
, (10.295)

so the charge conjugation yields due to (10.174), (10.184), (10.291), (10.293) and (10.295)

ψ
′(1,2)
C = Cψ

(1,2)T
=

(
c O

O −c

)
1√
2

(
χ∗(±1/2)

χ∗(±1/2)

)
=

1√
2

(
cχ∗(±1/2)

−cχ∗(±1/2)

)
= ψ(3,4) . (10.296)

The finding (10.296) justifies a posteriori to define the charge conjugation of bi-spinors according

to (10.291).

10.14.2 Boost to Uniformly Moving Reference Frame

Now we boost the fundamental solutions (10.285), (10.290), and (10.293) of the Dirac equation

in the rest frame to a uniformly moving reference frame:

ψ(1,2) e−iMc2t/h̄ −→ ψ(1,2)
p (x) = ψ(1,2)

p e−ipx/h̄ , (10.297)

ψ(3,4) e+iMc2t/h̄ −→ ψ(3,4)
p (x) = ψ(3,4)

p e+ipx/h̄ , (10.298)
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where the momentum four-vector is transferred from the rest frame (10.27) to the uniformly

moving reference frame (10.28). Despite of such a boost transformation a scalar product remains

invariant, so the time-like component of the boosted momentum four-vector (6.16) is fixed by

its spatial components according to

pµR pRµ = pµ pµ =⇒ M2c2 = (p0)2 − p2 =⇒ Ep = p0c =
√

p2c2 +M2c4 . (10.299)

Note that this represents precisely the relativistic energy-momentum dispersion relation (6.13).

Furthermore, the corresponding spinor amplitudes ψ
(ν)
p for ν = 1, 2, 3, 4 in the uniformly moving

reference frame emerge from boosting the spinor amplitudes ψ(ν) in the rest frame:

ψ(ν)
p = D(B)ψ(ν) . (10.300)

Here the boost representation in the space of the Dirac spinors from (10.13), (10.14), (10.47),

(10.48), and (10.102) reads in the Weyl representation:

D(B) =

(
D(1/2,0)(B) O

O D(0,1/2)(B)

)
=

(
e−σξ/2 O

O eση/2

)
=

( √
pσ
Mc

O

O
√

pσ̃
Mc

)
. (10.301)

Note that the spinor representations for boosts (10.47) and (10.48) represent here efficient short-

cut notations for the more involved concrete expressions (10.40) and (10.44). Thus, applying

(10.301) to both (10.290) and (10.293) yields

ψ(1,2)
p = D(B)ψ(1,2) =

1√
2

( √
pσ
Mc

χ
(
±1

2

)
√

pσ̃
Mc

χ
(
±1

2

)
)
, (10.302)

ψ(3,4)
p = D(B)ψ(3,4) =

1√
2

( √
pσ
Mc

χc
(
±1

2

)

−
√

pσ̃
Mc

χc
(
±1

2

)
)
. (10.303)

With the side calculation following from (6.21) and (10.81)

(pσ)(pσ̃) = pµσ
µpν σ̃

ν =
1

2
pµpν(σ

µσ̃ν + σν σ̃µ) = pµpνg
µνI = p2I = (Mc)2I (10.304)

we see then explicitly that we have thus constructed solutions of the Dirac equation (10.281).

At first we conclude from (10.297)

(
iγµ∂µ −

Mc

h̄

)
ψ(1,2)
p (x) = 0 =⇒ (γµpµ −Mc)ψ(1,2)

p = 0 . (10.305)

From (10.95), (10.302), and (10.304) follows then indeed:

(
O pσ

pσ̃ O

)
1√
2

( √
pσ
Mc

χ(±1
2
)√

pσ̃
Mc

χ(±1
2
)

)
=
Mc√

2

(
pσ
Mc

√
pσ̃
Mc

χ(±1
2
)

pσ̃
Mc

√
pσ
Mc

χ(±1
2
)

)

=
Mc√

2



√

pσ
Mc

√
(pσ)(pσ̃)
(Mc)2 χ(±1

2
)√

pσ̃
Mc

√
(pσ̃)(pσ)
(Mc)2 χ(±1

2
)


 =

(
McI O

O Mc I

)
1√
2

( √
pσ
Mc

χ(±1
2
)√

pσ̃
Mc

χ(±1
2
)

)
. (10.306)
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In a similar way we read off from (10.298)
(
iγµ∂µ −

Mc

h̄

)
ψ(3,4)
p (x) = 0 =⇒ (γµpµ +Mc)ψ(3,4)

p = 0 . (10.307)

And from (10.95), (10.303), and (10.304) we get then indeed:

(
O pσ

pσ̃ O

)
1√
2

( √
pσ
Mc

χc(±1
2
)

−
√

pσ̃
Mc

χc(±1
2
)

)
=
Mc√

2

(
− pσ
Mc

√
pσ̃
Mc

χc(±1
2
)

+ pσ̃
Mc

√
pσ
Mc

χc(±1
2
)

)
(10.308)

=
Mc√

2


 −

√
pσ
Mc

√
(pσ)(pσ̃)
(Mc)2 χc(±1

2
)

+
√

pσ̃
Mc

√
(pσ̃)(pσ)
(Mc)2 χc(±1

2
)


 = −

(
McI O

O Mc I

)
1√
2

( √
pσ
Mc

χc(±1
2
)

−
√

pσ̃
Mc

χc(±1
2
)

)
.

We note that ψ
(3)
p and ψ

(4)
p just represent the charge-conjugate of the Dirac spinors ψ

(1)
p and

ψ
(2)
p . At first, we determine the Dirac adjoint Dirac spinors

ψ
(1,2)

p = ψ(1,2)†
p γ0 =

1√
2

(
χ†
(
±1

2

)√
pσ

Mc
, χ†
(
±1

2

)√
pσ̃

Mc

)(
O I

I O

)

=
1√
2

(
χ†
(
±1

2

)√
pσ̃

Mc
, χ†
(
±1

2

)√
pσ

Mc

)
. (10.309)

In addition, we summarize (10.187), (10.188) and conclude from (10.191)

c−1σµc = (σ̃µ)T =⇒ c(σµ)T c−1 = σ̃µ , c(σ̃µ)T c−1 = σµ . (10.310)

The latter two relations can be generalized to any function of Pauli matrices f(σµ) or f(σ̃µ),

which has a Taylor series:

cf(σµ)T c−1 = f(σ̃µ) , cf(σ̃µ)T c−1 = f(σµ) . (10.311)

The charge conjugation of the Dirac spinors ψ
(1)
p and ψ

(2)
p then leads to due to (10.174), (10.184),

(10.289), (10.309), and (10.311):

ψ
(1,2)
C = Cψ

(1,2)T
=

(
c O

O −c

)
1√
2



√

pσ̃
Mc

T

χ∗(±1
2
)

√
pσ
Mc

T
χ∗(±1

2
)


 =

1√
2


 c

√
pσ̃
Mc

T

c−1 cχ∗(±1
2
)

−c
√

pσ
Mc

T
c−1 c χ∗(±1

2
)




=
1√
2

( √
pσ
Mc

χc(±1
2
)

−
√

pσ̃
Mc

χc(±1
2
)

)
= ψ(3,4)

p . (10.312)

The spinor amplitudes (10.302) and (10.303) can now be written as

ψ(ν)
p =

1√
2



√

pσ
M
χ
(

(−1)ν+1

2

)
√

pσ̃
Mc

χ
(

(−1)ν+1

2

)

 ; ν = 1, 2 , (10.313)

ψ(ν)
p =

1√
2




√
pσ
Mc

χc
(

(−1)ν+1

2

)

−
√

pσ̃
Mc

χc
(

(−1)ν+1

2

)

 ; ν = 3, 4 . (10.314)
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10.14.3 Orthonormality Relations

After having obtained the plane wave solutions, we embark now upon determining their respec-

tive orthonormality relations. To this end we start with mentioning the adjoint of the spinor

amplitudes (10.313):

ψ(ν)†
p =

1√
2

(
χ†
(

(−1)ν+1

2

)√
pσ

Mc
, χ†
(

(−1)ν+1

2

)√
pσ̃

Mc

)
; ν = 1, 2 , (10.315)

ψ(ν)†
p =

1√
2

(
χc †
(

(−1)ν+1

2

)√
pσ

Mc
,−χc †

(
(−1)ν+1

2

)√
pσ̃

Mc

)
; ν = 3, 4 . (10.316)

Furthermore, we remark that the spinor amplitudes ψ
(ν)
p for ν = 1, 2 and ψ

(ν)
−p for ν = 3, 4

satisfy the following orthonormality relations:

1. case: ν = 1, 2 ; ν ′ = 1, 2:

ψ(ν)†
p ψ(ν′)

p =
1

2

(
χ†
(

(−1)ν+1

2

)√
pσ

Mc
, χ†
(

(−1)ν+1

2

)√
pσ̃

Mc

)

√

pσ
Mc

χ( (−1)ν
′+1

2
)√

pσ̃
Mc

χ( (−1)ν
′+1

2
)


 (10.317)

= χ†
(

(−1)ν+1

2

)
pσ + pσ̃

2Mc
χ

(
(−1)ν

′+1

2

)
=

Ep

Mc2
χ†
(

(−1)ν+1

2

)
χ

(
(−1)ν

′+1

2

)
=

Ep

Mc2
δνν′ ,

2. case: ν = 3, 4 ; ν ′ = 3, 4:

ψ
(ν)†
−p ψ

(ν′)
−p =

1

2

(
χc
(

(−1)ν+1

2

)√
pσ̃

Mc
,−χc†

(
(−1)ν+1

2

)√
pσ

Mc

)

√

pσ̃
Mc

χc( (−1)ν
′+1

2
)

−
√

pσ
Mc

χc( (−1)ν
′+1

2
)


(10.318)

= χc†
(

(−1)ν+1

2

)
pσ̃ + pσ

2Mc
χc
(

(−1)ν
′+1

2

)
=

Ep

Mc2
χc†
(

(−1)ν+1

2

)
χc
(

(−1)ν
′+1

2

)
=

Ep

Mc2
δνν′ ,

3. case: ν = 1, 2 ; ν ′ = 3, 4:

ψ(ν)†
p ψ

(ν′)
−p =

1

2

(
χ†
(

(−1)ν+1

2

)√
pσ

Mc
, χ†
(

(−1)ν+1

2

)√
pσ̃

Mc

)


√
pσ̃
Mc

χc( (−1)ν
′+1

2
)

−
√

pσ
Mc

χc( (−1)ν
′+1

2
)




=
1

2
χ†
(

(−1)ν+1

2

)(√
(pσ)(pσ̃)

(Mc)2
−
√

(pσ̃)(pσ)

(Mc)2

)
χc
(

(−1)ν
′+1

2

)
= 0 , (10.319)

4. case ν = 3, 4 ; ν ′ = 1, 2:

ψ
(ν)†
−p ψ

(ν′)
p =

1

2

(
χc†
(

(−1)ν+1

2

)√
pσ̃

Mc
,−χc†

(
(−1)ν+1

2

)√
pσ

Mc

)

√

pσ
Mc

χ( (−1)ν
′+1

2
)√

pσ̃
Mc

χ( (−1)ν
′+1

2
)




=
1

2
χc†
(

(−1)ν+1

2

)(√
(pσ̃)(pσ)

(Mc)2
−
√

(pσ)(pσ̃)

(Mc)2

)
χ

(
(−1)ν

′+1

2

)
= 0 . (10.320)
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The orthonormality relations (10.317)–(10.320) can be summarized as follows

ψ(ν)†
ενp ψ

(ν′)
εν′p

=
Ep

Mc2
δνν′ , (10.321)

where have introduced the abbreviation

εν =

{
+1 ; ν = 1, 2

−1 ; ν = 3, 4
. (10.322)

With this, we can check whether the fundamental solutions

ψ(ν)
p (x, t) = ψ(ν)

p e−
i
h̄
εν(Ept−px) (10.323)

fulfill orthonormality relations. Taking into account (10.299) and (10.321) we obtain from

(10.323)
∫
d3xψ(ν)†

p (x, t)ψ
(ν′)
p′ (x, t) = ψ(ν)†

p ψ
(ν′)
p′ e

i
h̄

(εν′Ep′−ενEp)t(2πh̄)3δ(ενp− εν′p′) (10.324)

= (2πh̄)3ψ(ν)†
p ψ(ν′)

pενεν′
e
i
h̄

(εν′Eεν′ενp−ενEp)tδ(p′ − ενεν′p) =
(2πh̄)3Ep

Mc2
δνν′δ(p

′ − p) . (10.325)

If we now replace (10.323) with

ψ(ν)
p (x, t) =

√
Mc2

(2πh̄)3Ep

ψ(ν)
p e−

i
h̄
εν(Ept−px) , (10.326)

then the fundamental solutions of the Dirac equation satisfy the orthonormality relations
∫
d3xψ(ν)†

p (x, t)ψ
(ν′)
p′ (x, t) = δνν′ δ(p− p′) . (10.327)

10.14.4 Dirac Representation

For the sake of completeness, we finally determine the fundamental solutions (10.327) in the

Dirac representation. To this end we have to calculate at first the spinor amplitudes (10.290)

and (10.293) in the rest system in the Dirac representation:

ψ
(1,2)
D = SDψ

(1,2) =
1√
2

(
I I

−I I

)
1√
2

(
χ(±1

2
)

χ(±1
2
)

)
=

(
χ(±1

2
)

0

)
, (10.328)

ψ
(3,4)
D = SDψ

(3,4) =
1√
2

(
I I

−I I

)
1√
2

(
χc(±1

2
)

−χc(±1
2
)

)
=

(
0

−χc(±1
2
)

)
. (10.329)

By boosting from the rest frame into the uniformly moving reference frame we then get

ψ
(1,2)
pD = SDψ

(1,2)
p =

1√
2

(
I I

−I I

)
1√
2

( √
pσ
Mc

χ(±1
2
)√

pσ̃
Mc

χ(±1
2
)

)
=

1

2




(√
pσ
Mc

+
√

pσ̃
Mc

)
χ(±1

2
)

(
−
√

pσ̃
Mc

+
√

pσ
Mc

)
χ(±1

2
)




=
1

2




(
pσ+Mc√

2Mc(p0+Mc)
+ pσ̃+Mc√

2Mc(p0+Mc)

)
χ(±1

2
)

(
− pσ+Mc√

2mc(p0+Mc)
+ pσ̃+Mc√

2Mc(p0+Mc)

)
χ(±1

2
)


 =




√
Ep+Mc2

2Mc2
χ(±1

2
)

σpc√
2Mc2(Ep+Mc2)

χ(±1
2
)


 (10.330)
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and, correspondingly,

ψ
(3,4)
pD = SDψ

(3,4)
p =

1√
2

(
I I

−I I

)
1√
2

( √
pσ
Mc

χc(±1
2
)

−
√

pσ̃
Mc
χc(±1

2
)

)
=

1

2




(√
pσ
Mc
−
√

pσ̃
Mc

)
χc(±1

2
)

(
−
√

pσ
Mc
−
√

pσ̃
Mc

)
χc(±1

2
)




=
1

2




(
pσ+Mc√

2Mc(p0+Mc)
− pσ̃+Mc√

2Mc(p0+Mc)

)
χc(±1

2
)

(
− pσ+Mc√

2Mc(p0+Mc)
− pσ̃+Mc√

2Mc(p0+Mc)

)
χc(±1

2
)


 =




−σpc√
2Mc2(Ep+Mc2)

χc(±1
2
)

−
√

Ep+Mc2

2M2 χc(±1
2
)


 . (10.331)

Note that the results (10.330) and (10.331) are obtained in the exercises in a different way by

invoking a Foldy-Wouthuysen transformation. Furthermore, we recognize in the non-relativistic

limes c→∞ that the lower or upper components of the Dirac spinor are small at ψ
(1,2)
pD or ψ

(3,4)
pD

in (10.330) or (10.331), respectively.

10.15 Helicity Spinors

In the considerations of the previous section, the two orthonormal bi-spinors χ(+1/2) and

χ(−1/2) have not yet been specified. It is now time to catch up with this deficiency and to

make a particular choice for those orthonormal bi-spinors. In the following we introduce even

two possible choices, which depend on the quantization axis for the spin 1/2.

10.15.1 Rest Frame

At first, we consider spin 1/2 particles in the rest frame, where the spin is quantized with

respect to the z-axis. In this case we define the orthonormal bi-spinors according to

χ

(
+

1

2

)
=

(
1

0

)
, χ

(
−1

2

)
=

(
0

1

)
, (10.332)

as they represent the orthonormal eigenvectors of the generator D(L3) = σ3/2 for a rotation

around the z-axis:

1

2
σ3 χ

(
±1

2

)
= ±1

2
χ

(
±1

2

)
. (10.333)

From (10.190), (10.291), and (10.332) we then get the explicit form of the charge conjugated

bi-spinors:

χc
(

+
1

2

)
=

(
0 −1

1 0

)(
1

0

)
=

(
0

1

)
, (10.334)

χc
(
−1

2

)
=

(
0 −1

1 0

)(
0

1

)
=

(
−1

0

)
. (10.335)
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Accordingly, the charge conjugated bi-spinors satisfy the eigenvalue problem

1

2
σ3 χc

(
±1

2

)
= ∓1

2
χc
(
±1

2

)
. (10.336)

A comparison of (10.333) with (10.336) shows that the eigenvalues of χ(±1/2) and χc(±1/2)

are just exchanged.

The Dirac spinors (10.290) and (10.293) formed with the bi-spinors χ(±1/2) and χc(±1/2) in

the rest system of the particle turn out to represent eigenvectors of the generator D(L3) of the

rotation about the z-axis:

D(L3)ψ(ν) =
(−1)ν+1

2
ψ(ν) ; ν = 1, 2 , D(L3)ψ(ν) =

(−1)ν

2
ψ(ν) ; ν = 3, 4 . (10.337)

Namely, taking into account (10.122), the following holds:

(
1
2
σ3 0

0 1
2
σ3

)
1√
2

(
χ(±1

2
)

χ(±1
2
)

)
=

1√
2

(
1
2
σ3 χ(±1

2
)

1
2
σ3 χ(±1

2
)

)
= ±1

2

1√
2

(
χ(±1

2
)

χ(±1
2
)

)
, (10.338)

(
1
2
σ3 0

0 1
2
σ3

)
1√
2

(
χc(±1

2
)

−χc(±1
2
)

)
=

1√
2

(
1
2
σ3 χc(±1

2
)

−1
2
σ3 χc(±1

2
)

)
= ∓1

2

1√
2

(
χc(±1

2
)

−χc(±1
2
)

)
.(10.339)

10.15.2 Helicity Operator

In the following we embark on considering spin 1/2 particles, whose spin is quantized with

respect to the direction of the respective particle momentum p. To this end we construct

the corresponding helicity spinors analogous to Section 9.10, where the polarisation vectors of

circularly polarised plane waves were determined in the realm of electrodynamics.

To this end we determine at first the helicity operator (6.188) in the space of bi-spinors, where

the spin vector is given by D(L) = σ/2 due to (10.122):

h(p) =
D(L)p

p
=
σp

2p
. (10.340)

Taking into account the explicit form of the Pauli matrices (10.8) this yields

h(p) =
1

2p

{
px

(
0 1

1 0

)
+ py

(
0 −i
i 0

)
+ pz

(
1 0

0 −1

)}
=

1

2p

(
pz px − ipy

px + ipy −pz

)
(10.341)

Now we define the helicity spinors χh(p,±1/2) as eigenvectors of the helicity operator (10.340)

with the eigenvalues ±1/2:

h(p) χh

(
p,±1

2

)
= ±1

2
χh

(
p,±1

2

)
. (10.342)
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From (10.332) and (10.340) follows then that the bi-spinors χ(±1/2) are eigenvectors of the

helicity operator h(p ez) to the eigenvalue ±1/2:

h(p ez)χ

(
+

1

2

)
=

1

2

(
1 0

0 −1

)(
1

0

)
=

1

2
χ

(
+

1

2

)
, (10.343)

h(p ez)χ

(
−1

2

)
=

1

2

(
1 0

0 −1

)(
0

1

)
= −1

2
χ

(
−1

2

)
. (10.344)

Thus, due to (10.342), we then conclude

χh

(
p ez,±

1

2

)
= χ

(
±1

2

)
. (10.345)

10.15.3 Uniformly Moving Rest Frame

Now we consider a uniformly moving rest frame, where the spin is quantized with respect to the

momentum vector, where p is described with the help of spherical coordinates p, φ ∈ [0, 2π), θ ∈
[0, π):

p = p




sin θ cosφ

sin θ sinφ

cos θ


 . (10.346)

Then we know that the rotation matrix (9.129) determined in (9.132) yields (10.346) analogous

to (9.133):

R(θ, φ)pez = p . (10.347)

Therefore, we determine the rotation matrix D(R(θ, φ) in the space of bi-spinors, where first

the rotation D(Ry(θ)) and then the rotation D(Rz(φ)) is performed:

D(R(θ, φ)) = D(Rz(φ)) D(Ry(θ)) . (10.348)

The individual rotation matrices follow from (10.8), (10.10), (10.11), and (10.21):

D(Rz(φ)) = e−iD(L3)φ = e−
i
2
σ3φ = cos

(
φ

2

)
I − i sin

(
φ

2

)
σ3

= cos

(
φ

2

)(
1 0

0 1

)
− i sin

(
φ

2

)(
1 0

0 −1

)
=

(
e−iφ/2 0

0 eiφ/2

)
, (10.349)

D(Ry(θ)) = e−iD(L2)θ = e−
i
2
σ2θ = cos

(
θ

2

)
I − i sin

(
θ

2

)
σ2

= cos

(
θ

2

)(
1 0

0 1

)
− i sin

(
θ

2

)(
0 −i
i 0

)
=

(
cos
(
θ
2

)
− sin

(
θ
2

)

sin
(
θ
2

)
cos
(
θ
2

)
)
.(10.350)
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Thus, the resulting rotation matrix (10.348) is given by:

D(R(θ, φ)) =

(
cos
(
θ
2

)
e−iφ/2 − sin

(
θ
2

)
e−iφ/2

sin
(
θ
2

)
eiφ/2 cos

(
θ
2

)
eiφ/2

)
. (10.351)

Now we map the bi-spinors χ(±1/2), which describe a quantization of the spin 1/2 with respect

to the z-axis, with the rotation matrix D(R(θ, φ) and obtain the helicity bi-spinors, which

describe a spin quantization with respect to the direction of the momentum p:

χh

(
p,±1

2

)
= D(R(θ, φ))χ

(
±1

2

)
. (10.352)

With the explicit form of the dual spinors (10.332) and the rotation matrix (10.351), the helicity

dual spinors are then:

χh

(
p,+

1

2

)
=

(
cos
(
θ
2

)
e−iφ/2

sin
(
θ
2

)
eiφ/2

)
, χh

(
p,−1

2

)
=

(
− sin

(
θ
2

)
e−iφ/2

cos
(
θ
2

)
eiφ/2

)
. (10.353)

In special case p = p ez, i.e. θ = φ = 0, the result (10.353) reduces to (10.332) according to

(10.345). Furthermore, the charge conjugation of the helicity spinors χh(p,±1/2) leads to:

χch

(
p,+

1

2

)
= c χ∗h

(
p,+

1

2

)
=

(
0 −1

1 0

)(
cos
(
θ
2

)
eiφ/2

sin
(
θ
2

)
e−iφ/2

)
=

(
− sin

(
θ
2

)
e−iφ/2

cos
(
θ
2

)
eiφ/2

)
, (10.354)

χch

(
p,−1

2

)
= c χ∗h

(
p,−1

2

)
=

(
0 −1

1 0

)(
− sin

(
θ
2

)
eiφ/2

cos
(
θ
2

)
e−iφ/2

)
=

(
− cos

(
θ
2

)
e−iφ/2

− sin
(
θ
2

)
eiφ/2

)
.(10.355)

In case p = p ez, i.e. θ = φ = 0, (10.354) and (10.355) reduce to (10.332):

χch

(
p ez,±

1

2

)
= χc

(
±1

2

)
. (10.356)

Furthermore, we remark that the mapping of the charge conjugated bi-spinors (10.334) with the

rotation matrix (10.351) leads to the charge conjugated helicity spinors (10.354) and (10.355):

χch

(
p,±1

2

)
= D(R(θ, φ))χc

(
±1

2

)
. (10.357)

As a crosscheck we also verify that the constructed helicity spinors χh(p,±1/2) are, indeed,

eigenvectors of the helicity operator h(p) from (10.341) with the eigenvalue ±1
2
:

h(p)χh

(
p,+

1

2

)
=

1

2

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)(
cos
(
θ
2

)
e−iφ/2

sin
(
θ
2

)
eiφ/2

)

=
1

2

(
cos
(
θ
2

)
e−iφ/2

sin
(
θ
2

)
eiφ/2

)
=

1

2
χh

(
p,+

1

2

)
, (10.358)

h(p)χh

(
p,−1

2

)
=

1

2

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)(
− sin

(
θ
2

)
e−iφ/2

cos
(
θ
2

)
e−iφ/2

)

=
1

2

(
sin
(
θ
2

)
e−iφ/2

− cos
(
θ
2

)
eiφ/2

)
= −1

2
χh

(
p,−1

2

)
. (10.359)
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Furthermore, we show that the constructed charge conjugated helicity spinors χch(p,±1/2) are

eigenvectors of the helicity operator h(p) with the eigenvalue ∓1/2:

h(p)χch

(
p,+

1

2

)
=

1

2

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)(
− sin

(
θ
2

)
e−iφ/2

cos
(
θ
2

)
eiφ/2

)

=
1

2

(
sin
(
θ
2

)
e−iφ/2

− cos
(
θ
2

)
eiφ/2

)
= −1

2
χch

(
p,+

1

2

)
, (10.360)

h(p)χch

(
p,−1

2

)
=

1

2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)(
− cos

(
θ
2

)
e−iφ/2

− sin
(
θ
2

)
eiφ/2

)

=
1

2

(
− cos

(
θ
2

)
e−iφ/2

− sin
(
θ
2

)
e+iφ/2

)
=

1

2
χch

(
p,−1

2

)
. (10.361)

Now we come back to the Dirac spinors (10.302) and (10.303) in the uniformly moving reference

frame, where χ(±1/2) and χc(±1/2) denoted two sets of orthonormal bi-spinors, which are

charge conjugated with respect to each other. Whereas we have discussed in the two previous

subsections the case of choosing the z-axis as the quantization axis, we come now to another

appropriate physical choice to identify χ(±1/2) and χc(±1/2). Namely we assume that the spin

is quantized with respect to the direction of motion p/p, which amounts to identifying χ(±1/2)

and χc(±1/2) with the helicity spinors χh(p,±1/2) and χch(p,±1/2), respectively, yielding

ψ(1,2)
p =

1√
2

( √
pσ
Mc

χh
(
p,±1

2

)
√

pσ̃
Mc

χh
(
p,±1

2

)
)
, (10.362)

ψ(3,4)
p =

1√
2

( √
pσ
Mc

χch
(
p,±1

2

)

−
√

pσ̃
Mc

χch
(
p,±1

2

)
)
. (10.363)

In order to justify this choice we define the helicity operator in the space of Dirac spinors due

to (6.188) and (10.122):

H(p) =
D(L)p

p
=

1

2p

(
σp O

O σp

)
=

(
h(p) O

O h(p)

)
. (10.364)

According to (10.37), (10.46), and (10.340) as well as the Lie algebra of the Pauli matrices (10.5),

the helicity operator h(p) in the space of bi-spinors commutates with the boost representation

in the space of bi-spinors:
[√

pσ

Mc
, h(p)

]

−
=

[√
pσ̃

Mc
, h(p)

]

−
= 0 . (10.365)

Therefore, the Dirac spinors (10.362) and (10.363) are eigenstates of the helicity operator

H(p)ψ(ν)
p = ην ψ

(ν)
p (10.366)

with the eigenvalues

ην =
(−1)ν+1

2
, ν = 1, 2 ; ην =

(−1)ν

2
, ν = 3, 4 . (10.367)
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In detail, due to (10.285), (10.286), (10.341), (10.364), and (10.365) the following applies for

ν = 1, 2

H(p)ψ(ν)
p =

(
h(p) O

O h(p)

)
1√
2

(√
pσ
Mc

χh(p,±1
2
)√

pσ̃
Mc

χh(p,±1
2
)

)
=
±1

2
√

2

(√
pσ
Mc

χh(p,±1
2
)√

pσ̃
Mc

χh(p,±1
2
)

)
= ±1

2
ψ(ν)
p ,

and, correspondingly, we have for ν = 3, 4

H(p)ψ(ν)
p =

(
h(p) O

O h(p)

)
1√
2

( √
pσ
Mc

χch(p,±1
2
)

−
√

pσ̃
Mc

χch(p,±1
2
)

)
=
∓1

2
√

2

( √
pσ
Mc

χch(p,±1
2
)

−
√

pσ̃
Mc

χch(p,±1
2
)

)
= ∓1

2
ψ(ν)
p .

Thus, in conclusion, we have determined in a group theoretically inspired approach the plane

wave solutions of the Dirac equation (10.326), where the corresponding Dirac spinor amplitudes

are given by (10.362) and (10.363). This result will turn out to be indispensable for the

subsequent canonical field quantization of the Dirac theory.

10.16 Canonical Field Quantisation

In order to determine the Hamiltonian formulation of classical field theory from the Lagrangian

formulation, one has to find at first the momentum fields, which are canonically conjugated to

the independent field degrees of freedom. In case of the Dirac field, the canonically conjugated

momentum fields are obtained for the Dirac spinor ψ(x, t) and the Dirac adjoint Dirac spinor

ψ(x, t), respectively:

π(x, t) =
δA

δ
(
∂ψ(x,t)
∂t

) =
∂L

∂
(
∂ψ(x,t)
∂t

) = ih̄ψ(x, t)γ0 = ih̄ψ†(x, t) , (10.368)

π(x, t) =
δA

δ
(
∂ψ(x,t)
∂t

) =
∂L

∂
(
∂ψ(x,t)
∂t

) = 0 . (10.369)

Note that the last equality in (10.368) follows from taking into account (10.103). Thus, in the

Hamiltonian formulation of the Dirac theory, one can consider ψ(x, t) and π(x, t) or, equiva-

lently, ψ(x, t) and ψ†(x, t) as the independent fields.

And, according to the Noether theorem applied to the Dirac field, any conserved physical

quantity of the Dirac theory turns out to be bilinear in these independent fields. Namely,

due to the sandwich principle, each conserved quantity follows from a spatial integral over

the respective first-quantized operator, which is multiplied with ψ†(x, t) from the left and

ψ(x, t) from the right. Indeed, the charge of the Dirac field is given by (10.280) and analogous
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expressions also hold for the energy, the momentum, and the helicity of the Dirac field:

E =

∫
d3xψ†(x, t)HD(x)ψ(x, t) , (10.370)

P =

∫
d3xψ†(x, t)

h̄

i
∇ψ(x, t) , (10.371)

h =

∫
d3xψ†(x, t)

(
σ/2 O

O σ/2

)
h̄∇/i

|h̄∇/i| ψ(x, t) . (10.372)

Note that the Dirac Hamiltonian HD(x) was already defined in (10.250) and reduces due to

(10.88) to

HD(x) = −ich̄α∇ +Mc2β . (10.373)

Furthermore, we have used in (10.372) that the helicity (6.188) stems from the generators of

the rotations (10.122) in the space of Dirac spinors.

In a canonical quantization of the Dirac field the independent fields ψ(x, t) and π(x, t) or ψ(x, t)

and ψ†(x, t) of the Hamilton field theory become field operators ψ̂(x, t) and π̂(x, t) or ψ̂(x, t)

and ψ̂†(x, t). Since a bosonic quantisation of the Dirac field turns out to violate microcausality

and, thus, leads inevitably to contradictions, one has to perform a fermionic quantisation.

Therefore, the following equal-time anti-commutator algebra is required

[
ψ̂α(x, t), ψ̂β(x′, t)

]
+

= [π̂α(x, t), π̂β(x′, t)]+ = 0 ,
[
ψ̂α(x, t), π̂β(x′, t)

]
+

= ih̄δαβδ(x− x′)(10.374)

where α, β denote the spinorial components. Due to the definition of the momentum field in

(10.368) the anti-commutator algebra (10.374) reduces to

[
ψ̂α(x, t), ψ̂β(x′, t)

]
+

=
[
ψ̂†α(x, t), ψ̂†β(x′, t)

]
+

= 0 ,
[
ψ̂α(x, t), ψ̂†β(x′, t)

]
+

= δαβδ(x− x′).(10.375)

Thus, the conserved quantities of the first quantized Dirac theory, i.e. the charge (10.280), the

energy (10.370), the momentum (10.371), and the helicity (10.372), become second quantized

operators due to the canonical field quantisation:

Q̂ =

∫
d3x ψ̂†(x, t)ψ̂(x, t) , (10.376)

Ĥ =

∫
d3x ψ̂†(x, t)HD(x)ψ̂(x, t) , (10.377)

P̂ =

∫
d3x ψ̂†(x, t)

h̄

i
∇ ψ̂(x, t) , (10.378)

ĥ =

∫
d3x ψ̂†(x, t)

(
σ/2 O

O σ/2

)
h̄∇/i

|h̄∇/i| ψ̂(x, t) . (10.379)

In order to determine the Heisenberg equations of motion (3.62), one needs to take into account

both the first and the second quantized Hamilton operator (10.373) and (10.378) as well as to
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apply the calculation rule (3.94). With this the Heisenberg equations of motion of the field

operators ψ̂(x, t) and ψ̂†(x, t) result in

ih̄
∂ψ̂(x, t)

∂t
=

[
ψ̂(x, t), Ĥ

]
−

= HD(x)ψ̂(x, t) =
(
−ich̄α∇+Mc2β

)
ψ̂(x, t) , (10.380)

ih̄
∂ψ̂†(x, t)

∂t
=

[
ψ̂†(x, t), Ĥ

]
−

= −
{
HD(x)ψ̂(x, t)

}†
=
(
−ich̄α∇−Mc2β

)
ψ̂†(x, t) .(10.381)

Thus, the field operators ψ̂(x, t) and ψ̂†(x, t) satisfy the Dirac equation (10.249) and the adjoint

Dirac equation, respectively.

10.17 Decomposition Into Plane Waves

The field operator ψ̂(x, t) is now decomposed with respect to the fundamental plane wave

solutions ψ
(ν)
p (x, t) of the Dirac equation defined in (10.326). The expansion coefficients in this

decomposition are then operators of second quantisation:

ψ̂(x, t) =
4∑

ν=1

∫
d3pψ(ν)

p (x, t)â(ν)
p . (10.382)

Correspondingly, one obtains for the adjoint field operator:

ψ̂†(x, t) =
4∑

ν=1

∫
d3pψ(ν)†

p (x, t)â(ν)†
p . (10.383)

With the help of the orthonormality relation (10.327) of the fundamental plane wave solutions,

the expansions (10.382) and (10.383) can be inverted, yielding:
∫
d3xψ(ν)†

p (x, t)ψ̂(x, t) = â(ν)
p , (10.384)

∫
d3x ψ̂†(x, t)ψ(ν)

p (x, t) = â(ν)†
p . (10.385)

From the equal-time anti-commutator algebra (10.375) of the field operator ψ̂(x, t) and its

adjoint ψ̂†(x, t), a corresponding anti-commutator algebra can then be determined for the ex-

pansion coefficients â
(ν)
p and â

(ν)†
p :

[
â(ν)
p , â

(ν′)
p′

]
+

=

∫
d3x

∫
d3x′

4∑

α,α′=1

ψ(ν)
p,α(x, t)ψ

(ν′)
p′,α′(x

′, t)
[
ψ̂α(x, t), ψ̂α′(x

′, t)
]

+
= 0 , (10.386)

[
â(ν)†
p , â

(ν′)†
p′

]
+

=

∫
d3x

∫
d3x′

4∑

α,α′=1

ψ(ν)†
p,α (x, t)ψ

(ν′)†
p′,α′(x

′, t)
[
ψ̂†α(x, t), ψ̂†α′(x

′, t)
]

+
= 0 , (10.387)

[
â(ν)
p , â

(ν′)†
p′

]
+

=

∫
d3x

∫
d3x′

4∑

α,α′=1

ψ(ν)†
p,α (x, t)ψ

(ν′)
p′,α′(x

′, t)
[
ψ̂α(x, t), ψ̂†α′(x

′, t)
]

+

=

∫
d3x

4∑

α=1

ψ(ν)†
p,α (x, t)ψ

(ν′)
p′,α(x, t) =

∫
d3xψ(ν)†

p (x, t)ψ
(ν′)
p′ (x, t) = δνν′δ(p− p′) . (10.388)
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Note that in (10.388) the orthonormality relation (10.327) is applied. As the operators â
(ν)
p ,

â
(ν)†
p fulfill according to (10.386)–(10.388) the canonical anti-commutator algebra, they are

interpreted for the time being as annihilation and creation operators of fermionic particles.

10.18 Second Quantizied Operators

Inserting (10.382) and (10.383) into (10.376) and taking into account the orthonormality rela-

tion (10.327) the charge operator Q̂ in second quantisation can be expressed in terms of the

creation and annihilation operators â
(ν)†
p and â

(ν)
p :

Q̂ =
4∑

ν=1

4∑

ν′=1

∫
d3p

∫
d3p′ â(ν)†

p â
(ν′)
p′

∫
d3xψ(ν)†

p (x, t)ψ
(ν′)
p′ (x, t)

=
4∑

ν=1

4∑

ν′=1

∫
d3p

∫
d3p′ â(ν)†

p â
(ν′)
p′ δνν′δ(p− p′) =

4∑

ν=1

∫
d3p â(ν)†

p â(ν)
p . (10.389)

Since the particle number operator â
(ν)†
p â

(ν)
p is positive definite, also the charge operator Q̂ is

positive definite due to (10.389). Thus, it looks like as if the fermionic particles seem to have

only a positive charge.

Accordingly, inserting (10.382) and (10.383) into (10.377) one obtains for the Hamilton operator

Ĥ of second quantisation at first

Ĥ =
4∑

ν=1

4∑

ν′=1

∫
d3p

∫
d3p′ â(ν)†

p â
(ν′)
p′

∫
d3xψ(ν)†

p (x, t)HD(x)ψ
(ν′)
p′ (x, t) . (10.390)

Here we can take into account that the plane waves ψ
(ν′)
p′ (x, t) from (10.326) are eigenfunctions

of the Dirac Hamiltonian operator of the first quantisation (10.373) as they were determined

in Section 10.14 to solve the Dirac equation (10.281):

HD(x)ψ
(ν′)
p′ (x, t) = ih̄

∂

∂t
ψ

(ν′)
p′ (x, t) = εν′Ep′ψ

(ν′)
p′ (x, t) . (10.391)

With the help of the orthonormality relation (10.327) the Hamilton operator of second quanti-

sation (10.390) then results in

Ĥ =
4∑

ν=1

4∑

ν′=1

∫
d3p

∫
d3p′ εν′Ep′ â

(ν)†
p â

(ν′)
p′

∫
d3xψ(ν)†

p (x, t)ψ
(ν′)
p′ (x, t)

=
4∑

ν=1

∫
d3p ενEpâ

(ν)†
p â(ν)

p =

∫
d3p

(
2∑

ν=1

Epâ
(ν)†
p â(ν)

p −
4∑

ν=3

Epâ
(ν)†
p â(ν)

p

)
, (10.392)

where we have used the abbreviation (10.322) in the last step. Thus, the fermionic particles

with ν = 1, 2 appear to have positive energies Ep, while those with ν = 3, 4 seem to have

correspondingly negative energies −Ep.
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Subsequently, we insert (10.382) and (10.383) into (10.378), so the momentum operator P̂ of

second quantisation results at first in

P̂ =
4∑

ν=1

4∑

ν′=1

∫
d3p

∫
d3p′ â(ν)†

p â
(ν′)
p′

∫
d3xψ(ν)†

p (x, t)
h̄

i
∇ψ

(ν′)
p′ (x, t) . (10.393)

Here we use the fact that the plane waves ψ
(ν′)
p′ (x, t) from (10.326) are eigenfunctions of the

momentum operator of first quantisation:

h̄

i
∇ψ

(ν′)
p′ (x, t) = εν′p

′ψ
(ν′)
p′ (x, t) . (10.394)

Thus, with the orthonormality relation (10.327) the momentum operator of second quantisation

(10.379) reduces to

P̂ =
4∑

ν=1

4∑

ν′=1

∫
d3p

∫
d3p′ â(ν)†

p â
(ν′)
p′ εν′p

′
∫
d3xψ(ν)†

p (x, t)ψ
(ν′)
p′ (x, t)

=
4∑

ν=1

∫
d3p ενp â

(ν)†
p â(ν)

p =

∫
d3p

(
2∑

ν=1

p â(ν)†
p â(ν)

p −
4∑

ν=3

p â(ν)†
p â(ν)

p

)
. (10.395)

We conclude that the fermionic particles with ν = 1, 2 seem to have the momentum p and,

correspondingly, those with ν = 3, 4 the momentum −p.

In a similar way we also proceed for the helicity operator (10.379), where we insert (10.382)

and (10.383), yielding

ĥ =
4∑

ν=1

4∑

ν′=1

∫
d3p

∫
d3p′ â(ν)†

p â
(ν′)
p′

∫
d3xψ(ν)†

p (x, t)

(
σ/2 O

O σ/2

)
h̄∇/i

|h̄∇/i| ψ
(ν′)
p′ (x, t) .(10.396)

Applying the eigenvalue problem (10.394) and the first quantized helicity operator (10.364) this

reduces to

ĥ =
4∑

ν=1

4∑

ν′=1

∫
d3p

∫
d3p′ â(ν)†

p â
(ν′)
p′ εν′

∫
d3xψ(ν)†

p (x, t)H(p′)ψ
(ν′)
p′ (x, t) . (10.397)

Here we use the fact that the plane waves ψ
(ν′)
p′ (x, t) from (10.326) are eigenfunctions of the

helicity operator of first quantisation according to (10.366):

H(p′)ψ
(ν′)
p′ (x, t) = ην′ ψ

(ν′)
p′ (x, t) . (10.398)

Thus, with this and the orthonormality relation (10.327) the helicity operator of second quan-

tisation (10.397) reads

ĥ =
4∑

ν=1

4∑

ν′=1

∫
d3p

∫
d3p′ â(ν)†

p â
(ν′)
p′ εν′ην′

∫
d3xψ(ν)†

p (x, t)ψ
(ν′)
p′ (x, t) (10.399)

=
4∑

ν=1

∫
d3p ενην â

(ν)†
p â(ν)

p =

∫
d3p

(
2∑

ν=1

(−1)ν+1

2
â(ν)†
p â(ν)

p +
4∑

ν=3

(−1)ν+1

2
â(ν)†
p â(ν)

p

)
.
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Figure 10.2: Schematic sketch of the Dirac sea, which models the physical vacuum as an infinite

sea of particles with negative energy.

Note that we have used in the last step the abbreviations (10.322) and (10.367). The result

(10.399) means that the fermionic particles with ν = 1, 3 (ν = 2, 4) have supposedly the helicity

+1/2 (−1/2).

Finally, we conclude this section by summarizing that, indeed, the second quantized operators

for the charge (10.389), the energy (10.392), the momentum (10.395), and the helicity (10.399)

have turned out to not explicitly depend on time. This reflects that these second quantized

operators correspond to conserved quantities.

10.19 Dirac Sea

Within the framework of the canonical field quantisation, the vacuum state |0〉V is usually

defined by the fact that it does not contain any particle. This is guaranteed provided that all

annihilation operators â
(ν)
p annul the vacuum state |0〉V :

â(ν)
p |0〉V = 0 for all ν,p . (10.400)

On the other, in the second quantized Dirac theory we are confronted with the fact that particles

with both positive and negative energies appear, see Eq. (10.392). In order to provide a physical

interpretation for the latter observation, Paul Dirac assumed in 1930 that instead of the vacuum

state |0〉V a physical vacuum state |0〉P is realised in nature. It is defined by the condition that

all states with negative energies, i.e. those with ν = 3, 4, are occupied, forming the so-called

Fermi sea, see Fig. 10.2:

|0〉P =
∏

ν=3,4

∏

p

â(ν)†
p |0〉V . (10.401)
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Here, a continuous product is formed with respect to all momenta p. Dirac justifies this

transition from the vacuum state |0〉V to the physical vacuum state |0〉P by the argument that

the Dirac sea is always present and can, therefore, not be measured in any experiment, Thus,

the infinitely large energy or charge of the Dirac sea can be renormalised.

An immediate consequence of the definition of the physical vacuum state |0〉P in (10.401) is

that it is annulled by the annihilation operators â
(ν)
p for ν = 1, 2 because of (10.400) and by

the creation operators â
(ν)†
p for ν = 3, 4 due to the anti-commutator algebra (10.387):

â(ν)
p |0〉P = 0 for all ν = 1, 2 and p ; â(ν)†

p |0〉P = 0 for all ν = 3, 4 and p . (10.402)

If one takes into account the anti-commutator algebra (10.386)–(10.388) and the property

(10.402) of the physical vacuum |0〉P , a reinterpretation of the annihilation and creation opera-

tors becomes possible. While â
(ν)
p and â

(ν)†
p for ν = 1, 2 continue to be considered as annihilation

and creation operators of particles, â
(ν)
p and â

(ν)†
p for ν = 3, 4 can now be interpreted inversely

as the creation and annihilation operators of particles. For instance, applying â
(ν)
p for ν = 3, 4

to the physical vacuum state (10.401) annihilates a particle in the Dirac sea of Fig. 10.2, which

corresponds to the creation of a hole.

Consequently, by convention we consider in the Dirac hole theory that the indices ν = 1, 2

(ν = 3, 4) describe particles (antiparticles), for instance electrons (positrons) with spin up and

down. The double role of the expansion operators â
(ν)
p and â

(ν)†
p as creation and annihilation

operators, respectively, makes the theory at a first glance confusing. Therefore, it is suggestive

to introduce different symbols in order to discriminate already from the notation between the

operators of particles and antiparticles. For the particles we use from now on the following

definition for the creation operators

â(1)†
p = b̂(1)†

p , â(2)†
p = b̂(2)†

p (10.403)

and for the annihilation operators

â(1)
p = b̂(1)

p , â(2)
p = b̂(2)

p . (10.404)

Correspondingly, we introduce for the antiparticles the creation operators

â(3)
p = d̂(1)†

p , â(4)
p = d̂(2)†

p (10.405)

and the annihilation operators

â(3)†
p = d̂(1)

p , â(4)†
p = d̂(2)

p . (10.406)

For ν = 1, 2 this redefinition just corresponds to a simple renaming. But for ν = 3, 4 the

creation and annihilation operators exchange their roles. Note that the anti-commutator algebra

(10.386)–(10.388) remains invariant due to this redefinition, since creation and annihilation
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operators appear there on equal footing:

[
b̂(ν)
p , b̂

(ν′)
p′

]
+

=
[
b̂(ν)
p , d̂

(ν′)
p′

]
+

=
[
d̂(ν)
p , d̂

(ν′)
p′

]
+

=
[
b̂(ν)
p , d̂

(ν′)†
p′

]
+

= 0 , (10.407)
[
b̂(ν)†
p , b̂

(ν′)†
p′

]
+

=
[
b̂(ν)†
p , d̂

(ν′)†
p′

]
+

=
[
d̂(ν)†
p , d̂

(ν′)†
p′

]
+

=
[
b̂(ν)†
p , d̂

(ν′)
p′

]
+

= 0 , (10.408)
[
b̂(ν)
p , b̂

(ν′)†
p′

]
+

=
[
d̂(ν)
p , d̂

(ν′)†
p′

]
+

= δνν′δ(p− p′) . (10.409)

The physical vacuum state |0〉P is now determined by the fact that it is annulled by the

annihilation operators b̂
(ν)
p , d̂

(ν)
p of both the particles and the antiparticles:

b̂(ν)
p |0〉P = 0 , (10.410)

d̂(ν)
p |0〉P = 0 . (10.411)

The Hamilton operator (10.392) of the second quantisation has both positive and negative en-

ergy values. Due to the redefinition of second quantized operators (10.403)–(10.406) it changes

into

Ĥ =
2∑

ν=1

∫
d3pEp

(
b̂(ν)†
p b̂(ν)

p − d̂(ν)
p d̂(ν)†

p

)
. (10.412)

But, taking into account the anti-commutator algebra (10.409), the expression (10.412) for the

Hamilton operator is transformed into:

Ĥ =
2∑

ν=1

∫
d3pEp

(
b̂(ν)†
p b̂(ν)

p + d̂(ν)†
p d̂(ν)

p

)
−

2∑

ν=1

∫
d3pEp δ(0) . (10.413)

The expectation value of this Hamilton operator with respect to the physical vacuum state |0〉P
reads due to (10.410) and (10.411)

P 〈0| Ĥ |0〉P = −
2∑

ν=1

∫
d3pEp δ(0) . (10.414)

First of all we note that the vacuum energy for the fermions of the Dirac theory turns out to be

negative in contrast to the bosonic cases of the Klein-Gordon theory in (8.118) and the Maxwell

theory in (9.159). This is an immediate consequence of having an underlying anti-commutator

algebra instead of a commutator algebra. But also in the fermionic case the vacuum energy

(10.414) is divergent due to two reasons. On the one hand the respective momentum integral

over the relativistic energy-momentum dispersion (10.299) is divergent and on the other hand

the factor δ(0) is divergent as well. The renormalisation of the Hamilton operator (10.413) is

performed by simply subtracting this infinitely large expectation value (10.414), yielding the

normal-ordered Hamilton operator

: Ĥ : = Ĥ − P 〈0| Ĥ |0〉P =
2∑

ν=1

∫
d3pEp

(
b̂(ν)†
p b̂(ν)

p + d̂(ν)†
p d̂(ν)

p

)
. (10.415)
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This physical Hamilton operator is positive definite as both particles and antiparticles have the

same energy Ep > 0.

Quite correspondingly, the charge operator Q̂, the momentum operator P̂ , and the helicity

operator from (10.389), (10.395), and (10.399) change due to the redefinition of second quantized

operators (10.403)–(10.406) to

Q̂ =
2∑

ν=1

∫
d3p

(
b̂(ν)†
p b̂(ν)

p + d̂(ν)
p d̂(ν)†

p

)
, (10.416)

P̂ =
2∑

ν=1

∫
d3pp

(
b̂(ν)†
p b̂(ν)

p − d̂(ν)
p d̂(ν)†

p

)
, (10.417)

ĥ =
2∑

ν=1

∫
d3p

(−1)ν+1

2

(
b̂(ν)†
p b̂(ν)

p + d̂(ν)
p d̂(ν)†

p

)
. (10.418)

Applying the anti-commutator algebra (10.409) yields

Q̂ =
2∑

ν=1

∫
d3p

(
b̂(ν)†
p b̂(ν)

p − d̂(ν)†
p d̂(ν)

p

)
+

2∑

ν=1

∫
d3p δ(0) , (10.419)

P̂ =
2∑

ν=1

∫
d3pp

(
b̂(ν)†
p b̂(ν)

p + d̂(ν)†
p d̂(ν)

p

)
−

2∑

ν=1

∫
d3pp δ(0) , (10.420)

ĥ =
2∑

ν=1

∫
d3p

(−1)ν+1

2

(
b̂(ν)†
p b̂(ν)

p − d̂(ν)†
p d̂(ν)

p

)
+

2∑

ν=1

(−1)ν+1

2

∫
d3p δ(0) . (10.421)

The charge operator Q̂ can be renormalised by subtracting its divergency, which amount to

going over to the normal ordered charge operator

: Q̂ : = Q̂− P 〈0| Q̂ |0〉P =
2∑

ν=1

∫
d3p
(
b̂(ν)†
p b̂(ν)

p − d̂(ν)†
p d̂(ν)

p

)
. (10.422)

In contrast to that a renormalisation of the momentum operator P̂ is not necessary, since

the expectation value of (10.420) with respect to the physical vacuum state |0〉P vanishes due

to symmetry reasons in the momentum integral. Thus, the momentum operator (10.420) is

already normal ordered:

: P̂ : = P̂ =
2∑

ν=1

∫
d3pp

(
b̂(ν)†
p b̂(ν)

p + d̂(ν)†
p d̂(ν)

p

)
. (10.423)

We conclude that particles carry the charge +1 and possess the momentum p, while antiparticles

have the negative charge −1 and also possess the momentum p. And, finally, we recognize that

also a renormalization of the helicity operator ĥ is superfluous as the expectation value of

(10.421) with respect to the physical vacuum state |0〉P vanishes due to symmetry reasons in

the discrete sum. Thus, the helicity operator (10.421) is already normal ordered:

: ĥ : = ĥ =
2∑

ν=1

∫
d3p

(−1)ν+1

2

(
b̂(ν)†
p b̂(ν)

p − d̂(ν)†
p d̂(ν)

p

)
. (10.424)
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This means that particles with ν = 1 (ν = 2) and antiparticles with ν = 2 (ν = 1) have a

positive (negative) helicity.

10.20 Propagator as Green Function

Analogous to the Klein-Gordon or the Maxwell propagator, also the Dirac propagator is defined

as the expectation value of the time-ordered product of the field operators ψ̂α(x, t) and ψ̂β(x′, t′)

with respect to the physical vacuum |0〉P :

Sαβ(x, t; x′, t′) = P

〈
0
∣∣∣T̂
(
ψ̂α(x, t)ψ̂β(x′, t′)

)∣∣∣ 0
〉
P
. (10.425)

We emphasize that the definition (8.123) of two time-dependent operators Â(t) and B̂(t′) in

the context of bosonic operators is not valid for fermionic operators, but is given instead by

T̂
(
Â(t) B̂(t′)

)
= Θ(t− t′) Â(t) B̂(t′)−Θ(t′ − t) B̂(t′) Â(t) (10.426)

with the Heaviside function (8.124). Note the appearance of the minus in (10.426), which

reflects the anti-commutativity of fermionic operators. Due to (10.426) the Dirac propagator

(10.425) reads explicitly

Sαβ(x, t;x′, t′) = Θ(t− t′)P
〈

0
∣∣∣ψ̂α(x, t)ψ̂β(x′, t′)

∣∣∣ 0
〉
P
−Θ(t′ − t)P

〈
0
∣∣∣ψ̂β(x′, t′)ψ̂α(x, t)

∣∣∣ 0
〉
P
.(10.427)

At first we derive the equation of motion for the Dirac propagator by performing the time

derivative of (10.427) and by taking into account (8.127):

ih̄
∂

∂t
Sαβ(x, t; x′, t′) = ih̄δ(t− t′)P

〈
0

∣∣∣∣
[
ψ̂α(x, t), ψ̂β(x′, t′)

]
+

∣∣∣∣ 0
〉

P

(10.428)

+Θ(t− t′)P
〈

0

∣∣∣∣∣ih̄
∂ψ̂α(x, t)

∂t
ψ̂β(x′, t′)

∣∣∣∣∣ 0
〉

P

−Θ(t′ − t)P
〈

0

∣∣∣∣∣ψ̂β(x′, t′)ih̄
∂ψ̂α(x, t)

∂t

∣∣∣∣∣ 0
〉

P

.

With the definition of the Dirac adjoint Dirac spinor (10.92), the equal-time anti-commutator

algebra (10.375), the Heisenberg equation of the Dirac spinor (10.380), and (10.425) we then

yield

ih̄
∂

∂t
Sαβ(x, t;x′, t′) =

4∑

γ=1

(
−ih̄cααγ∇ +Mc2βαγ

)
Sγβ(x, t;x′, t′) + ih̄γ0

αβδ(t− t′)δ(x− x′) .(10.429)

Thus, the Dirac propagator is just the Green function of the Dirac equation, which follows

from (10.88), (10.249), and (10.250). Multiplying (10.429) from the left by γ0/c and taking

into account (10.251), (10.252) the equation of motion of the Dirac propagator can also be

rewritten in a manifestly covariant form:

(ih̄γµ∂µ −Mc)S(x;x′) = ih̄δ(x− x′) . (10.430)
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10.21 Propagator Calculation

In order to derive a Fourier representation for the Dirac propagator, we must first transfer the

Dirac reinterpretation for the creation and annihilation operators â
(ν)†
p and â

(ν)
p to the plane

wave expansions (10.382) and (10.383) of the field operator ψ̂(x, t) and its adjoint ψ̂†(x, t). To

this end we introduce the following notation for the plane waves of the particles

u(1)
p (x, t) = ψ(1)

p (x, t) , u(2)
p (x, t) = ψ(2)

p (x, t) (10.431)

and, correspondingly, for the antiparticles

v(1)
p (x, t) = ψ(3)

p (x, t) , v(2)
p (x, t) = ψ(4)

p (x, t) . (10.432)

Taking into account (10.403)–(10.406) the expansions (10.382), (10.383) then merge into

ψ̂(x, t) =
2∑

ν=1

∫
d3p
[
u(ν)
p (x, t)b̂(ν)

p + v(ν)
p (x, t)d̂(ν)†

p

]
, (10.433)

ψ̂(x, t) =
2∑

ν=1

∫
d3p
[
u(ν)
p (x, t)b̂(ν)†

p + v(ν)
p (x, t)d̂(ν)

p

]
. (10.434)

Now we can insert (10.433) and (10.434) into (10.427). As the annihilation operators b̂
(ν)
p ,

d̂
(ν)
p annul the ket vacuum state |0〉P according to (10.410), (10.411) and, correspondingly, the

creation operators b̂
(ν)†
p , d̂

(ν)†
p annul the bra vacuum state P 〈0|, we get

Sαβ(x, t; x′, t′) = Θ(t− t′)
2∑

ν=1

2∑

ν′=1

∫
d3p

∫
d3p′ u(ν)

pα(x, t)u
(ν′)
p′β (x′, t′)P 〈0| b̂(ν)

p b̂
(ν′)†
p′ |0〉P (10.435)

−Θ(t′ − t)
2∑

ν=1

2∑

ν′=1

∫
d3p

∫
d3p′ v

(ν′)
p′β (x′, t′)v(ν)

pα(x, t)P 〈0| d̂(ν′)
p′ d̂

(ν)†
p |0〉P .

Due to the anti-commutator algebra (10.409) this reduces to

Sαβ(x, t; x′, t′) =
2∑

ν=1

∫
d3p
[
Θ(t− t′)u(ν)

pα(x, t)u
(ν)
pβ (x′, t′)−Θ(t′ − t)v(ν)

pα(x, t)v
(ν)
pβ (x′, t′)

]
.(10.436)

Inserting the plane waves (10.326) into (10.436) and considering (10.431) as well as (10.432)

one obtains for the Fourier representation of the Dirac propagator

Sαβ(x, t; x′, t′) =

∫
d3p

Mc2

(2πh̄)3Ep

(10.437)

×
{

Θ(t− t′)e−i[Ep(t−t′)−p(x−x′)/h̄]P u
αβ(p)−Θ(t′ − t)e+i[Ep(t−t′)−p(x−x′)/h̄]P v

αβ(p)
}
,

where the following polarisation sums for both particles and antiparticles are introduced:

P u
αβ(p) =

2∑

ν=1

u(ν)
pα u

(ν)
pβ =

2∑

ν=1

ψ(ν)
pα ψ

(ν)

pβ , (10.438)

P v
αβ(p) =

2∑

ν=1

v(ν)
pα v

(ν)
pβ =

4∑

ν=3

ψ(ν)
pα ψ

(ν)

pβ . (10.439)
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In order to evaluate these polarisation sums we have to perform several auxiliary calculations.

To this end we start with the Dirac adjoint spinor amplitudes resulting from (10.316) with the

help of (10.95) and (10.103):

ψ
(ν)

p = ψ(ν)†
p γ0 =

1√
2

(
χ†
(

(−1)ν+1

2

)√
pσ̃

Mc
, χ†
(

(−1)ν+1

2

)√
pσ

Mc

)
for ν = 1, 2 , (10.440)

ψ
(ν)

p = ψ(ν)†
p γ0 =

1√
2

(
−χc†

(
(−1)ν+1

2

)√
pσ̃

Mc
, χc†

(
(−1)ν+1

2

)√
pσ

Mc

)
for ν = 3, 4 .(10.441)

We also note that the bi-spinors χ(±1/2) are complete:

2∑

ν=1

χ

(
(−1)ν+1

2

)
χ†
(

(−1)ν+1

2

)
= χ

(
1

2

)
χ†
(

1

2

)
+ χ

(
−1

2

)
χ†
(
−1

2

)
= I . (10.442)

In fact, for the quantisation of the spin 1/2 with respect to the direction of the momentum p

we obtain according to (10.353)
(

cos( θ
2
)e−iφ/2

sin( θ
2
)e+iφ/2

)(
cos

(
θ

2

)
e+iφ/2, sin

(
θ

2

)
e−iφ/2

)

+

(
− sin( θ

2
)e−iφ/2

cos( θ
2
)e+iφ/2

)(
− sin

(
θ

2

)
e+iφ/2, cos

(
θ

2

)
e−iφ/2

)
=

(
1 0

0 1

)
= I . (10.443)

Furthermore, from the completeness of the bi-spinors χ(±1/2) in (10.442) we then conclude

the completeness of the charge-conjugated bi-spinors χc(±1/2):

2∑

ν=1

χc
(

(−1)ν+1

2

)
χc†
(

(−1)ν+1

2

)
=

2∑

ν=1

cχ∗
(

(−1)ν+1

2

)
χT
(

(−1)ν+1

2

)
c†

= c

[
2∑

ν=1

χ

(
(−1)ν+1

2

)
χ†
(

(−1)ν+1

2

)]T
c† = cIc† = cc† = I . (10.444)

After these preparations, the polarisation sum of the particles is calculated as follows. At first,

we insert (10.315) and (10.440) in (10.438):

P u(p) =
1

2

( √
pσ
Mc√
pσ̃
Mc

)
2∑

ν=1

χ

(
(−1)ν+1

2

)
χ†
(

(−1)ν+1

2

)(√
pσ̃

Mc
,

√
pσ

Mc

)
. (10.445)

Due to the completeness relation (10.442) this reduces to

P u(p) =
1

2

( √
pσ
Mc√
pσ̃
Mc

)(√
pσ̃

Mc
,

√
pσ

Mc

)
=

1

2



√

pσ pσ̃
(Mc)2

pσ
Mc

pσ̃
Mc

√
pσ̃ pσ
(Mc)2


 . (10.446)

And, finally, using the side calculation (10.304) we yield with the Dirac matrices (10.95) and

the shortcut notation with the Feynman dagger (10.100)

P u(p) =
1

2

[
pµ
Mc

(
O σµ

σ̃µ O

)
+

(
I O

O I

)]
=
pµγ

µ +Mc

2Mc
=
/p+Mc

2Mc
. (10.447)
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The polarisation sum of the antiparticles is calculated along similar lines. Inserting (10.316)

and (10.441) in (10.439) we get

P v(p) =
1

2

( √
pσ
Mc

−
√

pσ̃
Mc

)
2∑

ν=1

χc
(

(−1)ν+1

2

)
χc†
(

(−1)ν+1

2

)(
−
√

pσ̃

Mc
,

√
pσ

Mc

)
, (10.448)

which reduces according to the completeness relation (10.444)

P v(p) =
1

2

( √
pσ
Mc

−
√

pσ̃
Mc

)(
−
√

pσ̃

Mc
,

√
pσ

Mc

)
=

1

2


 −

√
pσ pσ̃
(Mc)2

pσ
Mc

pσ̃
Mc

−
√

pσ̃ pσ
(Mc)2


 . (10.449)

With the side calculation (10.304), the Dirac matrices (10.95), and the shortcut notation with

the Feynman dagger (10.100) we finally obtain

P v(p) =
1

2

[
pµ
Mc

(
O σµ

σ̃µ O

)
−
(

I O

O I

)]
=
pµγ

µ −Mc

2Mc
=
/p−Mc

2Mc
. (10.450)

A comparison of (10.447) and (10.450) reveals that there is a simple relationship between the

polarisation sums of the particles and the antiparticles:

P v(p) = −P u(−p) . (10.451)

Using (10.451) in (10.437), the minus sign between the polarisation sums of the particles and

antiparticles compensates the minus sign, which originally stems from the definition of the

time-ordered product of fermionic operators in (10.426), yielding

Sαβ(x, t; x′, t′) =

∫
d3p

Mc2

(2πh̄)3Ep

×
{

Θ(t− t′)e−i[Ep(t−t′)−p(x−x′)/h̄]P u
αβ(p) + Θ(t′ − t)e+i[Ep(t−t′)−p(x−x′)/h̄]P u

αβ(−p)
}
. (10.452)

It turns out that this form of the Dirac propagator is universally valid for massive particles

with arbitrary spin. The respective spin dependencies are hidden in the polarisation sum of the

particles. For example, the result (10.452) agrees with the Klein-Gordon propagator (8.138)

with the plane waves (8.112) provided that the polarisation sum is identified according to

P u
αβ(p) = 1.

10.22 Four-Dimensional Fourier Representation

Substituting the explicit form of the polarisation sum of the particles (10.447) into (10.452),

one obtains

Sαβ(x, t; x′, t′) =

∫
d3p

Mc2

(2πh̄)3Ep

{
Θ(t− t′)e−i[Ep(t−t′)−p(x−x′)]/h̄ pµγ

µ
αβ +Mcδαβ

2Mc

+ Θ(t′ − t)e+i[Ep(t−t′)−p(x−x′)]/h̄ −pµγ
µ
αβ +Mcδαβ

2Mc

}
. (10.453)
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The four-momentum vector in the polarisation sum of the particles can now be understood as

the effect of applying the four-momentum operator on the plane waves, see (6.99):

Sαβ(x, t; x′, t′) =

∫
d3p

Mc2

(2πh̄)3Ep

{
Θ(t− t′)

ih̄∂µγ
µ
αβ +Mcδαβ

2Mc
e−i[Ep(t−t′)−p(x−x′)/h̄]

+Θ(t′ − t)
ih̄∂µγ

µ
αβ +Mcδαβ

2Mc
e+i[Ep(t−t′)−p(x−x′)/h̄]

}
. (10.454)

As now both terms involve the same differential operator it is suggestive to bring it in front

of the momentum integral. Note that this manipulation leads to an additional term due to

applying the time derivative upon the Heavside functions. But one can convince oneself that

this additional term vanishes due to the odd symmetry of the respective momentum integral.

With this we yield

Sαβ(x, t; x′, t′) =
ih̄∂µγ

µ
αβ +Mcδαβ

2Mc

∫
d3p

Mc2

(2πh̄)3Ep

(10.455)

×
{

Θ(t− t′)e−i[Ep(t−t′)−p(x−x′)/h̄] + Θ(t′ − t)e+i[Ep(t−t′)−p(x−x′)/h̄]
}
.

The remaining momentum integral just represents the Klein-Gordon propagator as discussed

below Eq. (10.452). Thus, the Dirac propagator can be obtained directly from the Klein-Gordon

propagator by applying the following differential rule:

Sαβ(x, t; x′, t′) =
ih̄∂µγ

µ
αβ +Mcδαβ

2Mc
G(x, t; x′, t′) . (10.456)

Since we have already found a covariant formulation for the Klein-Gordon propagator in Sec-

tion 8.12, also the Dirac propagator can be formulated covariantly according to (10.456):

S(x;x′) =
ih̄∂µγ

µ +Mc

2Mc
G(x;x′) . (10.457)

Note that also (10.457) can be generalized to any massive particles with arbitrary spin according

to the remarks below (10.452):

S(x;x′) = P u(ih̄∂)G(x;x′) . (10.458)

Indeed, inserting the explicit form of the polarisation sum of the particles (10.447) for the

Dirac theory in (10.458) yields back (10.457). Substituting the four-dimensional Fourier rep-

resentation of the Klein-Gordon propagator (8.168) into (10.457), we obtain a corresponding

four-dimensional Fourier representation of the Dirac propagator:

S(x;x′) =
ih̄∂µγ

µ +Mc

2Mc
ih̄2Mc lim

η↓0

∫
d4p

(2πh̄)4

1

p2 −M2c2 + iη
e−ip(x−x

′)/h̄

= ih̄ lim
η↓0

∫
d4p

(2πh̄)4

pµγ
µ +Mc

p2 −M2c2 + iη
e−ip(x−x

′)/h̄ . (10.459)

With the help of the Clifford algebra (10.96) of the Dirac matrices, the denominator of (10.459)

can be transformed as follows:

p2 −M2c2 = pµpνg
µν −M2c2 =

1

2
pµpν (γµγν + γνγµ)−M2c2

= (pµγ
µ) (pνγ

ν)− (Mc)2 = (pµγ
µ −Mc) (pνγ

ν +Mc) . (10.460)
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In the η ↓ 0 limit, the numerator in (10.459) can be cancelled by a factor of the denominator in

(10.460). With this the Dirac propagator has the following compact four-dimensional Fourier

representation:

S(x;x′) = lim
η↓0

∫
d4p

(2πh̄)4

ih̄

pµγµ −Mc+ iη
e−ip(x−x

′)/h̄ . (10.461)

In this form, the Dirac propagator obviously satisfies the equation of motion (10.430):

(ih̄γµ∂µ −Mc)S(x;x′) = ih̄

∫
d4p

(2πh̄)4
e−ip(x−x

′)/h̄ = ih̄ δ(x− x′) . (10.462)





Part III:

Interacting Relativistic Fields

and Their Quantization

61





Chapter 11

Relativistic Light-Matter Interaction

Quantum electrodynamics is the relativistic quantum field theory of electrodynamics. It de-

scribes how light and matter interact and represents historically the first successful many-body

theory, which unites quantum mechanics and special relativity. It involves all phenomena,

where electrically charged particles interact by means of an exchange of photons. This chapter

focuses on working out the relativistic light-matter interaction consecutively at first on a classi-

cal, then on a first quantized, and, finally, on a second quantized description level. At all three

stages the common guiding principle to introduce an interaction between the free theories of

light and matter consists of a minimal coupling scheme, which is based on a local gauge theory.

As the main result we derive the second quantized Hamilton operator underlying quantum

electrodynamics. Apart from the free Maxwell and the free Dirac theory, which have already

been discussed in the two previous chapters, we also obtain an interaction term, whose physical

consequences have to be studied perturbatively. To this end we concisely review the Dirac

interaction picture, which allows to treat the relativistic light-matter interaction systematically

order by order. As a special case we outline how to analyse a generic scattering problem with

the help of a corresponding perturbative expansion of the scattering operator, whose matrix

elements determine the cross section.

11.1 Relativistic Mechanics

After having summarized concisely the basic principles of relativistic mechanics, we discuss first

a free particle and then we introduce the description of a charged particle.

11.1.1 Basic Principles

The trajectory of a classical relativistic particle is described by specifying both the time coor-

dinate t and the space coordinates x as a function of some parameter σ:

(xλ(σ)) = (ct(σ),x(σ)) . (11.1)
217
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Thus, the velocity with respect to this trajectory parameter σ reads

(
ẋλ(σ)

)
=

(
dxλ(σ)

dσ

)
=

(
c
dt(σ)

dσ
,
dx(σ)

dσ

)
. (11.2)

The action represents a functional of the trajectory in the four-dimensional space-time

A = A
[
xλ(•)

]
(11.3)

and is defined as the integral of the Lagrange function with respect to the chosen trajectory

parameter σ:

A =

∫ σf

σi

dσL
(
xλ(σ); ẋλ(σ)

)
. (11.4)

Then the Hamilton principle leads to the underlying equations of motion in form of the Euler-

Lagrange equations:

δA
δxµ(σ)

=
∂L

∂xµ(σ)
− d

dσ

∂L

∂ẋµ(σ)
= 0 . (11.5)

Note that the Hamilton principle exhibits a mechanical gauge invariance. Namely, regauging

the Lagrange function according to

L′
(
xλ; ẋλ

)
= L

(
xλ; ẋλ

)
+

d

dσ
χ
(
xλ
)

= L
(
xλ; ẋλ

)
+ ∂νχ

(
xλ
)
ẋν (11.6)

only leads to additional surface terms of the action (11.3)

A′ = A + χ
(
xλ(σf )

)
− χ

(
xλ(σi)

)
(11.7)

and, therefore, does not change the equations of motion. In fact, for the transformed Lagrange

function (11.6) one obtains the same Euler-Lagrange equations

∂L′

∂xµ(σ)
− d

dσ

∂L′

∂ẋµ(σ)
=

∂L

∂xµ(σ)
+ ∂µ∂νχ(xλ(σ))ẋν(σ)− d

dσ

∂L

∂ẋµ(σ)
− ∂ν∂µχ(xλ(σ))ẋν(σ), (11.8)

since the gauge function χ
(
xλ
)

is supposed to be twice continuously differentiable and therefore

satisfies the Schwarz theorem:

(∂µ∂ν − ∂ν∂µ) χ
(
xλ
)

= 0 . (11.9)

In addition to this mechanical gauge invariance, relativistic mechanics has even further sym-

metries that take into account the principles of special relativity. Since the laws of physics

are supposed to have the same form in all inertial frames, the action must be invariant under

Lorentz transformations. In addition, however, the description of the trajectory should also be

independent of the choice of the parameter σ, so that the action must also be form invariant

under any transformation of the trajectory parameter:

σ = σ (σ′) . (11.10)
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This reparametrisation invariance is guaranteed by the fact that the Lagrange function repre-

sents a homogeneous function of the velocities of first order:

L
(
xλ;αẋλ

)
= αL

(
xλ; ẋλ

)
. (11.11)

Then applying (11.10) and (11.11) to the action (11.4) yields

A =

∫ σf

σi

dσL
(
xλ(σ); ẋλ(σ)

)
=

∫ σ′f

σ′i

dσ′
dσ

dσ′
L

(
xλ(σ′); ẋλ(σ′)

dσ′

dσ

)

=

∫ σ′f

σ′i

dσ′L(xλ
(
σ′); ẋλ(σ′)

)
. (11.12)

Furthermore, differentiating the condition (11.11) with respect to α and evaluating it then at

the point α = 1 yields the corresponding Euler theorem. It states that the Hamilton function

of relativistic mechanics vanishes:

H =
∂L

∂ẋµ
ẋµ − L = 0 . (11.13)

This result is at first glance puzzling in view of the question how a relativistic mechanical

systems is supposed to be quantized. The generic operator approach to determine from the

underlying Hamilton function a Hamilton operator seems not to be possible due to (11.13). This

can be considered as a motivation of Richard Feynman to work out an alternative formulation

of quantum mechanics, which does not rely on Hamilton mechanics but is based instead on

Lagrange mechanics.

11.1.2 Free Particle

Let us consider at first a free relativistic particle of mass M , whose action is motivated as

follows. With the help of the Minkowski metric gµν one can determine the distance between

two inifinitesimally adjacent space-time points xµ and xµ + dxµ according to

ds =
√
gµν dxµdxν . (11.14)

Decomposing this Lorentz invariant length element ds into the temporal and spatial contribu-

tions

ds =
√
c2dt2 − dx2 , (11.15)

its physical meaning becomes apparent. Considering two infinitesimally adjacent space-time

points in the rest frame of the particle, where we have dxR = 0, then ds becomes the proper

length and, correspondingly, τ = ds/c denotes the proper time. The length of a trajectory

between two different space-time points follows then from integrating the proper length (11.14)

with respect to the chosen trajectory parameter σ:
∫ sf

si

ds =

∫ σf

σi

dσ
ds

dσ
=

∫ σf

σi

dσ
√
gµν ẋµ(σ)ẋν(σ) . (11.16)



220 CHAPTER 11. RELATIVISTIC LIGHT-MATTER INTERACTION

We remark that the proper length of the trajectory (11.16) is a Lorentz invariant quantity,

which is also reparametrization invariant as the integrand is homogeneous in the velocities of

first order in the sense of (11.11). This suggests that (11.16) is a viable candidate for an action

in relativistic mechanics. Therefore, we argue now that

A(0) = −Mc

∫ sf

si

ds = −Mc

∫ σf

σi

dσ
√
gµν ẋµ(σ)ẋν(σ) (11.17)

represents the action of a free relativistic particle of mass M . We justify our choice by proving

that it has the correct non-relativistic limit. Using the time t as the trajectory parameter σ,

(11.17) namely leads to

A(0) = −Mc2

∫ tf

ti

dt

√
1− ẋ(t)2

c2
, (11.18)

so that the limes c→∞ yields the leading contribution

A(0) =

∫ tf

ti

dt

[
M

2
ẋ(t)2 −Mc2

]
+ . . . . (11.19)

This is the action of a free non-relativistic particle of mass M for which the energy scale is just

shifted by the rest energy Mc2.

11.1.3 Charged Particle

If a non-relativistic particle has a charge q, its interaction with a scalar potential ϕ(x, t) reads

A(int) = −q
∫ tf

ti

dt ϕ(x(t), t) . (11.20)

Taking into account (9.34) and (11.1), this can also be written as

A(int) = −q
∫ σf

σi

dσ ẋ0(σ)A0(xλ(σ)) . (11.21)

Generalising (11.21) in a relativistic covariant way yields the interaction of a relativistic particle

with the entire electromagnetic field, which is described by the four-vector potential Aµ(xλ):

A(int) = −q
∫ σf

σi

dσ ẋµ(σ)Aµ(xλ(σ)) . (11.22)

Thus, one can consider the charge q as a formal coupling constant, which measures the strength

of interaction between the particle four-velocity and the four-vector potential. Note that also

the interaction (11.22) is reparametrisation invariant as its integrand is homogeneous in the

velocities of first order in the sense of (11.11) like the free action (11.17). Adding the free action

(11.17) and the interaction (11.22) leads to a resulting action (11.3) with the Lagrange function

L (xµ; ẋµ) = −Mc
√
gµν ẋµẋν − q Aµ(xλ)ẋµ . (11.23)
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An electromagnetic gauge transformation

A′µ(xλ) = Aµ(xλ) + ∂µΛ(xλ) (11.24)

see (9.42), leads according to (11.4) and (11.23) to a mechanical gauge transformation (11.6),

where the mechanical gauge function χ and the electromagnetic gauge function Λ turn out to

be proportional to each other:

χ
(
xλ
)

= −qΛ(xλ) . (11.25)

Let us form the partial derivatives of the Lagrange function (11.23)

∂L

∂xµ
= −q ∂µAν(xλ)ẋν , (11.26)

∂L

∂ẋµ
= −Mc

gµν ẋ
ν

√
gκλ ẋκẋλ

− qAµ(xλ) . (11.27)

Furthermore, we introduce for the derivative of the proper length s with respect to the trajectory

parameter σ according to (11.14) the shortcut notation

ṡ(σ) =
√
gµν ẋµ(σ)ẋν(σ) . (11.28)

Then the Euler-Lagrange equations (11.5) following from (11.26) and (11.27) read as follows

Mẍµ = M
s̈

ṡ
ẋµ +

qṡ

c
gµκ
[
∂κAν(x

λ)− ∂νAκ(xλ)
]
ẋν . (11.29)

Due to the reparametrization invariance of relativistic mechanics we are free to make a phys-

ically reasonable choice for the trajectory parameter. To this end we choose the trajectory

parameter σ to be the proper time τ = s/c. On the one hand this corresponds to the time

which passes in the rest frame of the moving particle. On the other hand this simplifies the

equations of motion (11.29) due to ṡ = c and s̈ = 0:

Mẍµ = q F µ
ν

(
xλ
)
ẋν . (11.30)

Here the electrodynamic field strength sensor

F µ
ν

(
xλ
)

= gµκ Fκν
(
xλ
)

(11.31)

was introduced as an abbreviation. Note with (9.20) and (11.31) we recognize at the right-hand

side of (11.30) the relativistic generalization of the Lorentz force.

11.1.4 Minimal Coupling

In order to investigate in more detail the description of a charged particle in relativistic me-

chanics we choose the trajectory parameter σ to be the time t in the laboratory frame. Then

the action (11.3), (11.4) reduces to

A = A[x(•)] =

∫ tf

ti

dt L (x(t); ẋ(t); t) (11.32)
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and the Lagrange function (11.23) specializes due to (9.34) and (11.1) to

L = −Mc2

√
1− ẋ2

c2
− qϕ(x, t) + q ẋ A(x, t) . (11.33)

Thus, the canonical momentum reads

p =
∂L

∂ẋ
=

M ẋ√
1− ẋ2/c2

+ qA(x, t) . (11.34)

Here the first term represents the kinetic momentum and the second term the corresponding

contribution of the vector potential, so (11.34) corresponds to

p = pkin + qA(x, t) . (11.35)

In view of performing a Legendre transformation from the Lagrange function to the Hamilton

function, we have to invert the relation (11.34) between the momentum p and the velocity ẋ.

A straight-forward algebraic calculation yields

ẋ =
c [p− qA(x, t)]√

[p− qA(x, t)]2 +M2c2

. (11.36)

Thus, evaluating the Legendre transformation

H = ẋ
∂L

∂ẋ
− L (11.37)

by using (11.33) and (11.36) we obtain for the Hamilton function of a relativistic charged

particle in the electromagnetic field

H = c

√
[p− qA(x, t)]2 +M2c2 + qϕ(x, t) . (11.38)

We remark that this result reduces in the limit c→∞ apart from the rest energy Mc2 to the

familiar non-relativistic expression

H = Mc2 +
[p− qA(x, t)]2

2M
+ qϕ(x, t) + . . . . (11.39)

Furthermore, analogous to (11.35), we interpret (11.38) such that the first term describes the

kinetic energy and the second term the potential energy:

H = Hkin + qϕ(x, t) . (11.40)

Conversely, we read off from (11.35) and (11.40) that a free theory with q = 0 can formally

be transferred into the corresponding interacting one with q 6= 0 by substituting momentum

(energy) via

p → p− qA(x, t) , H → H − qϕ(x, t) . (11.41)

This so-called minimal coupling of charged particle to the electromagnetic field can now be

covariantly formulated in terms of a covariant momentum four-vector (6.16) by taking into

account (9.34) according to

pµ → pµ − qAµ(xλ) . (11.42)

In the following the minimal coupling rule (11.42) is applied to the realm of relativistic quantum

field theory by combining it with the Jordan rule.
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11.2 QED Actions

Quantum electrodynamics describes the interaction between charged massive particles and the

electromagnetic field. One distinguishes, in principle, between scalar quantum electrodynamics

for charged spin 0-particles as, for instance, pions π±, and spinor quantum electrodynamics

for charged spin 1/2-particles as, for instance, electrons e− or positrons e+. As a consequence,

the underlying equations of motion for massive particles and for the electromagnetic field are

coupled by additional interaction terms. In the Lagrangian density this leads to an additional

interaction term in addition to the free Lagrangian density, whose strength depends on the

coupling constant of electrodynamics, i.e. the charge q. In the following, we examine at first

scalar quantum electrodynamics.

11.2.1 Scalar QED

We start with the relativistic covariant action of the free Klein-Gordon field

A [Ψ(•); Ψ∗(•)] =
1

c

∫
d4xL

(
Ψ(xλ), ∂µΨ(xλ); Ψ∗(xλ), ∂µΨ∗(xλ)

)
, (11.43)

where the Lagrange density reads according to Section 8.1

L =
h̄2

2M
gµν∂µΨ∗(xλ)∂νΨ(xλ) − Mc2

2
Ψ∗(xλ)Ψ(xλ) . (11.44)

A minimal coupling of the Klein-Gordon field to the electromagnetic field is now implemented

by combining the substitution rule (11.42) with the Jordan rule, see (6.99):

pµ → ih̄∂µ . (11.45)

This leads to the catchy substitution rule

∂µΨ(xλ) → DµΨ(xλ) , ∂µΨ∗(xλ) → D∗µΨ∗(xλ) , (11.46)

where Dµ denotes the so-called gauge covariant derivative:

Dµ = ∂µ +
iq

h̄
Aµ(xλ) . (11.47)

Applying (11.46) and (11.47) to the Lagrangian density (11.44) we get

L =
h̄

2M
gµν
[
∂µ −

iq

h̄
Aµ(xλ)

]
Ψ∗(xλ)

[
∂ν +

iq

h̄
Aν(x

λ)

]
Ψ(xλ)− Mc2

2
Ψ∗(xλ)Ψ(xλ) , (11.48)

which can be rewritten in a form which resembles that of a free Lagrangian density of the

Klein-Gordon field:

L =
h̄

2M
gµνD∗µΨ∗(xλ)DνΨ(xλ) − Mc2

2
Ψ∗(xλ)Ψ(xλ) . (11.49)
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We now examine the consequences of an electrodynamic gauge transformation (11.24). As the

fields in quantum mechanics are only uniquely determined up to a phase factor, an electro-

dynamic gauge transformation can only change the phase. Supplementing an electrodynamic

gauge transformation (11.24) accordingly with a quantum mechanical gauge transformation

Ψ′(xλ) = exp

[
−iq
h̄

Λ(xλ)

]
Ψ(xλ) , (11.50)

the gauge covariant derivative (11.47) turns out to transform like the Klein-Gordon field Ψ(xλ):

D′µΨ′(xλ) =

[
∂µ +

iq

h̄
Aµ(xλ) +

iq

h̄
∂µ Λ(xλ)

]
exp

[
−iq
h̄

Λ(xλ)

]
Ψ(xλ)

= exp

[
−iq
h̄

Λ(xλ)

]
DµΨ(xλ) . (11.51)

Analogously, one obtains for the adjoint field

Ψ′∗(xλ) = exp

[
iq

h̄
Λ(xλ)

]
Ψ∗(xλ) , (11.52)

D
′∗
µ Ψ′∗(xλ) = exp

[
iq

h̄
Λ(xλ)

]
D∗µΨ∗(xλ) . (11.53)

Then it follows straight-forwardly from (11.50)–(11.52) that the Lagrangian density (11.49) is

invariant under an electrodynamic gauge transformation:

L′ =
h̄

2M
gµνD

′∗
µ Ψ′∗(xλ)D′νΨ

′(xλ)− Mc2

2
Ψ′∗(xλ)Ψ′(xλ)

=
h̄

2M
gµνD∗µΨ(xλ)DνΨ(xλ)− Mc2

2
Ψ∗(xλ) Ψ(xλ) = L . (11.54)

If we consider the four-vector potential Aµ(xλ) not as a given quantity but as a dynamic field,

we must add to the Lagrangian density (11.48) the Lagrangian density of the free Maxwell

field from Subsections 9.5 and 9.6, which is also invariant under the local gauge transformation

(11.24). Accordingly, scalar quantum electrodynamics has the gauge invariant action

A [Ψ(•); Ψ∗(•);Aν(•)] =
1

c

∫
d4xL , (11.55)

where the Lagrange density is of the form

L = L
(
Ψ(xλ), ∂µΨ(xλ); Ψ∗(xλ), ∂µΨ∗(xλ);Aν(x

λ), ∂µAν(x
λ)
)

(11.56)

and reads explicitly

L =
h̄

2M
gµν
(
∂µ −

iq

h̄
Aµ

)
Ψ∗
(
∂ν +

iq

h̄
Aν

)
Ψ− Mc2

2
Ψ∗Ψ− 1

4µ0

FµνF
µν . (11.57)

The Lagrange density thus decomposes according to

L = L(0) + L(int) . (11.58)
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Here L(0) includes the free Lagrange densities of the Klein-Gordon field and the Maxwell field

L(0) =
h̄

2M
gµν∂µΨ∗(xλ)∂νΨ(xλ)− Mc2

2
Ψ∗(xλ)Ψ(xλ)− 1

4µ0

Fµν(x
λ)F µν(xλ) (11.59)

and the interaction term turns out to have the structure

L(int) = −jµ(xλ)Aµ(xλ) . (11.60)

The four-vector potential thus couples to the four-vector current density, which follows from

applying to the free four-vector current density

jµ(xλ) =
ih̄q

2M
gµν
[
Ψ∗(xλ)∂νΨ(xλ)−Ψ(xλ)∂νΨ

∗(xλ)
]
, (11.61)

see Section 8.2, the catchy substitution rule (11.46), (11.47), yielding

jµ(xλ) =
ih̄q

2M
gµν
[
Ψ∗(xλ)∂νΨ(xλ)−Ψ(xλ)∂νΨ

∗(xλ)
]
− q2

M
gµν Aν(x

λ)Ψ∗(xλ)Ψ(xλ) . (11.62)

The respective partial derivatives of the Lagrange density (11.57) read as follows

∂L
∂Aν

=
ih̄q

2M
gνκ Ψ

(
∂κ −

iq

h̄
Aκ

)
Ψ∗ − ih̄q

2M
gνκ Ψ∗

(
∂κ +

iq

h̄
Aκ

)
Ψ , (11.63)

∂L
∂(∂µAν)

= − 1

µ0

F µν , (11.64)

∂L
∂Ψ∗

= − ih̄q
2M

gµν Aµ

(
∂ν +

iq

h̄
Aν

)
Ψ− Mc2

2
Ψ , (11.65)

∂L
∂(∂µΨ∗)

=
h̄2

2M
gµν
(
∂ν +

iq

h̄
Aν

)
Ψ , (11.66)

∂L
∂Ψ

=
ih̄q

2M
gµν Aµ

(
∂ν −

iq

h̄
Aν

)
Ψ− Mc2

2
Ψ∗ , (11.67)

∂L
∂(∂µΨ)

=
h̄2

2M
gµν

(
∂ν −

iq

h̄
Aν

)
Ψ∗ . (11.68)

With this we obtain the Euler-Lagrange equations of scalar quantum electrodynamics. For the

Maxwell field the Euler-Lagrange equations

∂L
∂Aν

− ∂µ
∂L

∂(∂µAν)
= 0 (11.69)

are specified as follows:

∂µF
µν = µ0 g

νκ ih̄q

2M

[
Ψ∗
(
∂κ +

iq

h̄
Aκ

)
Ψ−Ψ

(
∂κ −

iq

h̄
Aκ

)
Ψ∗
]
, (11.70)

and for the Klein-Gordon field we get

∂L
∂Ψ∗

− ∂µ
∂L

∂(∂µΨ∗)
= 0 ⇒ gµν

(
∂µ +

iq

h̄
Aµ

)(
∂ν +

iq

h̄
Aν

)
Ψ +

M2c2

h̄2 Ψ = 0 , (11.71)

∂L
∂Ψ
− ∂µ

∂L
∂(∂µΨ)

= 0 ⇒ gµν
(
∂µ −

iq

h̄
Aµ

)(
∂ν −

iq

h̄
Aν

)
Ψ∗ +

M2c2

h̄2 Ψ∗ = 0 . (11.72)

The equations of motion (11.70) represent inhomogeneous Maxwell equations (9.29) with the

current density (11.62). Furthermore, the equations of motion (11.71) and (11.72) arise from

the free Klein-Gordon equations by applying the catchy substitution rule (11.46), (11.47).
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11.2.2 Spinor QED

Now we construct the corresponding Lagrange density of spinor quantum electrodynamics by

applying the principle of local gauge invariance. The starting point is the Lagrange density of

the free Dirac field, see Sections 10.6 and 10.13:

L = ψ(x)
(
ih̄cγµ∂µ −Mc2

)
ψ(x) . (11.73)

Obviously, this Lagrange density is invariant with respect to a global phase transformation of

the form

ψ′(x) = e−iqΛ/h̄ ψ(x) , ψ
′
(x) = eiqΛ/h̄ ψ(x) , (11.74)

where q denotes the charge of the massive spin 1/2-particle. This global U(1) invariance implies

via the Noether theorem the derivation of the continuity equation of charge conservation for

the free Dirac theory. We now try to achieve that one can choose any phase at any space-time

point, so that the above global phase Λ becomes a space- and time-dependent quantity Λ(x).

Accordingly, we consider the local U(1) phase transformation

ψ′(x) = e−iqΛ(x)/h̄ ψ(x) , ψ
′
(x) = eiqΛ(x)/h̄ ψ(x) . (11.75)

The Lagrange density of the free Dirac field (11.73) is then no longer invariant under such a

local phase transformation, since an additional term appears due to the partial derivative of

the Dirac spinor:

∂µψ
′(x) = e−iqΛ(x)/h̄

[
∂µψ(x)− iq

h̄
∂µΛ(x)ψ(x)

]
(11.76)

and we get

L′ = ψ
′
(x)
(
ih̄cγµ∂µ −Mc2

)
ψ′(x) = L+ qcψ(x)γµ∂µΛ(x)ψ(x) . (11.77)

In order to establish a local gauge invariance, additional fields must be introduced and the

Lagrange density (11.73) must be extended correspondingly. Since the additional term in

(11.77) depends on the gradient of the phase ∂µΛ(x) and, therefore, represents a Lorentz vector,

we introduce a gauge field Aµ(x), which couples to the spinor with the coupling constant q. To

this end we replace the partial derivative of the spinor by

∂µψ(x) → Dµψ(x) , (11.78)

where the gauge covariant derivative of the spinor is defined by

Dµ = ∂µ +
iq

h̄
Aµ(x) . (11.79)

Then we determine the transformation behaviour of the gauge field by requiring that the gauge

covariant derivative of the spinor transforms like the spinor itself:

D′µψ′(x) = e−iqΛ(x)/h̄Dµψ(x) . (11.80)
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Substituting (11.79) into (11.80) then leads to the condition

∂µψ
′(x) +

iq

h̄
A′µ(x)ψ′(x) = eiqΛ(x)/h̄

[
∂µψ(x) +

iq

h̄
Aµ(x)ψ(x)

]
. (11.81)

With the help of (11.75) and (11.76) this reduces, finally, to the gauge transformation

A′µ(x) = Aµ(x) + ∂µΛ(x) . (11.82)

Since the gauge field Aµ(x) transforms just like the four-vector potential of electrodynamics in

(11.24), it is identified with the latter in the following. The substitution rule (11.80), (11.81)

then corresponds to the minimal coupling of the Dirac field to the Maxwell field. For the sake of

completeness we note that the substitution rule for the Dirac adjoint spinor is given analogous

to (11.78) by

∂µψ(x) → D∗µ ψ(x) . (11.83)

The gauge-covariant derivative of the Dirac-adjoint spinor transforms then via

D′∗µ ψ′(x) =

[
∂µ −

iq

h̄
Aµ(x)− iq

h̄
∂µΛ(x)

]
eiqΛ(x)/h̄ ψ(x) = eiqΛ(x)/h̄D∗µψ(x) . (11.84)

Performing the substitution (11.78) in the Lagrange density of the free Dirac field (11.73), we

obtain

L = ψ(x)
(
ih̄cγµDµ −Mc2

)
Ψ(x) . (11.85)

Decomposing the gauge covariant derivative Dµ according to (11.81), then in addition to the

original free Lagrangian density of the Dirac field (11.73) also an interaction term arises:

L = ψ(x)

{
ih̄cγµ

[
∂µ +

iq

h̄
Aµ(x)

]
−Mc2

}
Ψ(x) . (11.86)

If we also consider the vector potential Aµ(x) as a dynamic field, we must add to the Lagrangian

density (11.86) the Lagrangian density of the free Maxwell field. The resulting Lagrangian

density turns out to be then manifestly local gauge invariant due to (11.75), (11.80), and

(11.82). It represents the Lagrangian density of spinor quantum electrodynamics:

L = ψ(x)

{
ih̄cγµ

[
∂µ +

iq

h̄
Aµ(x)

]
−Mc2

}
ψ(x)− 1

4µ0

Fµν(x)F µν(x) . (11.87)

This Lagrange density decomposes according to

L = L(0) + L(int) , (11.88)

where L(0) representing the free Lagrangian density including both the Dirac field and the

Maxwell field

L(0) = ψ(x)
(
ih̄cγµ∂µ −Mc2

)
ψ(x)− 1

4µ0

Fµν(x)F µν(x) (11.89)
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and the interaction term turns out to have the structure

L(int) = −jµ(x)Aµ(x) . (11.90)

The four-vector potential thus couples to the four-current density of the free Dirac field, see

Section 10.10 and 10.13:

jµ(x) = qc ψ(x)γµψ(x) . (11.91)

The respective partial derivatives of the Lagrange density (11.87) lead to

∂L
∂Aν

= −qc ψγνψ , ∂L
∂(∂µAν)

= − 1

µ0

F µν , (11.92)

∂L
∂ψ

=
(
ih̄cγµ∂µ −Mc2

)
ψ − qcγµΨAµ ,

∂L
∂(∂µψ)

= 0 , (11.93)

∂L
∂ψ

= −Mc2 ψ − qc ψ γµAµ ,
∂L

∂(∂µψ)
= ih̄cψ(x)γµ . (11.94)

The Euler-Lagrange equations of spinor quantum electrodynamics thus result in

∂L
∂Aν

− ∂µ
∂L

∂(∂µAν)
= 0 ⇒ ∂µF

µν = µ0qc ψ γ
µψ , (11.95)

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0 ⇒ iγµ
(
∂µ +

iq

h̄
Aµ

)
ψ − Mc

h̄
ψ = 0 , (11.96)

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0 ⇒ i

(
∂µ −

iq

h̄
Aµ

)
ψ γµ +

Mc

h̄
ψ = 0 . (11.97)

The equations of motion (11.95) agree with the inhomogeneous Maxwell equations (9.29) with

the current density (11.91). Furthermore, the equations of motion (11.96) and (11.97) emerge

from the free Dirac equations by applying the minimal couplings (11.78) and (11.83), which

involve the gauge-covariant derivative (11.79) via (11.78) and (11.83).

11.3 QED Hamilton Function

Starting from the Lagrange density of spinor quantum electrodynamics in (11.87), we now

calculate the corresponding Hamilton density. At first, we express the contribution of the free

Maxwell field in terms of the electric field strength E and the magnetic field strength B, see

Section 9.6:

L = ψ
(
ih̄cγµ∂µ −Mc2

)
ψ +

ε0
2

E2 − 1

2µ0

B2 − qc ψ γµψAµ . (11.98)

Then we express the electric field strength E and the magnetic field strength B by the scalar

potential ϕ and the vector potential A due to (9.7) and (9.8), yielding

L = ψ(x, t)
(
ih̄cγµ∂µ −Mc2

)
ψ(x, t) +

ε0
2

[
∂A(x, t)

∂t

]2

+ ε0
∂A(x, t)

∂t
∇ϕ(x, t)

+
ε0
2

[∇ϕ(x, t)]2 − 1

2µ0

[∇×A(x, t)]2 − qc ψ(x, t) γµψ(x, t)Aµ(x, t) . (11.99)
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Note that the Coulomb gauge (9.13) yields a scalar potential, which no longer represents a

dynamic field but is determined by the charge density following from (9.16) and (10.280):

ϕ(x, t) =

∫
d3x′

q ψ†(x′, t)ψ(x′, t)

4πε0|x− x′| . (11.100)

Thus, with the charge density also the scalar potential does not vanish, so the radiation gauge

(9.58) is no longer valid here. The canonical conjugated momentum fields then follow from

(11.99) to be

π(x, t) =
∂L

∂
(
∂ψ(x,t)
∂t

) = ih̄ψ(x, t)γ0 = ih̄ψ†(x, t) , (11.101)

π(x, t) =
∂L

∂
(
∂ψ(x,t)
∂t

) = 0 , (11.102)

π(x, t) =
∂L

∂
(
∂A(x,t)
∂t

) = ε0

[
∂A(x, t)

∂t
+ ∇ϕ(x, t)

]
. (11.103)

Note that the last term in (11.103) did not appear in Section 9.6, as there we considered

the free Maxwell field in vacuum. A subsequent Legendre transformation leads then to the

corresponding Hamilton density:

H = π(x, t)
∂ψ(x, t)

∂t
+
∂ψ(x, t)

∂t
π(x, t) + π(x, t)

∂A(x, t)

∂t
− L . (11.104)

Thus, using (11.99) and (11.101)–(11.104) as well as (10.251) and (10.252) we obtain:

H = ψ†(x, t)
(
−ih̄cα∇ +Mc2β

)
ψ(x, t) +

ε0
2

[
∂A(x, t)

∂t

]2

+
1

2µ0

[∇×A(x, t)]2

−ε0
2

[∇ϕ(x, t)]2 + qψ†(x, t)ψ(x, t)ϕ(x, t) − qc ψ†(x, t)αψ(x, t)A(x, t) . (11.105)

Going over to the Hamiltonian function, we yield by partial integration and by taking into

account the Coulomb gauge (9.13), see Section 9.6:

H =

∫
d3x

{
ψ†(x, t)

(
−ih̄cα∇ +Mc2β

)
ψ(x, t) +

ε0
2

[
∂A(x, t)

∂t

]2

+
1

2µ0

∂kAl(x, t)∂kAl(x, t)

+
ε0
2
ϕ(x, t)∆ϕ(x, t) + qψ†(x, t)ψ(x, t)ϕ(x, t)− qcψ†(x, t)αψ(x, t)A(x, t)

}
. (11.106)

At this stage we use the Poisson equation for a point charge for determining that the Green

function of the Poisson equation is given by the Coulomb potential:

∆
q

4πε0 |x− x′| = − q
ε0
δ(x− x′) ⇒ ∆

1

|x− x′| = −4πδ(x− x′) . (11.107)

Thus, taking into account (11.100) and (11.107) we yield the auxiliary calculation

ε0
2

∫
d3xϕ(x, t)∆ϕ(x, t) =

ε0
2

∫
d3x

∫
d3x′ ϕ(x, t)

qψ†(x′, t)ψ(x′, t)

4πε0
∆

1

|x− x′|

−ε0
2

∫
d3xϕ(x, t)

qψ†(x′, t)ψ(x′, t)

4πε0
4πδ(x− x′) = −q

2

∫
d3xϕ(x, t)ψ†(x, t)ψ(x, t) . (11.108)
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Substituting (11.100) and (11.108) into (11.106), the Hamilton function of spinor quantum

electrodynamics decomposes according to

H = H(0) +H(int) . (11.109)

where H(0) represents the free contributions of both the Dirac field and the Maxwell field:

H(0) =

∫
d3x

[
ψ†(x, t)

(
−ih̄cα∇ +Mc2β

)
ψ(x, t) +

ε0
2

∂Ak(x, t)

∂t

∂Ak(x, t)

∂t

+
1

2µ0

∂kAl(x, t)∂kAl(x, t)

]
. (11.110)

The term H(int) represents the interaction between the Dirac and the Maxwell field:

H(int) = −qc ψ(x, t)γ ψ(x, t)A(x, t)

+
q2

8πε0

∫
d3x

∫
d3x′

ψ(x, t)γ0ψ(x, t)ψ(x′, t)γ0ψ(x′, t)

|x− x′| . (11.111)

The first term in (11.111) arises from the free Hamilton function of the Dirac field in (11.110)

by performing a minimal coupling to the vector potential in accordance with (11.79):

∇ → ∇− iq

h̄
A(x, t) . (11.112)

The second term in (11.111) represents an instantaneous Coulomb self-interaction of the Dirac

field. It is non-trivial to prove that such an instantaneous self-interaction does not contradict the

principles of special relativity. Later we show by a concrete example of a scattering process that

the instantaneous Coulomb self-interaction in (11.111) turns out to compensate an unwanted

contribution (9.207) of the Maxwell propagator (9.205), which comes from the Coulomb gauge,

thus yielding at the end manifestly covariant physical results.

11.4 Dirac Picture

In quantum field theory the quantisation of free fields is basically trivial, since the Hamilton

function and, thus, the second quantized Hamilton operator is quadratic in the fields and the

field operators, respectively. This has the consequence that the Fourier operators occurring in

plane wave expansions of the field operators represent physically the creation and the annihi-

lation of individual particles with well-defined properties. But the quantisation of interacting

fields is non-trivial as it leads to interesting physical processes due to the involved nonlinearities.

The Hamilton operator contains higher powers of the same field in the case of a self-interaction

or products of different fields as in quantum electrodynamics. The resulting dynamics of the

field operators is, thus, complicated because, at each instant, the Fourier operators correspond

to the creation and annihilation of particles with different properties. For instance, preparing
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an annihilation operator at in initial time t0, it may happen that at a later time instant t > t0

it evolves into a certain superposition of creation and annihilation operators.

Basically, it is not possible to solve exactly an interacting quantum field theory. However,

provided that the interaction is sufficiently weak, reliable approximations can be obtained with

the help of perturbation theory. Then neither the Schrödinger picture, in which the state

vectors are time-dependent and the operators time-independent, nor the Heisenberg picture,

in which conversely the state vectors are time-independent and the operators time-dependent,

is suitable, see Section 3.4. Instead, in perturbation theory the Dirac or interaction picture

turns out to be more favorable, since the time dependencies are then distributed appropriately

between both the state vectors and the operators.

11.4.1 Derivation

The starting point of perturbation theory is the assumption that the Hamilton operator of the

system under consideration can be split into two parts in the Schrödinger picture:

ĤS = Ĥ
(0)
S + Ĥ

(int)
S . (11.113)

Here Ĥ
(0)
S represents the Hamilton operator of a system of free fields and Ĥ

(int)
S denotes the

interacting part of the Hamilton operator. In the Schrödinger picture the time-dependent

state vector |ψS(t)〉 fulfills the Schrödinger equation (3.53), which has the formal solution

(3.55). Thus, the time dependence of |ψS(t)〉 is determined by the mutual influence of both the

unperturbed and the perturbed Hamilton operator Ĥ
(0)
S and Ĥ

(int)
S . The idea for introducing

the Dirac picture is now to redo the temporal evolution with the free Hamilton operator Ĥ
(0)
S

according to

|ψD(t)〉 = eiĤ
(0)
S t/h̄ |ψS(t)〉 ⇐⇒ |ψS(t)〉 = e−iĤ

(0)
S t/h̄ |ψD(t)〉 . (11.114)

In order to determine the operator ÔD(t) in the Dirac picture, we require that the expectation

values do not change during the transition from the Schrödinger picture to the Dirac picture:

〈ψD(t)|ÔD(t)|ψD(t)〉 = 〈ψS(t)|ÔS|ψS(t)〉 . (11.115)

Inserting (11.114) into (11.115) then actually leads to determine the operator ÔD(t) in the

Dirac picture

〈ψD(t)| eiĤ(0)
S t/h̄ ÔS e

−iĤ(0)
S t/h̄ |ψD(t)〉 = 〈ψD(t)|ÔD(t)|ψD(t)〉

⇒ ÔD(t) = eiĤ
(0)
S t/h̄ ÔS e

−iĤ(0)
S t/h̄ . (11.116)

For example, for the free Hamilton operator ÔS = Ĥ
(0)
S follows that it does not change its shape

during the transition from the Schrödinger picture to the Dirac picture:

Ĥ
(0)
D (t) = eiĤ

(0)
S t/h̄ Ĥ

(0)
S e−iĤ

(0)
S t/h̄ = Ĥ

(0)
S . (11.117)
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With (11.114) and (11.116) we have, thus, defined the Dirac picture both for the state vectors

and the operators. It remains to investigate their respective equations of motion. Based on the

equation of motion of a state vector in the Schrödinger picture (3.53) together with (11.113)

ih̄
∂

∂t
|ψS(t)〉 = ĤS|ψS(t)〉 =

(
Ĥ

(0)
S + Ĥ

(int)
S

)
|ψS(t)〉 (11.118)

and taking into account (11.114) we then obtain the equation of motion of the corresponding

state vector in the Dirac picture, which is called the Tomonaga-Schwinger equation:

ih̄
∂

∂t
|ψD(t)〉 = eiĤ

(0)
S t/h̄

[
ih̄
∂

∂t
|ψS(t)〉 − Ĥ(0)

S |ψS(t)〉
]

= eiĤ
(0)
S t/h̄ Ĥ

(int)
S |ψS(t)〉

=⇒ ih̄
∂

∂t
|ψD(t)〉 = Ĥ

(int)
D (t) |ψD(t)〉 . (11.119)

Here the interacting part of the Hamilton operator is transferred from the Schrödinger picture

to the Dirac picture according to (11.116):

Ĥ
(int)
D (t) = eiĤ

(0)
S t/h̄ Ĥ

(int)
S e−iĤ

(0)
S t/h̄ . (11.120)

Furthermore, starting from the equation of motion of an operator in the Schrödinger picture

ih̄
∂

∂t
ÔS = 0 , (11.121)

we use (11.116) in order to derive the equation of motion of the corresponding operator in the

Dirac picture as follows:

ih̄
∂

∂t
ÔD(t) = eiĤ

(0)
S t/h̄

[
ÔSĤ

(0)
S − Ĥ

(0)
S ÔS

]
e−iĤ

(0)
S t/h̄ (11.122)

= eiĤ
(0)
S t/h̄ ÔS e

−iĤ(0)
S t/h̄Ĥ

(0)
S − Ĥ

(0)
S eiĤ

(0)
S t/h̄ÔS e

−iĤ(0)
S t/h̄ = [ÔD(t), Ĥ

(0)
S ]− .

While in the Dirac picture the dynamics of the state vectors is determined by the interacting

part of the Hamilton operator according to (11.119), only the free Hamilton operator enters the

dynamics of the operators according to (11.122). The latter result has the consequence that

the field operators in the Dirac picture still retain their respective properties of a free theory

to create and annihilate particles.

11.4.2 Example

In order to illustrate the latter point we consider the quantum field-theoretic description of

non-relativistic bosons, see Chapter 4. In the Schrödinger picture, the field operators ψ̂S(x)

and ψ̂†S(x) satisfy the canonical commutator relations

[
ψ̂S(x), ψ̂S(x′)

]
−

=
[
ψ̂†S(x), ψ̂†S(x′)

]
−

= 0 ,
[
ψ̂S(x), ψ̂†S(x′)

]
−

= δ(x− x′) . (11.123)
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Thus, ψ̂S(x) and ψ̂†S(x) describe the annihilation and creation of a bosonic particle at space

point x, respectively. With the help of basis functions up(x), which fulfill the orthonormality

relation
∫
d3xu∗p(x)up′(x) = δ(p− p′) (11.124)

and the completeness relation

∫
d3p u∗p(x)up(x′) = δ(x− x′) , (11.125)

the field operators ψ̂S(x) and ψ̂†S(x) can be expanded as follows:

ψ̂S(x) =

∫
d3p up(x)âS(p) , (11.126)

ψ̂†S(x) =

∫
d3p u∗p(x)â†S(p) . (11.127)

Using (11.124), the expansions (11.126) and (11.127) are then inverted according to

∫
d3xu∗p(x)ψ̂S(x) = âS(p) , (11.128)

∫
d3xup(x)ψ̂†S(x) = â†S(p) . (11.129)

With this the commutator relations (11.123) of the expansion operators âS(p) and â†S(p) result

in

[
âS(p), âS(p′)

]
−

=
[
â†S(p), â†S(p′)

]
−

= 0 ,
[
âS(p), â†S(p′)

]
−

= δ(p− p′) . (11.130)

Accordingly, the operator âS(p) (â†S(p)) describes the annihilation (creation) of a particle of

momentum p. Let us assume for the sake of simplicity that the free Hamiltonian operator has

already a diagonal form with an energy-momentum dispersion Ep in the Schrödinger picture:

Ĥ
(0)
S =

∫
d3pEp â

†
S(p)âS(p) . (11.131)

The Heisenberg equation for the evolution of the annihilation operator in the Dirac picture

(11.122) results then in

ih̄
∂

∂t
âD(p, t) =

[
âD(p, t), Ĥ

(0)
S

]
−

= eiĤ
(0)
S t/h̄

[
âS(p), Ĥ

(0)
S

]
−
e−iĤ

(0)
S t/h̄

=

∫
d3p′Ep′ e

iĤ
(0)
S t/h̄

[
âS(p), â†S(p′)âS(p′)

]
−
e−iĤ

(0)
S t/h̄ = Ep âD(p, t) . (11.132)

The solution of this operator-valued first-order differential equation with the initial condition

âD(p, 0) = âS(p) (11.133)
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is given by

âD(p, t) = e−iEpt/h̄ âS(p) . (11.134)

Correspondingly, the time evolution of the creation operator yields

â†D(p, t) = eiEpt/h̄ â†S(p) . (11.135)

Due to (11.116), (11.131), (11.134), and (11.135) we then prove (11.117) as expected:

Ĥ
(0)
D (t) = eiĤ

(0)
S t/h̄ Ĥ

(0)
S e−iĤ

(0)
S t/h̄ =

∫
d3pEp e

iĤ
(0)
S t/h̄ â†S(p) e−iĤ

(0)
S t/h̄ eiĤ

(0)
S t/h̄ âS(p) e−iĤ

(0)
S t/h̄

=

∫
d3pEp â

†
D(p, t)âD(p, t) =

∫
d3pEp â

†
S(p)âS(p) = Ĥ

(0)
S . (11.136)

From (11.134) and (11.135) we read off that the creation and annihilation operators in the Dirac

picture differ only by one additional phase factor from their counterparts in the Schrödinger

picture. This means that the creation and annihilation operators in the Dirac picture do not

change their character as single-particle operators during the time evolution. In particular, it

follows directly from (11.130), (11.134), and (11.135) that the equal-time commutator relations

in the Dirac picture coincide with those in the Schrödinger picture:

[
âD(p, t), âD(p′, t)

]
−

=
[
â†D(p, t), â†D(p′, t)

]
−

= 0 ,
[
âD(p, t), â†D(p′, t)

]
−

= δ(p− p′) . (11.137)

This means that âD(p, t) and â†D(p, t) annihilate and create a particle with momentum p at

time t. Furthermore, the field operators (11.126) and (11.127) in the Schrödinger picture change

in the Dirac picture into

ψ̂D(x, t) = eiĤ
(0)
S t/h̄ψ̂S(x)e−iĤ

(0)
S t/h̄ =

∫
d3p up(x) âD(p, t) , (11.138)

ψ̂†D(x, t) = eiĤ
(0)
S t/h̄ψ̂†S(p)e−iĤ

(0)
S t/h̄ =

∫
d3p u∗p(x) â†D(p, t) . (11.139)

Thus, according to (11.138) and (11.139), the field operators in the Dirac picture can be ex-

panded with respect to creation and annihilation operators in exactly the same way as in

the Heisenberg picture, see Section 3.4. Moreover, we obtain for the equal-time commutator

relations of the field operators in the Dirac picture:

[
ψ̂D(x, t), ψ̂D(x′, t)

]
−

=
[
ψ̂†D(x, t), ψ̂†D(x′, t)

]
−

= 0 ,
[
ψ̂D(x, t), ψ̂†D(x′, t)

]
−

= δ(x− x′) .(11.140)

Thus, we have in the Dirac picture the same equal-time commutator relations for the field

operators as in the Heisenberg picture for free particles. This means that ψ̂D(x, t) and ψ̂†D(x, t)

annihilate and create a particle at space point x at time t.
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11.5 Canonical Field Quantisation

We now perform the canonical field quantisation of spinor quantum electrodynamics in the Dirac

picture. According to the previous section, this means that we demand the same equal-time

commutator or anti-commutator relations for the interacting theory in the Dirac picture as for

the free theory in the Heisenberg picture. As we work from now on only in the Dirac picture we

simplify our notation by omitting the index D, which indicates the Dirac picture. Concerning

the Dirac field, equal-time anti-commutator relations are required for the independent field

operators ψ̂α(x, t) and π̂β(x, t):
[
ψ̂α(x, t), ψ̂β(x′, t)

]
+

= [π̂α(x, t), π̂β(x′, t)]+ = 0,
[
ψ̂α(x, t), π̂β(x′, t)

]
+

= ih̄δαβδ(x− x′). (11.141)

Concerning the Maxwell field, equal-time commutator relations are used for the independent

field operators Âk(x, t) and π̂l(x, t):
[
Âk(x, t), Âl(x

′, t)
]

+
= [π̂k(x, t), π̂l(x

′, t)]+ = 0 ,
[
Âk(x, t), π̂l(x

′, t)
]

+
= ih̄δTkl(x− x′) , (11.142)

where the transveral delta function (9.86) ensures analogous to Section 9.7 that the Coulomb

gauge also holds for the field operators Âk(x, t) and π̂l(x, t). And, due to their independence,

equal-time commutator relations are required between the field operators of the Dirac and the

Maxwell fields:
[
ψ̂α(x, t), Âk(x

′, t)
]
−

=
[
ψ̂α(x, t), π̂k(x

′, t)
]
−

=
[
π̂α(x, t), Âk(x

′, t)
]
−

= [π̂α(x, t), π̂k(x
′, t)]− = 0 . (11.143)

Applying the field quantization to the momentum fields (11.101) and (11.103) yields for the

corresponding momentum operators:

π̂(x, t) = ih̄ψ̂(x, t)γ0 = ih̄ψ̂†(x, t) , (11.144)

π̂(x, t) = ε0

[
∂Â(x, t)

∂t
+ ∇ϕ̂(x, t)

]
, (11.145)

where the scalar field operator follows from (11.100):

ϕ̂(x, t) =

∫
d3x′

q ψ̂†(x′, t)ψ̂(x′, t)

4πε0|x− x′| . (11.146)

Thus, we can also use instead of the momentum field operators π̂α(x, t) and π̂l(x, t) the field op-

erators ψ̂†α(x, t) and ∂Âk(x, t)/∂t in order to define the underlying equal-time (anti-)commutator

relations of spinor QED. For instance, (11.141) can be directly rewritten as
[
ψ̂α(x, t), ψ̂β(x′, t)

]
+

=
[
ψ̂†α(x, t), ψ̂†β(x′, t)

]
+

= 0,
[
ψ̂α(x, t), ψ̂†β(x′, t)

]
+

= δαβδ(x− x′). (11.147)

Accordingly, we obtain from (11.143) straight-forwardly
[
ψ̂α(x, t), Âk(x

′, t)
]
−

=
[
ψ̂†α(x, t), Âk(x

′, t)
]
−

= 0 . (11.148)
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Furthermore, taking into account (9.86), (11.142), (11.145), and (11.146) we get at first

[
ψ̂α(x, t),

∂Âk(x
′, t)

∂t

]

−

=

[
ψ̂α(x, t),

1

ε0
π̂k(x

′, t)

]

−
−
[
ψ̂α(x, t), ∂′kϕ̂(x′, t)

]
−

(11.149)

= − q

4πε0
∂′k

∫
d3x′′

1

|x′ − x′′|
[
ψ̂α(x, t), ψ̂†β(x′′, t)ψ̂β(x′′, t)

]
−
.

Applying the operator identity (3.94) and (11.141) this reduces to

[
ψ̂α(x, t),

∂Âk(x
′, t)

∂t

]

−

=
q

4πε0

[
∂k

1

|x− x′|

]
ψ̂α(x, t) = − q

4πε0

(x− x′)k
|x− x′|3 ψ̂α(x, t) . (11.150)

Similarly we also yield
[
ψ̂†α(x, t),

∂Âk(x
′, t)

∂t

]

−

= − q

4πε0

(x− x′)k
|x− x′|3 ψ̂

†
α(x, t) . (11.151)

Note that the non-locality of the commutator relations (11.150) and (11.151) is typical for the

Coulomb gauge used here. Finally, we also convert (11.142) correspondingly. At first we get

[
Âk(x, t), Âl(x

′, t)
]
−

= 0 (11.152)

and then we take into account (11.142), (11.145), and (11.146) in order to yield

[
Âk(x, t),

∂Âl(x
′, t)

∂t

]

−

=

[
Âk(x, t),

1

ε0
π̂l(x

′, t)

]

−
−
[
Âk(x, t), ∂

′
lϕ̂l(x

′, t)
]
−

=
ih̄

ε0
δTkl(x− x′)− ∂′l

∫
d3x′′

q

4πε0|x′ − x′′|
[
Âk(x, t), ψ̂

†
α(x′′, t)ψ̂α(x′′, t)

]
−
.(11.153)

Applying (3.43) and (11.148) this reduces finally to

[
Âk(x, t),

∂Âl(x
′, t)

∂t

]

−

=
ih̄

ε0
δTkl(x− x′) . (11.154)

In the same way we also obtain
[
∂Âk(x, t)

∂t
,
∂Âl(x

′, t)

∂t

]

−

=
1

ε20

[
π̂k(x, t), π̂l(x

′, t)
]
−

+ ∂k

∫
d3x′′

q

4πε20|x− x′′| (11.155)

×
[
π̂l(x

′, t), ψ̂†α(x′′, t)ψ̂α(x′′, t)
]
−
− ∂′l

∫
d3x′′′

q

4πε20|x′ − x′′′|
[
π̂k(x, t), ψ̂

†
β(x′′′, t)ψ̂β(x′′′, t)

]
−

+∂k∂
′
l

∫
d3x′′

∫
d3x′′′

q

4πε20|x− x′′|
q

4πε20|x′ − x′′′|
[
ψ̂†α(x′′, t)ψ̂α(x′′, t), ψ̂†β(x′′′, t)ψ̂β(x′′′, t)

]
−
.

Thus, finally, after applying (3.43), (11.142), (11.147), and (11.148) we end up with

[
∂Âk(x, t)

∂t
,
∂Âl(x

′, t)

∂t

]

−

= 0 . (11.156)



11.6. TIME EVOLUTION OPERATOR 237

In the canonical field quantisation in the Dirac picture, the dynamics of the state vectors is

determined according to (11.119) by the interacting part of the Hamilton operator. In spinor

quantum electrodynamics it consists of two parts due to (11.111):

Ĥ
(int)
D (t) = −qc

∫
d3x : ψ̂(x, t)γ ψ̂(x, t) : Â(x, t)

+
q2

8πε0

∫
d3x

∫
d3x′

: ψ̂(x, t)γ0ψ̂(x, t)ψ̂(x′, t)γ0ψ̂(x′, t) :

|x− x′| . (11.157)

Here, the normal ordering of the field operators was additionally used.

11.6 Time Evolution Operator

In the Dirac picture the interaction affects the dynamics of the state vectors according to

(11.119). In order to investigate this in more detail we introduce the time evolution operator

Û(t2, t1), which connects the state vectors |ψD(t1)〉 and |ψD(t2)〉 at two consecutive times t1

and t2, respectively:

|ψD(t2)〉 = Û(t2, t1)|ψD(t1)〉 . (11.158)

With the help of (11.114) and the formal solution of the Schrödinger equation (11.118)

|ψS(t2)〉 = e−iĤS(t2−t1)/h̄|ψS(t1)〉 (11.159)

we conclude

|ψD(t2)〉 = eiĤ
(0)
S t2/h̄ |ψS(t2)〉 = eiĤ

(0)
S t2/h̄ e−iĤS(t2−t1)/h̄ |ψS(t1)〉

= eiĤ
(0)
S t2/h̄e−iĤS(t2−t1)/h̄e−iĤ

(0)
S t1/h̄|ψD(t1)〉 . (11.160)

Thus, a comparison with (11.158) leads to a formal expression for the time evolution operator

Û(t2, t1):

Û(t2, t1) = eiĤ
(0)
S t2/h̄ e−iĤS(t2−t1)/h̄ e−iĤ

(0)
S t1/h̄ . (11.161)

Since the Hamilton operators Ĥ
(0)
S and ĤS generally do not commute with each other, it is

important to take into account the particular operator ordering in (11.161). With the help of

the formal expression (11.161), various properties of the time evolution operator can be proved.

It has the initial condition

Û(t1, t1) = 1 (11.162)

and fulfills the group property

Û(t3, t2)Û(t2, t1) = Û(t3, t1) . (11.163)



238 CHAPTER 11. RELATIVISTIC LIGHT-MATTER INTERACTION

Indeed, we obtain from applying (11.161)

Û(t3, t2)Û(t2, t1) = eiĤ
(0)
S t3/h̄ e−iĤS(t3−t2)/h̄ e−iĤ

(0)
S t2/h̄ eiĤ

(0)
S t2/h̄ e−iĤS(t2−t1)/h̄ e−iĤ

(0)
S t1/h̄

= eiĤ
(0)
S t3/h̄ e−iĤS(t3−t1)/h̄ e−iĤ

(0)
S t1/h̄ = Û(t3, t1) . (11.164)

Furthermore, we read off from evaluating (11.163) for t3 = t1 together with (11.162) the inverse

time evolution operator

Û−1(t2, t1) = Û(t1, t2) . (11.165)

And we deduce from (11.161) and (11.165) that the time evolution operator is unitary:

Û †(t2, t1) = eiĤ
(0)
S t1/h̄ e−iĤS(t1−t2)/h̄ e−iĤ

(0)
S t2/h̄ = Û(t1, t2) = Û−1(t2, t1) . (11.166)

Finally, we determine which differential equation the time evolution operator Û(t2, t1) solves.

Differentiating (11.161) with respect to t2 and taking into account (11.113) yields

ih̄
∂

∂t2
Û †(t2, t1) = eiĤ

(0)
S t2/h̄ Ĥ

(int)
S e−iĤ

(0)
S t2/h̄ eiĤ

(0)
S t2/h̄ e−iĤS(t2−t1)/h̄ e−iĤ

(0)
S t1/h̄ . (11.167)

Thus, we conclude from (11.120), (11.161), and (11.167) that Û(t2, t1) fulfills the differential

equation

ih̄
∂

∂t2
Û(t2, t1) = Ĥ

(int)
D (t2)Û(t2, t1) . (11.168)

The initial value problem (11.162) and (11.168) can be formally rewritten in form of an integral

equation:

Û(t2, t1) = 1− i

h̄

∫ t2

t1

dt′1 Ĥ
(int)
D (t′1) Û(t′1, t1) . (11.169)

Successively reinserting the left-hand side of (11.169) into the right-hand side, one obtains the

von Neumann series

Û(t2, t1) = 1− i

h̄

∫ t2

t1

dt′1 Ĥ
(int)
D (t′1) +

(−i
h̄

)2 ∫ t2

t1

dt′1

∫ t′1

t1

dt′2 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) + . . .

+

(−i
h̄

)n ∫ t2

t1

dt′1

∫ t′1

t1

dt′2 . . .

∫ t′n−1

t1

dt′n Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n) + . . . . (11.170)

It is noticeable in the nth summand of the von Neumann series that the time arguments of

the multiple integrals are ordered in decreasing order: t′1 > t′2 > . . . > t′n. According to an

idea of Freeman Dyson, all n integrals can be rewritten such that they are all performed over

the same interval [t1, t2] by using the time-ordered product of operators. Although the time

ordering of operators has already been introduced previously for calculating the propagators of

the Klein-Gordon field, the Maxwell field, and the Dirac field in the Chapters 8–10, its original
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Figure 11.1: The hatched triangle can be integrated in two ways, which allows to rearrange the

integral (11.171).

motivation becomes apparent only now. To this end we consider exemplarily the second term

in the von Neumann series (11.170) and reorganize it as follows:

∫ t2

t1

dt′1

∫ t′1

t1

dt′2 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) =

∫ t2

t1

dt′2

∫ t2

t′2

dt′1 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) . (11.171)

Here we use the fact that the hatched triangle in Fig. 11.1 can be integrated in two ways.

Either we first integrate over t′2 and then over t′1 or, conversely, first over t′1 and then over t′2.

Exchanging both integration variables at the right-hand side of (11.171) we conclude

2

∫ t2

t1

dt′1

∫ t′1

t1

dt′2 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) =

∫ t2

t1

dt′1

∫ t′1

t1

dt′2 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) (11.172)

+

∫ t2

t1

dt′1

∫ t2

t′1

dt′2 Ĥ
(int)
D (t′2) Ĥ

(int)
D (t′1) =

∫ t2

t1

dt′1

∫ t2

t1

dt′1 Θ(t′1 − t′2) Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2)

+

∫ t2

t1

dt′1

∫ t2

t1

dt′1 Θ(t′2 − t′1) Ĥ
(int)
D (t′2) Ĥ

(int)
D (t′1) =

∫ t2

t1

dt′1

∫ t2

t1

dt′1 T̂
(
Ĥ

(int)
D (t′1) Ĥ

(int)
D (t′2)

)
.

In the last step we assumed that the interacting Hamilton operator in the Dirac picture Ĥ
(int)
D (t)

is bosonic, so the time ordering was used for two bosonic operators whose time order is not yet

fixed:

T̂
(
Ĥ

(int)
D (t′1)Ĥ

(int)
D (t′2)

)
= Θ(t′1 − t′2)Ĥ

(int)
D (t′1)Ĥ

(int)
D (t′2) + Θ(t′2 − t′1)Ĥ

(int)
D (t′2)Ĥ

(int)
D (t′1) . (11.173)

Analogous to (11.172), also all other terms in the von Neumann series (11.170) can be rewritten

as multiple integrals over the entire interval [t1, t2] with the help of the time-ordered product

of operators. In the case of the nth-order term, one has to take into account in total n!
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permutations of the time arguments. Therefore the generalisation of (11.172) reads

n!

∫ t2

t1

dt′1

∫ t′1

t1

dt′2 · · ·
∫ t′n−1

t1

dt′n Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n)

=

∫ t2

t1

dt′1

∫ t2

t1

dt′2 · · ·
∫ t2

t1

dt′n T̂
(
Ĥ

(int)
D (t′1) Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n)
)
. (11.174)

This result can be proven by complete induction. With the help of (11.174) the von Neumann

series (11.170) for the time evolution operator is finally given by

Û(t2, t1) =
∞∑

n=0

1

n!

(−i
h̄

)n ∫ t2

t1

dt′1 · · ·
∫ t2

t1

dt′n T̂
(
Ĥ

(int)
D (t′1) · · · Ĥ(int)

D (t′n)
)
. (11.175)

We can explicitly verify that the von Neumann series (11.175) solves the differential equation

(11.168). Differentiating (11.175) with respect to t2 we obtain due to the symmetry of the

integrand with respect to the integration variables t′1, t
′
2, ..., t

′
n:

ih̄
∂

∂t2
Û(t2, t1) =

∞∑

n=1

ih̄

n!

(−i
h̄

)n
n

∫ t2

t1

dt′1

∫ t2

t1

dt′2 · · ·
∫ t2

t1

dt′n−1

×T̂
(
Ĥ

(int)
D (t′1) Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n−1)Ĥ
(int)
D (t2)

)
. (11.176)

Due to the fact that the time t2 is larger than all remaining integration variables t′1, t′2, . . .,

t′n−1 and using the definition (11.173) of the time-ordered product of operators, one can pull

the operator Ĥ
(int)
D (t2) out of the time ordering and obtain together with (11.175)

ih̄
∂

∂t2
Û(t2, t1) = Ĥ

(int)
D (t′2)

∞∑

n=1

1

(n− 1)!

(−i
h̄

)n−1 ∫ t2

t1

dt′1

∫ t2

t1

dt′2 · · ·
∫ t2

t1

dt′n−1

×T̂
(
Ĥ

(int)
D (t′1)Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n−1)
)

= Ĥ
(int)
D (t2)

∞∑

n=0

1

n!

(−i
h̄

)n ∫ t2

t1

dt′1

∫ t2

t1

dt′2 · · ·
∫ t2

t1

dt′n

×T̂
(
Ĥ

(int)
D (t′1)Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n)
)

= Ĥ
(int)
D (t2)Û(t2, t1) . (11.177)

Formally, the von Neumann series (11.175) can be summed up to a time-ordered exponential

function:

Û(t2, t1) = T̂ exp

{−i
h̄

∫ t2

t1

dt Ĥ
(int)
D (t)

}
. (11.178)

By taking into account that the time evolution operator (11.178) is defined by the von Neumann

series (11.175) one can calculate perturbatively the cross sections of scattering processes.

11.7 Scattering Operator

We now consider a generic scenario for a scattering problem in the realm of relativistic quantum

field theory. To this end we denote with |ψ(t)〉 a time-dependent state vector, which evolves

starting from an initial state |ψi〉 in the limit t→ −∞:

|ψ(−∞)〉 = |ψi〉 . (11.179)
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The time evolution of the state vector |ψ(t)〉 under the influence of the interaction is determined

in the Dirac picture by the time evolution operator Û(t,−∞) according to (11.158):

|ψ(t)〉 = Û(t,−∞)|ψi〉 . (11.180)

The scattering matrix Sfi denotes then the projection of the state vector |ψ(t)〉 in the limit

t→ +∞ onto the final state |ψf〉:

Sfi = lim
t→+∞

〈ψf |ψ(t)〉 . (11.181)

From the knowledge of the scattering matrix (11.181) all observable quantities such as the

scattering cross sections and decay rates can be calculated from the square of its absolute

values and some kinetic considerations. According to (11.180) and (11.181), the probability

amplitude Sfi for the transition from |ψi〉 to |ψf〉 can also be calculated as the matrix element

Sfi = 〈ψf |Ŝ|ψi〉 (11.182)

of the scattering operator

Ŝ = Û(+∞,−∞) . (11.183)

According to (11.178) the scattering operator is explicitly given by

Ŝ = T̂ exp

{−i
h̄

∫ +∞

−∞
dt Ĥ

(int)
D (t)

}
. (11.184)

In spinor quantum electrodynamics, the scattering operator reads according to (11.157) and

(11.184):

Ŝ = T̂ exp

{
iq

h̄

∫
d4x : ψ̂(x)γψ̂(x) : Â(x)

− iq2

8πh̄ε0

∫
dt

∫
d3x

∫
d3x′

: ψ̂(x, t)γ0ψ̂(x, t)ψ̂(x′, t)γ0ψ̂(x′, t) :

|x− x′|

}
. (11.185)

Expanding the scattering operator up to the second order in the charge q, we obtain:

Ŝ = 1 +
iq

h̄

∫
d4x : ψ̂(x)γψ̂(x) : Â(x) (11.186)

− iq2

8πh̄ε0

∫
dt

∫
d3x

∫
d3x′

: ψ̂(x, t)γ0ψ̂(x, t)ψ̂(x′, t)γ0ψ̂(x′, t) :

|x− x′|

+
1

2

(
iq

h̄

)2 ∫
d4x

∫
d4x′ T̂

{[
: ψ̂(x)γψ(x) : Â(x)

] [
: ψ̂(x′)γψ̂(x′) : Â(x′)

]}
+ . . . .

We summarize that (11.182) and (11.186) represent the starting point for determining the cross

sections of scattering processes in the realm of spinor quantum electrodynamics.





Chapter 12

Møller Scattering

In the last chapter we apply our previous findings in order to calculate the cross section for the

concrete example of an elastic scattering of two electrons:

e− e− → e− e− . (12.1)

This represents a paradigmatic scattering process in quantum field theory, which is named after

the Danish physicist Christian Møller. The interaction between two electrons, that is idealized

in the Møller scattering, forms the theoretical basis of many familiar physical phenomena such

as, for instance, the repulsion between the two electrons of the helium atom. Furthermore,

Møller scattering is a fundamental, purely pointlike process in quantum electrodynamics, which

provides an important means to test the standard model of elementary particle physics. In

addition, it is the dominant physical process in low-energy (< 100 MeV) electron scattering

experiments. Thus, it is an important constraint in the design of electron scattering experiments

that search for new physics beyond the standard model.

First we apply the perturbative technique worked out in Chapter 11 and determine the scat-

tering matrix in the leading non-vanishing order, which turns out to be the quadratic one. Due

to an intriguing cancellation of non-covariant terms the result is finally manifestly covariant

and consists of two expressions. Taking into account the Feyman rules these two analytic ex-

pressions can be graphically represented in terms of Feynman diagrams. Secondly, we assume

that the polarization is unknown for both the initial and the final electrons. This allows to

average the square of the scattering matrix with respect to the polarizations of the involved

electrons. The corresponding evaluation is quite technical and relies basically on the Clifford

algebra of the Dirac matrices. Thirdly we analyze in detail the kinematics of such a two-particle

scattering process by introducing the Lorentz-invariant Mandelstam variables. In particular,

we specialize the relativistic scattering problem for two particles to the center of mass reference

frame. This allows to express the Mandelstam variables just in terms of the scattering energy

and the scattering angle. And, finally, we determine the scattering cross section for the Møller

scattering and discuss both the ultra-relativistic and the non-relativistic limit. In the latter

case we find that the Rutherford scattering formula is recovered for the forward peak.
243
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12.1 Scattering Matrix

In the case of Møller scattering, one investigates a scattering process, where two electrons in

the initial state

|ψi〉 = |pi1 , si1 ; pi2 , si2〉 (12.2)

change into two electrons in the final state

|ψf〉 = |pf1 , sf1 ; pf2 , sf2〉 . (12.3)

In the following we determine the matrix element of the scattering operator (11.186) up to the

second order in the charge q = −e with respect to the initial state (12.2) and the final state

(12.3) according to (11.182). We observe that the zeroth order vanishes, since both states are

orthogonal to each other for different momenta pi1 ,pi2 6= pf1
,pf2

:

〈pf1 , sf1 ; pf2 , sf2|pi1 , si1 ; pi2 , si2〉 = 0 . (12.4)

Furthermore, also the first order disappears, since both the initial and the final state (12.2) and

(12.3) do not contain any photon and the first-order term in the scattering operator (11.186)

involves the operator of the vector potential, whose plane wave decomposition (9.155) contains

the annihilation and the creation of a photon. Therefore, the lowest non-vanishing perturbative

order is the quadratic one, which turns out to consist of two contributions:

S
(2)
fi = S

(2,inst)
fi + S

(2,rad)
fi . (12.5)

The first contribution stems from the instantaneous Coulomb self-interaction of the Dirac field

S
(2,inst)
fi =

−ie2

8πh̄ε0c2

∫
dt

∫
d3x

∫
d3x′
〈ψf | : ĵ0(x, t)ĵ0(x′, t) : |ψi〉

|x− x′| , (12.6)

while the second contribution represents an interaction between the Dirac and the Maxwell

field:

S
(2,rad)
fi = − e2

2h̄2c2

∫
d4x

∫
d4x′ 〈ψf | T̂

{
: ĵk(x)Âk(x) : : ĵl(x′)Âl(x

′) :
}
|ψi〉 . (12.7)

Note that in (12.6) the time-like and in (12.7) the space-like components of the four-vector

current density operator (11.91) occur, respectively:

ĵµ(x) = cψ̂(x)γµψ̂(x) . (12.8)

Here we take into account the plane wave decompositions of the spinor field operators (10.433)

and (10.434), which we rewrite according to

ψ̂(x) =

∫
d3p2

∑

s2

√
Mc2

(2πh̄)3Ep2

{
eip2x/h̄ u(p2, s2)b̂†s2,s2

+ e−ip2x/h̄ v(p2, s2)d̂p2,s2

}
, (12.9)

ψ̂(x) =

∫
d3p1

∑

s1

√
Mc2

(2πh̄)3Ep1

{
e−ip1x/h̄ u(p1, s1)b̂p1,s1 + eip1x/h̄ v(p1, s1)d̂†p1,s1

}
, (12.10)
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where s = ±1/2 denotes the helicity. With this one obtains for the four-vector current density

operator (12.8) the decomposition

ĵµ(x) = c

∫
d3p1

∫
d3p2

√
Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

{
ei(p2−p1)x/h̄ u(p2, s2)γµu(p1, s1)b̂†p2,s2

b̂p1,s1

+ei(p2+p1)x/h̄ u(p2, s2)γµv(p1, s1)b̂†p2,s2
d̂†p1,s1

+ e−i(p1+p2)x/h̄ v(p2, s2)γµu(p1, s1)d̂p2,s2 b̂p1,s1

+e−i(p2−p1)x/h̄ v(p2, s2)γµv(p1, s1)d̂p2,s2 d̂
†
p1,s1

}
. (12.11)

Evaluating the matrix element of the normal ordered operator : ĵ0(x, t)ĵ0(x′, t) : with the states

〈pf1 , sf1 ; pf2 , sf2| = 〈0| b̂pf2 ,sf2 b̂pf1 ,sf1 , (12.12)

|pi1 , si1 ; pi2 , si2〉 = b̂†pi1 ,si1 b̂
†
pi2 ,si2

|0〉 , (12.13)

then only the first summand in (12.11) leads to a non-vanishing contribution. For the instan-

taneous self-interaction of the Dirac field (12.6) this results in

S
(2,inst)
fi =

−ie2

8πh̄ε0c2

∫
dt

∫
d3x

∫
d3x′

1

|x− x′|

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4

∑

s1

∑

s2

∑

s3

∑

s4

×
√

Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

√
Mc2

(2πh̄)3Ep3

√
Mc2

(2πh̄)3Ep4

ei(Ep2−Ep1)t/h̄e−i(p2−p1)x/h̄

×u(p2, s2)γ0u(p1, s1) ei(Ep4−Ep3)t/h̄e−i(p4−p3)x′/h̄ u(p4, s4)γ0u(p3, s3)

×C(p1,p2,p3,p4; s1, s2, s3, s4) . (12.14)

Here we have introduced a vacuum expectation value of creation and annihilation operators as

an abbreviation:

C(p1,p2,p3,p4; s1, s2, s3, s4) = 〈0|b̂pf2 ,sf2 b̂pf1 ,sf1 : b̂†p2,s2
b̂p1,s1 b̂

†
p4,s4

b̂p3,s3 : b̂†pi1 ,si1 b̂
†
pi2 ,si2

|0〉
= −〈0|b̂pf2 ,sf2 b̂pf1 ,sf1 b̂

†
p2,s2

b̂†p4,s4
b̂p1,s1 b̂p3,s3 b̂

†
pi1 ,si1

b̂†pi2 ,si2
|0〉 , (12.15)

where the evaluation of the normal ordering led to a minus sign due to the anti-commutator

algebra of the fermionic operators (10.407). Afterwards, we evaluate the interaction (12.7)

between the Dirac and the Maxwell fields. Here we use the bosonic definition of the time-

ordering operator (8.123) and note that the operators ĵk(x) and Âk(x) interchange with each

other. Furthermore, taking into account the initial and the final state defined according to

(12.2), (12.3), (12.12), and (12.13) yields

S
(2,rad)
fi = − e2

2h̄2c2

∫
d4x

∫
d4x′

{
Θ(x0 − x′0) 〈ψf | : ĵk(x)Âk(x) : : ĵl(x′)Âl(x

′)|ψi〉

+Θ(x′0 − x0) 〈ψf | : ĵl(x′)Âl(x′) : : ĵk(x)Âk(x) : |ψi〉
}

= − e2

2h̄2c2

∫
d4x

∫
d4x′

×
{

Θ(x0 − x′0) 〈0|Âµ(x)Âν(x
′)|0〉 〈pf1 , sf1 ; pf2 , sf2| : ĵµ(x) : : ĵν(x′) : |pi1 , si1 ; pi2 , si2〉

+Θ(x′0 − x0) 〈0|Âν(x′)Âµ(x)|0〉 〈pf1 , sf1 ; pf2 , sf2| : ĵν(x′) : : ĵµ(x) : |pi1 , si1 ; pi2 , si2〉
}
. (12.16)
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In the last step, we replaced the summations over the spatial indices k, l by summations over

the spatio-temporal indices µ, ν, since we have Â0(x) = 0 in the radiation gauge. The normal

ordering of the four-current density operator (12.11) leads to

: ĵµ(x) := c

∫
d3p1

∫
d3p2

√
Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

(12.17)

×
{
ei(p2−p1)x/h̄ u(p2, s2)γµu(p1, s1)b̂†p2,s2

b̂p1,s1 + ei(p2+p1)x/h̄ u(p2, s2)γµv(p1, s1)b̂†p2,s2
d̂†p1,s1

+e−i(p1+p2)x/h̄ v(p2, s2)γµu(p1, s1)d̂p2,s2 b̂p1,s1 − e−i(p2−p1)x/h̄ v(p2, s2)γµv(p1, s1)d̂†p1,s1
d̂p2,s2

}
.

Note that the normal ordering affected only the last term by changing its sign. Evaluating the

matrix element for the product of two normally ordered four-vector current density operators

: ĵµ(x) : : ĵν(x) : with the states (12.12) and (12.13), then only the first summand in (12.17)

leads in both cases to a non-vanishing contribution:

〈pf1 , sf1 ; pf2 , sf2 | : ĵµ(x) : : ĵν(x′) : |pi1 , si1 ; pi2 , si2〉 = c2

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4

×
∑

s1

∑

s2

∑

s3

∑

s4

√
Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

√
Mc2

(2πh̄)3Ep3

√
Mc2

(2πh̄)3Ep4

ei(p2−p1)x/h̄

×u(p2, s2)γµu(p1, s1) ei(p4−p3)x′/h̄ u(p4, s4)γµu(p3, s3) C̃(p1,p2,p3,p4; s1, s2, s3, s4) . (12.18)

The vacuum expectation value introduced here reads

C̃(p1,p2,p3,p4; s1, s2, s3, s4) = 〈0|b̂pf2 ,sf2 b̂pf1 ,sf1 b̂
†
p2,s2

b̂p1,s1 b̂
†
p4,s4

b̂p3,s3 b̂
†
pi1 ,si1

b̂†pi2 ,si2 |0〉
= −〈0|b̂pf2 ,sf2 b̂pf1 ,sf1 b̂

†
p2,s2

b̂†p4,s4
b̂p1,s1 b̂p3,s3 b̂

†
pi1 ,si1

b̂†pi2 ,si2 |0〉
+δ(p1 − p4)δs1,s4 〈0|b̂pf2 ,sf2 b̂pf1 ,sf1 b̂

†
p2,s2

b̂p3,s3 b̂
†
pi1 ,si1

b̂†pi2 ,si2 |0〉 , (12.19)

where we have applied the anti-commutator algebra of the fermionic operators (10.407). In

(12.19) the second term disappears due to the different momenta of the initial and the final

state (12.12), and (12.13). Indeed, as (12.19) contains two creation (annihilation) operators

for the initial (final) states but only one annihilation (creation) operator for an intermediate

state, there always remains one creation (annihilation) operator, which finally annihilates the

bra (ket) vacuum. Thus, a comparison with (12.15) yields:

C̃(p1,p2,p3,p4; s1, s2, s3, s4) = C(p1,p2,p3,p4; s1, s2, s3, s4) . (12.20)

We conclude from (12.14), (12.16), (12.18), and (12.20) that both contributions of the scattering

matrix (12.5) depend on the same vacuum expectation value (12.15). We now evaluate the latter
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by iteratively applying the underlying anti-commutator relations (10.407):

C(p1,p2,p3,p4; s1, s2, s3, s4) = 〈0|b̂pf2 ,sf2 b̂pf1 ,sf1 b̂
†
p2,s2

b̂†p4,s4

(
b̂p1,s1 b̂

†
pi1 ,si1

)(
b̂p3,s3 b̂

†
pi2 ,si2

)
|0〉

−δ(p3 − pi1)δs3,si1 〈0|b̂pf2 ,sf2 b̂pf1 ,sf1 b̂
†
p2,s2

b̂†p4,s4

(
b̂p1,s1 b̂

†
pi2 ,si2

)
|0〉 = 〈0| b̂pf2 ,sf2 b̂pf1 ,sf1 b̂

†
p2,s2

b̂†p4,s4

×
[
−������
b̂†pi1 ,si1 b̂p1,s1 + δ(p1 − pi1)δs1,si1

] [
−������
b̂†pi2 ,si2 b̂p3,s3 + δ(p1 − pi1)δs1,si1

]
|0〉 − δ(p3 − pi1)δs3,si1

×〈0| b̂pf2 ,sf2 b̂pf1 ,sf1 b̂
†
p2,s2

b̂†p4,s4

[
������
b̂†pi2 ,si2 b̂p1,s1 + δ(p1 − pi2)δs1,si2

]
|0〉 =

{
δ(p1 − pi1)δs1,si1

×δ(p3 − pi2)δs3,si2 − δ(p1 − pi2)δs1,si2δ(p3 − pi1)δs3,si1

}
〈0|b̂pf2 ,sf2 b̂pf1 ,sf1 b̂

†
p2,s2

b̂†p4,s4
|0〉 . (12.21)

Here the crossed out terms do not contribute as the creation operator of an initial state an-

nihilates the bra vacuum due to pi1 ,pi2 6= pf1
,pf2

. The remaining vacuum expectation value

(12.21) results in

〈0|b̂pf2 ,sf2 b̂pf1 ,sf1 b̂
†
p2,s2

b̂†p4,s4
|0〉 = −〈0|b̂pf2 ,sf2 b̂

†
p2,s2

b̂pf1 ,sf1 b̂
†
p4,s4
|0〉+ δ(p2 − pf1)δs2,sf1 (12.22)

×〈0|b̂pf2 ,sf2 b̂
†
p4,s4
|0〉 = δ(p2 − pf1)δs2,sf1δ(p4 − pf2)δs4,sf2 − δ(p2 − pf2)δs2,sf2δ(p4 − pf1)δs4,sf1 .

Inserting (12.22) into (12.21) yields in total four terms:

C(p1,p2,p3,p4; s1, s2, s3, s4) = δ(pf1 − p2)δsf1 ,s2δ(pf2 − p4)δsf2 ,s4δ(pi1 − p1)δsi1 ,s1

×δ(pi2 − p3)δsi2 ,s3 + δ(pf1 − p4)δsf1 ,s4δ(pf2 − p2)δsf2 ,s2δ(pi1 − p3)δsi1 ,s3δ(pi2 − p1)δsi2 ,s1

−δ(pf1 − p2)δsf1 ,s2δ(pf2 − p4)δsf2 ,s4δ(pi1 − p3)δsi1 ,s3δ(pi2 − p1)δsi2 ,s1

−δ(pf1 − p4)δsf1 ,s4δ(pf2 − p4)δsf2 ,s4δ(pi1 − p1)δsi1 ,s1δ(pi2 − p3)δsi2 ,s3 . (12.23)

We recognize that the vacuum expectation value (12.23) turns out to have the symmetry

C(p1,p2,p3,p4; s1, s2, s3, s4) = C(p3,p4,p1,p2; s3, s4, s1, s2) , (12.24)

where both the initial and the final momenta as well as the helicities are exchanged with respect

to each other. Therefore, the substitutions p1, s1 ↔ p3, s3 and p2, s2 ↔ p4, s4 in (12.18) lead

with (12.20) to a corresponding symmetry of the matrix element

〈pf1 , sf1 ; pf2 , sf2| : ĵµ(x) : : ĵν(x′) : |pi1 , si1 ; pi2 , si2〉
= 〈pf1 , sf1 ; pf2 , sf2| : ĵν(x′) : : ĵµ(x) : |pi1 , si1 ; pi2 , si2〉 . (12.25)

Using (12.25) in (12.16), the latter reduces to

S
(2,rad)
fi = − e2

2h̄2c2

∫
d4x

∫
d4x′〈pf1 , sf1 ; pf2 , sf2| : ĵµ(x) :

× : ĵν(x′) : |pi1 , si1 ; pi2 , si2〉Dµν(x, x
′) , (12.26)

where we have introduced as an abbreviation the Maxwell propagator

Dµν(x, x
′) = Θ(x0 − x′0) 〈0|Âµ(x)Âν(x

′)|0〉+ Θ(x′0 − x0) 〈0|Âν(x′)Âµ(x)|0〉 . (12.27)
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Substituting (12.18) and (12.20) into (12.26), we obtain for the interaction between the Dirac

and the Maxwell field:

S
(2,rad)
fi = − e2

2h̄2

∫
d4x

∫
d4x′

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4

∑

s1

∑

s2

∑

s3

∑

s4

×
√

Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

√
Mc2

(2πh̄)3Ep3

√
Mc2

(2πh̄)3Ep4

Dµν(x, x
′) ei(p2−p1)x/h̄

×u(p2, s2)γµu(p1, s1) ei(p4−p3)x′/h̄ u(p4, s4)γνu(p3, s3)C(p1,p2,p3,p4; s1, s2, s3, s4) . (12.28)

Based on the previous results we now establish an intriguing connection between both contri-

butions (12.14) and (12.28) of the scattering matrix (12.5). To this end we first use the Fourier

expansion of the Coulomb potential in (12.14)

1

|x− x′| =

∫
d3k

(2π)3

4π

k2
eik(x−x′) , (12.29)

so that the scattering matrix contribution from the instantaneous Coulomb self-interaction of

the Dirac field (12.14) reduces to

S
(2,inst)
fi =

−ie2

8πh̄ε0

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4

∑

s1

∑

s2

∑

s3

∑

s4

√
Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

×
√

Mc2

(2πh̄)3Ep3

√
Mc2

(2πh̄)3Ep4

u(p2, s2)γ0u(p1, s1)u(p4, s4)γ0u(p3, s3)C(p1,p2,p3,p4; s1, s2, s3, s4)

×
∫
d3k

1

2π2k2

∫
dt ei(Ep2+Ep4−Ep1−Ep3 )t/h̄

∫
d3x ei(h̄k−p2+p1)x/h̄

∫
d3x′ ei(−h̄k−p4+p3)x′/h̄ , (12.30)

where the evaluation of the respective spatial and temporal integrals yields
∫
dt ei(Ep2+Ep4−Ep1−Ep3 )t/h̄ = 2πh̄c δ(p0

2 + p0
4 − p0

1 − p0
3) , (12.31)

∫
d3x ei(h̄k−p2+p1)x/h̄ = (2πh̄)3 δ(h̄k− p2 + p1) , (12.32)

∫
d3x′ ei(−h̄k−p4+p3)x′/h̄ = (2πh̄)3 δ(h̄k− p4 + p3) . (12.33)

Substituting (12.31)–(12.33) into (12.30) and evaluating the k-integral finally leads to

S
(2,inst)
fi =

−ih̄e2

2ε0c

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4

∑

s1

∑

s2

∑

s3

∑

s4

√
Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

×
√

Mc2

(2πh̄)3Ep3

√
Mc2

(2πh̄)3Ep4

(2πh̄)4δ(p2 + p4 − p1 − p3)
1

(p2 − p1)2
u(p2, s2)γ0u(p1, s1)

×u(p4, s4)γ0u(p3, S3)C(p1,p2,p3,p4; s1, s2, s3, s4) . (12.34)

On the other hand, with the help of the four-dimensional Fourier representation of the Maxwell

propagator (9.199)

Dµν(x, x
′) =

ih̄

cε0

∫
d4k

(2π)4

1

k2
eik(x−x′) Pµν(k) (12.35)
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the scattering matrix contribution (12.28) stemming from the interaction between the Dirac

and the Maxwell field yields

S
(2,rad)
fi = − ie2

2πh̄cε0

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4

∑

s1

∑

s2

∑

s3

∑

s4

√
Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

×
√

Mc2

(2πh̄)3Ep3

√
Mc2

(2πh̄)3Ep4

u(p2, s2)γµu(p1, s1)u(p4, s4)γνu(p3, s3)

∫
d4k

(2π)4

1

k2
Pµν(k)

×C(p1,p2,p3,p4; s1, s2, s3, s4)

∫
d4x ei(h̄k+p2−p1)x/h̄

∫
d4x′ei(−h̄k+p4−p3)x′/h̄ . (12.36)

The evaluation of the two spatio-temporal integrals results in

∫
d4x ei(h̄k+p2−p1)x/h̄ = (2πh̄)4 δ(h̄k + p2 − p1)

∫
d4x′ei(−h̄k+p4−p3)x′/h̄ = (2πh̄)4 δ(−h̄k + p4 − p3) , (12.37)

so that the k-integral in (12.36) can be evaluated as follows:

S
(2,rad)
fi = −ie

2h̄

2ε0c

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4

∑

s1

∑

s2

∑

s3

∑

s4

√
Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

×
√

Mc2

(2πh̄)3Ep3

√
Mc2

(2πh̄)3Ep4

(2πh̄)4δ(p2 + p4 − p1 − p3)
Pµν(p2 − p1)

(p2 − p1)2

×u(p2, s2)γµu(p1, s1)u(4, s4)γνu(p3, s3)C(p1,p2,p3,p4; s1, s2, s3, s4) . (12.38)

Inserting the polarization sum from (9.204)

Pµν(k) = −gµν − k2 ξµξν
(kξ)2 − k2

− kµkν + (kξ)(kµξν + kνξµ)

(kξ)2 − k2
(12.39)

into (12.38), it turns out that its last term does not contribute. Namely, due to the algebraic

equations (10.305) and (10.307) determining the Dirac spinor u(p, s) and the Dirac adjoint

Dirac spinor u(p, s), we conclude

u(p2, s2)γµu(p1, s1)(p2µ − p1µ) =
{
u(p2, s2)γµp2µ

}
u(p1, s1)− u(p2, s2)

{
γµp1µu(p1, s1)

}

= −Mcu(p2, s2)u(p1, s1) +Mcu(p2, s2)u(p1, s1) = 0 (12.40)

and, analogously, we also obtain

δ(p2 + p4 − p1 − p3)u(p4, s4)γνu(p3, s3)(p2ν − p1ν)

= δ(p2 + p4 − p1 − p3)u(p4, s4)γνu(p3, s3)(p4ν − p3ν) = 0 . (12.41)

Note that the identities (12.40) and (12.41) are a consequence of the charge conservation at

a vertex and can be studied in more detail in the framework of the so-called Ward-Takahashi
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identities. From (12.38)–(12.41) we then conclude

S
(2,rad)
fi = −ih̄e

2

2ε0c

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4

∑

s1

∑

s2

∑

s3

∑

s4

√
Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

×
√

Mc2

(2πh̄)3Ep3

√
Mc2

(2πh̄)3Ep4

(2πh̄)4δ(p2 + p4 − p1 − p3)

(p2 − p1)2

{
− gµν −

(p2 − p1)2ξµξν
[(p2 − p1)ξ]2 − (p2 − p1)2

}

×u(p2, s2)γµu(p1, s1)u(p4, s4)γνu(p3, s3)C(p1,p2,p3,p4; s1, s2, s3, s4) . (12.42)

Adding now both contributions (12.34) and (12.42) to the scattering matrix element (12.5) and

taking into account the explicit form of the time-like vector ξ according to (9.201) yields a

manifestly covariant result:

S
(2)
fi =

ih̄e2

2ε0c

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4

∑

s1

∑

s2

∑

s3

∑

s4

√
Mc2

(2πh̄)3Ep1

√
Mc2

(2πh̄)3Ep2

×
√

Mc2

(2πh̄)3Ep3

√
Mc2

(2πh̄)3Ep4

(2πh̄)4δ(p2 + p4 − p1 − p3)
gµν

(p2 − p1)2

×u(p2, s2)γµu(p1, s1)u(p4, s4)γνu(p3, s3)C(p1,p2,p3,p4; s1, s2, s3, s4) . (12.43)

Substituting the vacuum expectation value (12.23) into (12.43), the first two and the last two

terms yield the same contribution, respectively, due to the obvious identity

u(p2, s2)γµu(p1, s1)u(p4, s4)γνu(p3, s3) = u(p4, s4)γνu(p3, s3)u(p2, s2)γµu(p1, s1) (12.44)

and the symmetry of the integrand with respect to the substitutions p1, s1 ↔ p3, s3 and p2, s2 ↔
p4, s4. This results in a factor of 2, which just compensates for the factor 1/2 stemming from

the second order in the Taylor expansion of the exponential function:

S
(2)
fi =

ih̄e2

ε0c
(2πh̄)4δ(pf1 + pf2 − pi1 − pi2)

√
Mc2

(2πh̄)3Epi1

√
Mc2

(2πh̄)3Epi2

√
Mc2

(2πh̄)3Epf1

√
Mc2

(2πh̄)3Epf2

×
{

gµν
(pf1 − pi1)2

u(pf1 , sf1)γµu(pi1 , si1)u(pf2 , sf2)γνu(pi2 , si2)

− gµν
(pf1 − pi2)2

u(pf1 , sf1)γµu(pi2 , si2)u(pf2 , sf2)γνu(pi1 , si1)

}
. (12.45)

This perturbative result for the scattering matrix element of the Møller scattering can be

represented in the form of two Feynman diagrams, which are depicted in Fig. 12.1. Note

that no momentum integrals occur in (12.45), which would correspond to internal loops in the

Feynman diagrams. Therefore, one calls the graphs in Fig. 12.1 to be tree-level graphs. The

corresponding manifestly covariant Feynman rules for converting the scattering matrix element

(12.45) into the Feynman diagrams of Fig. 12.1 and vice versa read in momentum space as

follows:
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Figure 12.1: Direct (left) and exchange (right) Feynman diagram for the Møller scattering of

two electrons.

(F1) The prefactor (2πh̄)4 δ(pf1 + pf2 − pi1 − pi2) guarantees the conservation of energy and

momentum in the scattering process.

(F2) An incoming electron corresponds to the factor

√
Mc2

(2πh̄)3Epi

u(pi, si).

(F3) An outgoing electron leads to the factor

√
Mc2

(2πh̄)3Epf

u(pf , sf ).

(F4) A vertex yields the factor e γµ.

(F5) The Maxwell propagator corresponds to the covariant factor h̄gµν/(ε0cq
2), where q de-

notes the momentum transfer, see Fig. 12.1.

(F6) The phase of the scattering matrix element is calculated according to the following rule:

(−i)number of vertices (−i)number of inner lines. Here, the minus sign for the number of vertices

comes from the negative charge of the electron, while the minus sign for the inner line

stems from the Maxwell propagator.

The phase rule (F6) leads directly to the correct phase of the direct graph: (−i)2(−i)1 = +i.

Due to the indistinguishability of the two incoming and outgoing electrons, apart from the

direct graph also the exchange graph contributes, where in the latter the two outgoing electrons

are swapped. Due to the Fermi-Dirac statistics of the electrons, the exchange graph has an

additional minus sign. Consequently, the entire scattering matrix is anti-symmetric with respect

to the exchange of the two incoming or outgoing electrons. If we had calculated the scattering

of identical bosons, the exchange graph would have the same sign as the direct graph and

the total scattering amplitude would be symmetrical with respect to the exchange of the two

incoming and outgoing bosons. Note that the Feynman diagrams in quantum electrodynamics

always have the multiplicities ±1 in contrast to other field theories such as the φ4-theory of

critical phenomena, where the multiplicities are highly non-trivial as they follow from involved

combinatorial reasons.



252 CHAPTER 12. MØLLER SCATTERING

12.2 Polarization Averaging

The second perturbative order of the Møller scattering matrix element in (12.45) factorises

according to

S
(2)
fi =

ih̄e2

ε0c
(2πh̄)4δ(pf1 + pf2 − pi1 − pi2)

√
Mc2

(2πh̄)3Epi1

√
Mc2

(2πh̄)3Epi2

×
√

Mc2

(2πh̄)3Epf1

√
Mc2

(2πh̄)3Epf2

M
(2)
fi , (12.46)

where we introduced the matrix element

M
(2)
fi =

gµν
(pf1 − pi1)2

u(pf1 , sf1)γµu(pi1 , si1)u(pf2 , sf2)γνu(pi2 , si2)

− gµν
(pf1 − pi2)2

u(pf1 , sf1)γµu(pi2 , si2)u(pf2 , sf2)γνu(pi1 , si1) . (12.47)

Provided that the polarizations of both the incoming and the outgoing electrons are not detected

during the scattering process, we have to calculate the scattering cross section from averaging

the squared matrix element over all these polarisations:

∣∣M (2)
fi

∣∣2 =
1

4

∑

si1

∑

si2

∑

sf1

∑

sf2

∣∣M (2)
fi

∣∣2 . (12.48)

Substituting (12.47) into (12.48) leads in total to four terms:

∣∣M (2)
fi

∣∣2 =
1

4

∑

si1

∑

si2

∑

sf1

∑

sf2

{
1

(pf1 − pi1)4

[
u(pf1 , sf1)γµu(pi1 , si1)

]∗[
u(pf2 , sf2)γµu(i2 , si2)

]∗

×u(pf1 , sf1)γνu(pi1 , si1)u(pf2 , sf2)γνu(pi2 , si2)

− 1

(pf1 − pi1)2(pf2 − pi1)2

[
u(pf1 , sf1)γµu(pi1 , si1)

]∗[
u(pf2 , sf2)γµu(pi2 , si2)

]∗

×u(pf2 , sf2)γνu(pi1 , si1)u(pf1 , sf1)γνu(pi2 , si2) + (pf1 ↔ pf2)

}
. (12.49)

Calculating the expression [u(p1, s1)γµu(p2, s2)]∗, we note that u(p1, s1)γµu(p2, s2) coincides

with its transpose as it is a scalar:

[u(p1, s1)γµ u(p2, s2)]∗ = [u(p1, s1)γµu(p2, s2)]†

= u†(p2, s2)(γµ)† u†(p1, s1) = u(p2, s2)γ0(γµ)†γ0u(p1, s1) . (12.50)

From the chiral representation of the Dirac matrices (10.95) follows due to the hermiticity of

the four Pauli matrices σµ:

(γµ)† =

(
0

σ̃µ
σµ

0

)†
=

(
0

σµ
σ̃µ

0

)
=⇒





(γ0)† = γ0

(γi)† = −γi
. (12.51)
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With this we conclude by taking into account the Clifford algebra (10.96):



γ0(γ0)†γ0 = γ0γ0γ0 = γ0

γ0(γi)†γ0 = −γ0γiγ0 = γiγ0γ0 = γi
=⇒ γ0(γµ)†γ0 = γµ . (12.52)

Substituting (12.52) into (12.50) then leads to the result

[u(p1, s1)γµu(p2, s2)]∗ = u(p2, s2)γµ u(p1, s1) . (12.53)

Using (12.53) in (12.49) yields

∣∣M (2)
fi

∣∣2 =
1

4

∑

si1

∑

si2

∑

sf1

∑

sf2

{
1

(pf1 − pi1)4
u(pi1 , si1)γµu(pf1 , sf1)u(pi2 , si2)γµu(pf2 , sf2)

×u(pf1 , sf1)γνu(pi1 , si1)u(pf2 , sf2)γνu(pi2 , si2)

− 1

(pf1 − pi1)2(pf2 − pi1)2
u(pi1 , si1)γµu(pf1 , sf1)u(pi2 , si2)γµu(pf2 , sf2)

×u(pf2 , sf2)γνu(pi1 , si1)u(pf1 , sf1)γνu(pi2 , si2) + (pf1 ↔ pf2)

}
. (12.54)

As the factors u(p1, s1)γµu(p2, s2) are scalars, their order can be changed:

∣∣M (2)
fi

∣∣2 =
1

4

∑

sf1

∑

sf2

{
1

(pf1 − pi1)4
u(pf1 , sf1)γν


∑

si1

u(pi1 , si1)u(pi1 , si1)


 γµu(pf1 , sf1)

×u(pf2 , sf2)γν


∑

si2

u(pi2 , si2)u(pi2 , si2)


 γµu(pf2 , sf2)

− 1

(pf1 − pi1)2(pf2 − pi1)2
u(pf2 , sf2)γν


∑

si1

u(pi1 , si1)u(pi1 , si1)


 γµu(pf1 , sf1)

×u(pf1 , sf1)γν


∑

si2

u(pi2 , si2)u(pi2 , si2)


 γµu(pf2 , sf2) + (pf1 ↔ pf2)

}
. (12.55)

The polarisation sums occurring here with respect to si1 , si2 were already calculated according

to (10.438) and (10.447). We implement now this result by introducing for the sake of clarity

spinorial indices and by using for notational brevity the Einstein summation convention that

implies summation over identical spinorial indices:

∣∣M (2)
fi

∣∣2 =
1

4

∑

sf1

∑

sf2

{
1

(pf1 − pi1)4
uα(pf1 , sf1)γναβ

(
/pi1 +Mc

2Mc

)

βγ

γµγδ uδ(pf1 , sf1)

×uα′(pf2 , sf2)γνα′β′

(
/pi2 +Mc

2Mc

)

β′γ′
γµγ′δ′ uδ′(pf2 , sf2)

− 1

(pf1 − pi1)2(pf2 − pi1)2
uα(pf2 , sf2)γναβ

(
/pi1 +Mc

2Mc

)

βγ

γµγδ uδ(pf1 , sf1)

×uα′(pf1 , sf1)γνα′β′

(
/pi2 +Mc

2Mc

)

β′γ′
γµγ′δ′ uδ′(pf2 , sf2) + (pf1 ↔ pf2)

}
. (12.56)
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Paying attention to the respective spinorial indices, the individual terms can be rearranged as

follows

∣∣M (2)
fi

∣∣2 =
1

4

{
1

(pf1 − pi1)4
γναβ

(
/pi1 +Mc

2Mc

)

βγ

γµγδ


∑

sf1

uδ(pf1 , sf1)uα(pf1 , sf1)




×γνα′β′
(
/pi2 +Mc

2Mc

)

β′γ′
γµγ′δ′


∑

sf2

uδ′(pf2 , sf2)uα′(pf2 , sf2)




− 1

(pf1 − pi1)2(pf2 − pi1)2
γναβ

(
/pi1 +Mc

2Mc

)

βγ

γµγδ


∑

sf1

uδ(pf1 , sf1)uδ′(pf1 , sf1)




×γνα′β′
(
/pi2 +Mc

2Mc

)

β′γ′
γµγ′δ′


∑

sf2

uδ′(pf2 , sf2)uα(pf2 , sf2)


+ (pf1 ↔ pf2)

}
. (12.57)

Here we take into account that also the polarisation sums with respect to sf1 , sf2 were already

calculated according to (10.438) and (10.447), yielding:

∣∣M (2)
fi

∣∣2 =
1

4

{
1

(pf1 − pi1)4
γναβ

(
/pi1 +Mc

2Mc

)

βγ

γµγδ

(
/pf1 +Mc

2Mc

)

δα

γνα′β′

(
/pi2 +Mc

2Mc

)

β′γ′

×γµγ′δ′
(
/pf2 +Mc

2Mc

)

δ′α′
− 1

(pf1 − pi1)2(pf2 − pi1)2
γναβ

(
/pi1 +Mc

2Mc

)

βγ

γµγδ

(
/pf1 +Mc

2Mc

)

δα′

×γνα′β′
(
/pi2 +Mc

2Mc

)

β′γ′
γµγ′δ′

(
/pf2 +Mc

2Mc

)

δ′α

+ (pf1 ↔ pf2)

}
. (12.58)

The sums with respect to the spinorial indices can be interpreted as traces:

∣∣M (2)
fi

∣∣2 =
1

4

{
1

(pf1 − pi1)4
Tr

[
γν
/pi1 +Mc

2Mc
γµ
/pf1 +Mc

2Mc

]
Tr

[
γν
/pi2 +Mc

2Mc
γµ
/pf2 +Mc

2Mc

]
(12.59)

− 1

(pf1 − pi1)2(pf2 − pi1)2
Tr

[
γν
/pi1 +Mc

2Mc
γµ
/pf1 +Mc

2Mc
γν
/pi2 +Mc

2Mc
γµ
/pf2 +Mc

2Mc

]
+ (pf1 ↔ pf2)

}

The first contribution in (12.59) is called the direct term

∣∣M (2)
fi

∣∣2
d

=
Tr
[
γν(/pi1 +Mc)γµ(/pf1 +Mc)

]
Tr
[
γν(/pi2 +Mc)γµ(/pf2 +Mc)

]

64M4c4(pf1 − pi1)4
. (12.60)

It consists of the product of two traces of the same design type, which reads due to the shortcut

notation with the Feynman dagger (10.100) as follows:

Tr
[
γµ(/pi1 +Mc)γν(/pf1 +Mc)

]
= Tr

[
γµ/pi1γ

ν
/pf1 +Mcγµ/pi1γ

ν +Mcγµγν/pf1 +M2c2γµγν
]

= pi1κpf1λTr
[
γµγκγνγλ

]
+Mcpi1κTr [γµγκγν ] +Mcpi1λTr

[
γµγνγλ

]
+M2c2Tr [γµγν ] . (12.61)
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12.3 Traces of Product of Dirac Matrices

Thus, according to (12.61), we have now to calculate traces over different products of γ-matrices.

Due to the explicit form of the Dirac matrices (10.95), the trace over each individual γ-matrix

disappears:

Tr [γµ1 ] = 0 . (12.62)

The trace over the product of two γ-matrices can be calculated by using their property of

representing a Clifford algebra (10.96):

Tr [γµ1γµ2 ] =
1

2
Tr [γµ1γµ2 + γµ2γµ1 ] = gµ1µ2Tr[1] = 4gν1µ2 . (12.63)

We show now that the trace vanishes over a product of any odd number of γ-matrices. To this

end we consider the γ5-matrix defined in (10.151) that has the explicit form (10.154) and, thus,

the property to be involutoric according to (10.155) as well as anti-commuting with any Dirac

matrix according to (10.232). With this follows then for the trace of a product of γ-matrices:

Tr [γµ1γµ2 · · · γµn ] = Tr
[
γµ1γµ2 · · · γµnγ5γ5

]
= Tr

[
γ5γµ1γµ2 · · · γµnγ5

]

= (−1)n Tr
[
γµ1γµ2 · · · γµnγ5γ5

]
= (−1)n Tr [γµ1γµ2 · · · γµn ] , (12.64)

so we obtain for n being odd:

Tr [γµ1γµ2 · · · γµ2n+1 ] = 0 . (12.65)

Thus, only the traces over a product of an even number of γ-matrices can be non-vanishing.

Let us consider now the trace over a product of four γ-matrices. Successively applying the

Clifford algebra property (10.96) together with (12.63) yields 4!! = 3 terms:

Tr [γµ1γµ2γµ3γµ4 ] = −Tr [γµ2γµ1γµ3γµ4 ] + 2gµ1µ2Tr [γµ3γµ4 ] = Tr [γµ2γµ3γµ1γµ4 ] + 8gµ1µ2gµ3µ4

−2gµ1µ3Tr [γµ2γµ4 ] = −Tr[γµ2γµ3γµ4γµ1 ] + 2gµ1µ4Tr[γµ2γµ3 ] + 8gµ1µ2gµ3µ4 − 8gµ1µ3gµ2µ4

=⇒ Tr[γµ1γµ2γµ3γµ4 ] = 4 (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3) . (12.66)

With the help of the auxiliary calculations (12.62)–(12.66) we obtain for (12.61) the result

Tr[γµ(/pi1 +Mc)γν(/pf1 +Mc)] = 4pi1κpf1λ(g
µκgνλ − gµνgκλ + gµλgκν) + 4M2c2gµν

= 4(pµi1p
ν
f1
− pi1pf1g

µν + pνi1p
µ
f1

+M2c2gµν) . (12.67)

Using (12.67) the direct term (12.60) yields

∣∣M (2)
fi

∣∣2
d

=
[pµi1p

ν
f1

+ pνi1p
µ
f1

+ (M2c2 − pi1pf1)gµν ][pi2µpf2ν + pi2νpf2µ + (M2c2 − pi2pf2)gµν ]

4M4c4(pf1 − pi1)4
,

which finally reduces to

∣∣M (2)
fi

∣∣2
d

=
(pi1pi2)(pf1pf2) + (pf1pi2)(pi1pf2)−M2c2pi1pf1 −M2c2pi2pf2 + 2M4c4

2M4c4(pf1 − pi1)4
. (12.68)
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The exchange term in (12.59) is formally obtained from the direct term (12.60) by interchanging

the final momenta pf1 and pf2 :

∣∣M (2)
fi

∣∣2
ex

=
Tr
[
γν(/pi1 +Mc)γµ(/pf2 +Mc)

]
Tr
[
γν(/pi1 +Mc)γµ(/pf1 +Mc)

]

64M4c4(pf2 − pi1)4
. (12.69)

Therefore, we obtain the result for evaluating the traces in (12.69) from (12.68) by interchanging

the final momenta pf1 and pf2 :

∣∣M (2)
fi

∣∣2
ex

=
(pi1pi2)(pf1pf2) + (pf2pi2)(pi1pf1)−M2c2pi1pf2 −M2c2pi2pf1 + 2M4c4

2M4c4(pf2 − pi1)4
. (12.70)

Thus, it only remains to consider the interference term between the direct and the exchange

scattering in (12.59):

∣∣M (2)
fi

∣∣2
i

=
−{Tr[γµ(/pi2 +Mc)γν(/pf1 +Mc)γµ(/pi2 +Mc)γν(/pf2 +Mc)] + (pf1 ↔ pf2)}

64M4c4(pf1 − pi1)2(pf2 − pi1)2
. (12.71)

Let us restrict us for the time being to the evaluation of the first term in (12.71). The corre-

sponding trace can be simplified due to (12.65) such that only the trace over products of an

even number of γ-matrices occurs:

Tr[...] = Tr[(γµ/pi1γ
ν
/pf1 +Mcγµγν/pf1 +Mcγµ/pi1γ

ν +M2c2γµγν) (12.72)

×(γµ/pi1γν/pf2 +Mcγµγν/pf2 +Mcγµ/pi2γν +M2c2γµγν)] = Tr[γµ/pi1γ
ν
/pf1γµ/pi2γν/pf2

+M2c2γµ/pi1γ
ν
/pf1γµγν +m2c2γµγν/pf1γ

νγµγν/pf2 +M2c2γµγν/pf1γ
µ
/pi2γν

+M2c2γµ/pi1γ
νγµγν/pf2 +M2c2γµ/pi1γ

νγµ/pi2γν +M2c2γµγνγµ/pi2γν/pf2 +M4c4γµγνγµγν ] .

These traces over products of an even number of γ-matrices should actually be calculated

analogously to (12.63) and (12.66). However, the trace over a product of six (eight) γ-matrices,

which appear here for the first time, leads in total to 6!! = 15 (8!! = 105) terms. Thus

evaluating (12.72) with the previous calculational technique would be too involved. Instead

we use the observation, that the contractions of γ-matrices occur in (12.72) within the trace,

to our advantage. Namely it turns out that this circumstance drastically simplifies the trace

calculation. With the help of the Clifford algebra (10.96) the contracted product of two γ-

matrices can be calculated as follows:

γµγµ = gµνγ
µγν =

1

2
gµν(γ

µγν + γνγµ) = gµνg
µν = δµµ = 4 . (12.73)

In case of one γ-matrix between the two contracted γ-matrices we get by applying the Clifford

algebra (10.96)

γµγνγµ = (−γνγµγµ + 2gµν)γµ = −γνγµγµ + 2gµνγµ = −2γν . (12.74)

This result can be used to deal with two γ-matrices lying in between

γµγνγκγµ = (−γνγµ + 2gµν)γκγµ = −γν(γµγκγµ) + 2gµνγκγµ = 2[γν , γκ]+ = 4gνκ . (12.75)
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And, correspondingly, we yield for three γ-matrices:

γµγνγκγλγµ = (−γνγµ + 2gµν)γκγλγµ = −γν(γµγκγλγµ) + 2gµνγκγλγµ

= −4γνgκλ + 2(γκγλ)γν = −4γνgκλ + 2(−γλγκ + 2gκλ)γν = −2γλγκγν . (12.76)

These contraction rules for γ-matrices can now be iteratively applied to the respective terms

in the trace (12.72) of the interference term (12.71):

1)(γµγνγµ)γν = −2γνγν = −8 , (12.77)

2)γµ/pi1γ
ν
/pf1γµγν = pi1κpf1λ(γ

µγκγνγλγµ)γν = pi1κpf1λ(−2)γλ(γνγκγν) = 4pi1κpf1λγ
λγκ, (12.78)

3)γµ/pi1γ
νγµ/pi2γν = pi1κpi2λ(γ

µγκγνγµ)γλγν = 4pi1κpi2λg
κνγλγν = 4pi1κpi2λγ

λγκ , (12.79)

4)γµγν/pf1γµ/pi2γν = pi1κpi2λ(γ
µγκγνγµ)γλγν = 4pi1κpi2λγ

λγκ , (12.80)

5)γµ/pi1γ
νγµγν/pf2 = pi1κpf2λ(γ

µγκγνγµ)γνγ
λ = 4pi1κpf2λg

κνγνγ
λ = 4pi1κpf2λγ

κγλ , (12.81)

6)γµγνγµ/pi2γν/pf2 = pi2κpf2λ(γ
µγνγµ)γκγνγ

λ = −2pi2κpf2λ(γ
νγκγν)γ

λ = 4pi2κpf2λγ
κγλ , (12.82)

7)γµγν/pf1γµγν/pf2 = pf1κpf2λ(γ
µγνγκγµ)γνγ

λ = 4pf1κpf2λγ
κγλ , (12.83)

8)γµ/pi1γ
ν
/pf1γµ/pi2γν/pf2 = pi1κpf1λpi2σpf2τ (γ

µγκγνγλγµ)γτγνγ
τ (12.84)

= −2pi1κpf1λpi2σpf2τγ
λ(γνγκγσγν)γ

τ = −8pi1κpf1λpi2σpf2τg
κσγλγτ = −8(pi1pi2)pf1λpf2τγ

λγτ .

Using the auxiliary calculations (12.77)–(12.84) and taking into account (12.63) we obtain for

(12.72) the following result

Tr[...] = −8(pi1pi2)pf1λpf2κTr[γλγκ] + 4M2c2
{
pi1κpf1λTr[γλγκ] + pi1κpi2λTr[γλγκ] (12.85)

+pf1κpi2λTr[γλγκ]
}

+
{
pi1κpf2λTr[γκγλ] + pf1κpf2λTr[γκγλ] + pi2κpf1λTr[γκγλ]

}
− 8M4c4Tr[1]

= −32(pi1pi2)(pf1pf2)− 32M4c4 + 16M2c2(pi1pf1 + pi1pi2 + pf1pi2 + pi1pf2 + pf1pf2 + pi2pf1) .

Substituting (12.85) into (12.71) leads to the final expression for the interference term between

the direct and the exchange scattering:

∣∣M (2)
fi

∣∣2
i

=
1

4M4c4(pf1 − pi1)2(pf2 − pi1)2
[2(pi1pi2)(pf1pf2) +M4c4 (12.86)

−M2c2(pi1pf1 + pi1pi2 + pf1pi2 + pi1pf2 + pf1pf2 + pi2pf1) + (pf1 ↔ pf2)] .

We conclude that the direct term (12.68), the exchange term (12.70), and the interference term

(12.86) have the common property of having a manifestly covariant form as they only depend

on the scalar product of momenta. Thus, it only remains to relate these scalar product of

momenta to observable properties of the scattering process. This is achieved by introducing

the Lorentz invariant Mandelstam variables.

12.4 Mandelstam Variables

Let us investigate now the kinematics of a general two-body scattering process

A+B =⇒ C +D , (12.87)
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which is described by the four-vector momenta pa, pb, pc, and pd with a total of 16 components.

The equivalence principle of special relativity requires that observable quantities, such as the

scattering cross section, can be expressed by Lorentz invariants.

12.4.1 General Case

With the four-vector momenta pi with i = a, b, c, d, one can form ten different scalar products

pipj with i ≤ j, four of which are fixed by the relativistic energy-momentum dispersion relations

p2
i = M2

i c
2 . (12.88)

The remaining six degrees of freedom are still interdependent, as each scattering process must

satisfy the energy-momentum conservation law:

pa + pb = pc + pd . (12.89)

These four additional conditions lead to the fact that, ultimately, two kinematic variables are

sufficient to describe the two-body scattering process (12.87), provided that one can perform an

average over the polarisations of both the initial and the final particles. For historical reasons,

one describes the two-body scattering process (12.87) by the following three Lorentz-invariant

Mandelstam variables

s = (pa + pb)
2 = (pc + pd)

2 , (12.90)

t = (pc − pa)2 = (pd − pb)2 , (12.91)

u = (pc − pb)2 = (pd − pa)2 . (12.92)

Due to (12.88) and (12.90)–(12.91) each of the six scalar products pipj with i < j can be

expressed by the three Mandelstam variables:

papb =
1

2

(
s−M2

ac
2 −M2

b c
2
)
, pcpd =

1

2

(
s−M2

c c
2 −M2

d c
2
)

(12.93)

papc = −1

2

(
t−M2

ac
2 −M2

c c
2
)
, pbpd = −1

2

(
t−M2

b c
2 −M2

d c
2
)
, (12.94)

pbpc = −1

2

(
u−M2

b c
2 −M2

c c
2
)
, papd = −1

2

(
u−M2

ac
2 −M2

d c
2
)
. (12.95)

Furthermore, it is possible to derive a restriction for the three Mandelstam variables. At first

we obtain from (12.90)–(12.92)

s+ t+ u = (pa + pb)
2 + (pa − pc)2 + (pa − pd)2 = 3p2

a + p2
b + p2

c + p2
d + 2pa(pb − pc − pd),(12.96)

which reduces then with (12.88) and (12.89) to

s+ t+ u = p2
a + p2

b + p2
c + p2

d = (M2
a +M2

b +M2
c +M2

d )c2 . (12.97)

Obviously, one of the three Mandelstam variables s, t, u can be eliminated with the help of

(12.97). Nevertheless, all the three Mandelstam variables are often used, as the results for

scattering cross sections turn out to acquire then a symmetrical form.
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12.4.2 Equal Masses

Various simplifications occur for two-body scattering processes (12.87), where the involved

particles have an equal mass:

Ma = Mb = Mc = Md = M . (12.98)

With the help of the identifications

pa = pi1 , pb = pi2 , pc = pf1 , pd = pf2 (12.99)

the relativistic energy-momentum dispersion relations (12.88) go over to

p2
i1

= p2
i2

= p2
f1

= p2
f2

= M2c2 . (12.100)

Additionally the corresponding scalar products (12.93)–(12.95) read then as follows:

pi1pi2 = pf1pf2 =
1

2

(
s− 2M2c2

)
, (12.101)

pi1pf1 = pi2pf2 = −1

2

(
t− 2M2c2

)
, (12.102)

pi2pf1 = pi1pf2 = −1

2

(
u− 2M2c2

)
. (12.103)

And the definitions of the Mandelstam variables (12.90)–(12.92) take now the form

s = (pi1 + pi2)2 = (pf1 + pf2)2 , (12.104)

t = (pf1 − pi1)2 = (pf2 − pi2)2 , (12.105)

u = (pf1 − pi2)2 = (pf2 − pi1)2 , (12.106)

whereby the restriction (12.97) coverts into

s+ t+ u = 4M2c2 . (12.107)

12.4.3 Matrix Element

Now we return to the polarisation averaged matrix element of the Møller scattering and ex-

press the individual contributions with the help of (12.101)–(12.107) by the three Mandelstam

variables s, t, u. For the direct term (12.68) we obtain

∣∣M (2)
fi

∣∣2
d

=
(s− 2M2c2)2 + (u− 2M2c2)2 + 4M2c2t

8M4c4t2
. (12.108)

The exchange term (12.70) follows from the direct term (12.68) by exchanging the final momenta

pf1 and pf2 . At the level of the Mandelstam variables (12.101)–(12.107) this corresponds to an

exchange of t and u, so we get

∣∣M (2)
fi

∣∣2
ex

=
(s− 2M2c2)2 + (t− 2M2c2)2 + 4M2c2u

8M4c4u2
. (12.109)
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The Feynman diagrams in Fig. 12.1, whose absolute square and a subsequent polarization aver-

age leads to the terms (12.108) and (12.109), are also called after the Mandelstam variable in the

denominator to graphically represent the t- and the u-channel, respectively. Correspondingly,

the interference term (12.85) yields

∣∣M (2)
fi

∣∣2
i

=
1

2M4c4tu

{
1

2
(s− 2M2c2)2 (12.110)

−M2c2
[
(s− 2M2c2)− (t− 2M2c2)− (u− 2M2c2)

]
+ 2M4c4 + (u↔ t)

}
.

Both contributions in (12.110) are apparently identical, we obtain

∣∣M (2)
fi

∣∣2
i

=
1

2M4c4tu

[
1

2
(s− 2M2c2)2 −M2c2(s− t− u)

]
. (12.111)

Taking into account the restriction (12.107) this reduces to

∣∣M (2)
fi

∣∣2
i

=
(s− 2M2c2)(s− 6M2c2)

4M4c4tu
. (12.112)

12.5 Center-of-Mass System

Now we specialize the kinematic analysis to the center of mass reference frame for two particles

of equal mass.

12.5.1 Kinematics

Here the four-momentum vectors

pi1 =

(
Ei1/c

pi1

)
, pi2 =

(
Ei2/c

pi2

)
, pf1 =

(
Ef1/c

pf1

)
, pf2 =

(
Ef2/c

pf2

)
(12.113)

simplify even further. Namely, the center of mass system is distinguished from other inertial

systems by the fact that the total momentum of the two incoming particles disappears:

pi1 + pi2 = 0 =⇒ pi1 = p , pi2 = −p . (12.114)

From their respective energy-momentum dispersion relations (12.100)

Ei1 =
√

p2
i1
c2 +M2c4 , Ei2 =

√
p2
i2
c2 +M2c4 (12.115)

then follows that the energies of the two incoming particles coincide:

Ei1 = Ei2 = E . (12.116)
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From the momentum conservation (12.89) in the center of mass reference frame follows with

(12.99) and (12.114) for the momenta of the two outgoing particles

pf1 + pf2 = 0 =⇒ pf1 = p′ , pf2 = −p′ . (12.117)

Thus, the corresponding energy-momentum dispersion relations (12.100)

Ef1 =
√

p2
f1
c2 +M2c4 , Ef2 =

√
p2
f2
c2 +M2c4 (12.118)

imply that also the energies of the two outgoing particles are equal:

Ef1 = Ef2 = E ′ . (12.119)

And from the energy conservation (12.89) in the center of mass reference frame

Ea + Eb = Ec + Ed (12.120)

then follows with (12.99), (12.116), and (12.119) that the energy of the incoming and the

outgoing particles E and E ′ coincide:

Ei1 + Ei2 = Ef1 + Ef2 =⇒ E = E ′ . (12.121)

We conclude from (12.114), (12.116), (12.117), (12.119), and (12.121) that the four-momentum

vectors (12.113) are given in the center of mass reference frame as follows:

pi1 =

(
E/c

p

)
, pi2 =

(
E/c

−p

)
, pf1 =

(
E/c

p′

)
, pf2 =

(
E/c

−p′

)
. (12.122)

For the Mandelstam variables (12.104)–(12.106) this has due to (12.115), (12.118), (12.121),

and (12.122) the consequence

s = (pi1 + pi2)2 =

(
2E/c

0

)2

=
4E2

c2
, (12.123)

t = (pf1 − pi1)2 =

(
0

p′ − p

)2

= −(p′ − p)2 = −2p2(1− cos θ) , (12.124)

u = (pf1 − pi2)2 =

(
0

p′ + p

)2

= −(p′ + p)2 = −2p2(1 + cos θ) . (12.125)

Here θ denotes the angle between the incoming and the outgoing electrons, which coincides with

the angle between the momenta p and p′ as illustrated in Fig. 12.2. Obviously, the Mandelstam

variables s, t, u in the center of mass reference frame (12.123)–(12.125) satisfy the restriction

(12.107) due to the relativistic energy-momentum dispersion relation (12.114)–(12.116):

s+ t+ u =
4E2

c2
− 2p2(1− cos θ)− 2p2(1 + cos θ) =

4

c2
(E2 − p2c2) = 4M2c2 . (12.126)



262 CHAPTER 12. MØLLER SCATTERING

Figure 12.2: Geometry of the elastic Møller scattering in the center of mass reference frame

with two incoming (outgoing) electrons of momenta ±p (±p′).

Furthermore, we read off from (12.114)–(12.116) that the two Mandelstam variables (12.124)

and (12.125) can be rewritten as

t = −2
E2 −M2c4

c2
(1− cos θ) , (12.127)

u = −2
E2 −M2c4

c2
(1 + cos θ) . (12.128)

Thus, for a scattering process of two particles with equal masses the Mandelstam variables

(12.123), (12.127), and (12.128) in the center of mass reference frame depend on both the

scattering energy E and the scattering angle θ.

12.5.2 Matrix Element

With the help of (12.123), (12.127), and (12.128) the individual contributions to the polarisation-

averaged squared matrix element for the Møller scattering can be expressed as follows. The

direct term (12.108) goes over into

∣∣M (2)
fi

∣∣2
d

=
1

8M4c4(E2 −M2c4)2(1− cos θ)2
(12.129)

×
{

(2E2 −M2c4)2 +
[
(E2 −M2c4)(1 + cos θ) + 2M2c4

]2 − 2M2c4(E2 −M2c4)(1− cos θ)
}
,

the exchange term (12.109) reads

∣∣M (2)
fi

∣∣2
ex

=
1

8M4c4(E2 −M2c4)2(1 + cos θ)2
(12.130)

×
{

(2E2 −M2c4)2 +
[
(E2 −M2c4)(1− cos θ) +M2c4

]2 − 2M2c4(E2 −M2c4)(1 + cos θ)
}
,

and the interference term (12.112) results in

∣∣M (2)
fi

∣∣2
i

=
(2E2 −M2c4)(2E2 − 3M2c4)

4M4c4(E2 −M2c4)2(1− cos θ)(1 + cos θ)
. (12.131)

These three contributions are now to added:

∣∣M (2)
fi

∣∣2 =
∣∣M (2)

fi

∣∣2
d

+
∣∣M (2)

fi

∣∣2
ex

+
∣∣M (2)

fi

∣∣2
i

=
f(θ)

8M4c4(E2 −M2c4)2(1− cos θ)2(1 + cos θ)2
. (12.132)



12.6. TRANSITION RATE PER VOLUME 263

Due to straight-forward but lengthy manipulations the angle-dependent numerator results in

f(θ) = (1 + 2 cos θ + cos2 θ)
[
(2E2 −M2c4)2 + E4 + 2E2(E2 −M2c4) cos θ (12.133)

+(E2 −M2c4) cos2 θ − 2M2c4(E2 −M2c4)(1− cos θ)
]

+ (1− 2 cos θ + cos2 θ)

×
[
(2E2 −M2c4)2 + E4 − 2E2(E2 −M2c4) cos θ + (E2 −M2c4) cos2 θ

−2M2c4(E2 −M2c4)(1 + cos θ)
]

+ 2(1− cos2 θ)(2E2 −M2c4)(2E2 − 3M2c4) .

It turns out to be useful to take into account the trigonometric Pythagoras

sin2 θ + cos2 θ = 1 (12.134)

in order to further simplify the expression (12.133), yielding after some further algebraic ma-

nipulations the concise result:

f(θ) = 2
[
4(2E2 −M2c4)2 − (8E4 − 4M2c4E2 −M4c8) sin2 θ + (E2 −M2c4)2 sin4 θ

]
. (12.135)

Inserting (12.135) into (12.132) leads together with (12.134) the following angular dependence

of the polarisation-averaged squared matrix element of the Møller scattering in the center of

mass reference frame:

∣∣M (2)
fi

∣∣2 =
4(2E2 −M2c4)2 − (8E4 − 4M2c4E2 −M4c8) sin2 θ + (E2 −M2c4)2 sin4 θ

4M4c4(E2 −M2c4)2 sin4 θ
. (12.136)

12.6 Transition Rate Per Volume

Now we return to the perturbative result for the scattering matrix of the Møller scattering

(12.46) and evaluate its absolute square:

∣∣S(2)
fi

∣∣2 =
h̄2e4

ε20c
2

(2πh̄)8δ(0)δ(pf1 + pf2 − pi1 − pi2)

× Mc2

(2πh̄)3Epi1

Mc2

(2πh̄)3Epi2

Mc2

(2πh̄)3Epf1

Mc2

(2πh̄)3Epf2

∣∣M (2)
fi

∣∣2 . (12.137)

The transition probability (12.137) is formally infinite due to the appearance of the singular

factor δ(0). In order to deal with this singularity we reconsider the decomposition of the field

operator ψ̂(x) into plane waves according to (12.10). However, instead we now assume, as is

usual in solid-state physics, that an electron is located in a finite box with volume V . Then we

have instead of (12.10) the following plane wave decomposition:

ψ̂(x) =
∑

p

∑

s

√
Mc2

V Ep

{
e−ipx/h̄ u(p, s) b̂p,s + eipx/h̄ v(p, s) d̂†p,s

}
. (12.138)

While the orthonormality relation of the plane waves in the continuum reads
∫
d4x ei(p−p

′)x/h̄ = (2πh̄)4 δ(p− p′) , (12.139)
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it reads in a finite box V within a finite observation time T

∫

V

d3x

∫ Tc/2

−Tc/2
dx0 e

i(p−p′)x/h̄ = V Tc δp,p′ . (12.140)

Note that the delta function in (12.139) is substituted by the Kronecker symbol in (12.140).

Therefore, comparing (12.139) and (12.140) yields on formal grounds the following substitution

rule

(2πh̄)4 δ(0) = V Tc , (12.141)

which suggests an appropriate regularisation for the singular term δ(0). We now follow the

calculation strategy that both the initial and the final states of the scattering process are

still considered to be continuous, while the intermediate states are treated as discrete ones

as in (12.138). Thus, we would then have to repeat the whole perturbative calculation for

the Møller scattering and calculate how the scattering matrix element (12.45) and its absolute

square (12.137) change from this modified point of view. This would yield the result (12.137)

with a regularization by the formal substitution rule (12.141) together with the identification

(2πh̄)3 → V . With this we obtain for the transition rate per volume from (12.137) and (12.141):

∣∣S(2)
fi

∣∣2

V T
=
h̄2e4

ε20c
(2πh̄)4 δ(pf1 + pf2 − pi1 − pi2)

(Mc2)4

V 4Epi1
Epi2

Epf1
Epf2

∣∣M (2)
fi

∣∣2 . (12.142)

This transition rate per volume is then to be integrated or summed up over all final states:

V

(2πh̄)3

∫
d3pf1

V

(2πh̄)3

∫
d3pf2

∑

sf1

∑

sf2

(12.143)

and it is to be averaged over the polarizations of the initial states:

1

4

∑

si1

∑

si2

(12.144)

This yields the averaged transition rate per volume:

W =
1

4

∑

si1

∑

si2

∑

sf1

∑

sf2

V

(2πh̄)3

∫
d3pf1

V

(2πh̄)3

∫
d3pf2

|S(2)
fi |2
V T

. (12.145)

Inserting (12.142) into (12.145) as well as taking into account (12.48) then leads to

W =
e4M2c4

4π2ε20cV
2Epi1

Epi2

∫
d3pf1

∫
d3pf2 δ(pf1 + pf2 − pi1 − pi2)

M2c4

Epf1
Epf2

∣∣M (2)
fi

∣∣2 , (12.146)

where the polarisation average of the squared matrix element (12.48) was already calculated in

(12.136). The two integrals over the outgoing momenta are of the following form:

I =

∫
d3pf1

2Epf1

d3pf2

2Epf2

δ(pf1 + pf2 − pi1 − pi2) f(pf1 ,pf2) . (12.147)
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In order to evaluate (12.147) we perform at first the following auxiliary calculation

∫ ∞

0

dp0δ(p2 −M2c2) =

∫ ∞

0

dp0δ((p0)2 − p2 −M2c2)

=

∫ ∞

0

dp0

[
c

2Ep

δ

(
p0 − Ep

c

)
+

c

2Ep

δ

(
p0 +

Ep

c

)]
=

c

2Ep

. (12.148)

Note that we used here the distributional rule

δ(g(x)) =
∑

i

1

|g′(xi)|
δ(x− xi) , g(xi) = 0 (12.149)

for the function

g(p0) = (p0)2 − E2
p

c2
=

(
p0 − Ep

c

)(
p0 +

Ep

c

)
, g′

(
p0 = ± Ep

c

)
= ± 2

Ep

c
. (12.150)

Inserting (12.148) into (12.147) leads to

I =
1

c

∫
d3pf1

2Epf1

∫
d3pf2

∫ ∞

0

dp0
f2
δ(p2

f2
−M2c2)δ(pf1 + pf2 − pi1 − pi2)f(pf1 ,pf2)

=
1

c

∫
d3pf1

2Epf1

∫
d4pf2Θ(p0

f2
)δ(p2

f2
−M2c2)δ(pf1 + pf2 − pi1 − pi2)f(pf1 ,pf2) . (12.151)

Now the four-dimensional pf2-integral can formally be evaluated and we obtain the intermediate

result:

I =
1

c

∫
d3pf1

2Epf1

Θ(p0
i1

+ p0
i2
− p0

f1
)δ((pi1 + pi2 − pf1)2 −M2c2)f(pf1 ,pi1 + pi2 − pf1) . (12.152)

In view of evaluating also the pf1-integral we specialise for the center of mass reference frame,

so that we can apply the considerations from the previous section. However, in contrast to

(12.122), we cannot use the conservation of energy, as this is only established due the delta

function in (12.152). Therefore, based on (12.114) and (12.117), we have to generalise the

four-momentum vectors (12.122) accordingly:

pi1 =

(
Ep/c

p

)
, pi2 =

(
Ep/c

−p

)
, pf1 =

(
Ep′/c

p′

)
, pf2 =

(
Ep′/c

−p′

)
. (12.153)

From this we read off

p0
i1

+ p0
i2
− p0

f1
=

2Ep − Ep′

c
, (12.154)

pi1 + pi2 − pf1 = −p′ , (12.155)

as well as

(pi1 + pi2 − pf1)2 = (pi1 + pi2)2 − 2(pi1 + pi2)pf1 + p2
f1

(12.156)

=

(
2Ep

c

)2

− 2
2Ep

c

Ep′

c
+
E2

p′

c2
− p′2 =

4Ep

c2
(Ep − Ep′) +M2c2 ,
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where in the last step the relativistic energy-momentum dispersion

E2
p′ = p′

2
c2 +M2c4 (12.157)

was used. With this (12.152) reads using (12.149) in the center of mass reference frame

I =
1

c

∫
d3p′

2Ep′
Θ(2Ep − Ep′)

c2

4Ep

δ(Ep − Ep′)f(p′,−p′) . (12.158)

In view of a further evaluation of the p′-integral, we introduce spherical coordinates for which

we get

d3p′ = |p′|2 d|p′|dΩ , dΩ = sin θdθdφ . (12.159)

Furthermore, due to a comparison of (12.136), (12.146), and (12.147), we identify f(p′,−p′)

with F (|p′|, θ):

I =
c

8Ep

∫ ∞

0

d|p′| |p
′|2

Ep′

∫
dΩ Θ(2Ep − Ep′)δ(Ep − Ep′)F (|p′|, θ) . (12.160)

Due to the relativistic energy-momentum dispersion (12.157) we obtain the following substitu-

tion:

2Ep′ dEp′ = 2|p′| d|p′|c2 =⇒ d|p′| = Ep′

|p′|c2
dEp′ , (12.161)

so that (12.160) goes over into

I =
c

8Ep

∫ ∞

0

dEp′
Ep′

|p′|c2

|p′|2
Ep′

∫
dΩ Θ(2Ep − Ep′)δ(Ep − Ep′)F (|p′|, θ) (12.162)

=
1

8c2Ep

∫
dΩ

∫ ∞

0

dEp′

√
E2

p′ −M2c4 Θ(2Ep − Ep′)δ(Ep − Ep′)F
(√

E2
p′/c

2 −M2c2, θ
)
.

Now the Ep′ integral can be performed due to the delta function, yielding, finally, the conser-

vation of energy Ep′ = Ep:

I =

√
E2

p −M2c4

8c2Ep

∫
dΩF

(√
E2

p/c
2 −M2c2, θ

)
. (12.163)

Based on the result (12.163) for the two integrals (12.147) in the center of mass reference frame,

we now obtain for the averaged transition rate per volume (12.146) with identifying E = Ep:

W =
e4

π2ε20c

M4c8

V 2E2

√
E2 −M2c4

8c2E

∫
dΩ
∣∣M (2)

fi

∣∣2 . (12.164)

Checking the physical units of (12.164) by taking into account (12.136) yields, indeed, as

expected: [W ] = 1/(s m3).
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12.7 Cross Section

In order to calculate the cross section we still need the number of incoming electrons per time

unit and area. For this purpose, we consider again the normal order of the four current density

operator (12.17), but this time for electrons being confined in a finite volume V . To this end

we apply (12.138) and its Dirac adjoint, yielding instead of (12.17):

: ĵµ(x) := c
∑

p1

∑

p2

∑

s1

∑

s2

√
Mc2

V Ep1

√
Mc2

V Ep2

(12.165)

{
ei(p2−p1)x/h̄ u(p2, s2)γµu(p1, s1)b̂†p2,s2

b̂p1,s1 + ei(p2+p1)x/h̄ u(p2, s2)γµv(p1, s1)b̂†p2,s2
b̂†p1,s1

+e−i(p2+p1)x/h̄ v(p2, s2)γµu(p1, s1)d̂p2,s2 b̂p1,s1 − e−i(p2+p1)x/h̄ v(p2, s2)γµv(p1, s1)d̂+
p2,s2

d̂p1,s1

}
.

Evaluating the matrix element of (12.165) with respect to the initial state (12.13) leads to

〈ψi| : ĵµ(x) : |ψi〉 = c
∑

p1

∑

p2

∑

s1

∑

s2

√
Mc2

V Ep1

√
Mc2

V Ep2

×ei(p2−p1)x/h̄ u(p2, s2)γµu(p1, s1)C(p1,p2; s1, s2) , (12.166)

where we have introduced as an abbreviation the vaccum expectation value

C(p1,p2; s1, s2) = 〈0| b̂pi2 ,si2
(
b̂pi1 ,si1 b̂

†
2,s2

)(
b̂p1,s1 b̂

†
pi1 ,si1

)
b̂†pi2 ,si2 |0〉 . (12.167)

Applying the anti-commutator algebra (10.407) we obtain from (12.167)

· · · = 〈0| b̂pi2 ,si2
(
−b̂†p2,s2

b̂pi1 ,si1 + δpi1 ,p2δsi1 ,s2

)(
−b̂†pi1 ,si1 b̂p1,s1 + δpi1 ,p1δsi1 ,s1

)
b̂†pi2 ,si2 |0〉(12.168)

= 〈0| (b̂pi2 ,si2 b̂
†
p2,s2

)b̂pi1 ,si1 b̂
†
pi1 ,si1

(b̂p1,s1 b̂
†
pi2 ,si2

) |0〉 − δpi1 ,p2δsi1 ,s2 〈0| b̂pi2 ,si2 b̂
†
pi1 ,si1

b̂p1,s1 b̂
†
pi2 ,si2

|0〉
−δpi1 ,p1δsi1 ,s1 〈0| b̂pi2 ,si2 b̂

†
p2,s2

b̂pi1 ,si1 b̂
†
pi2 ,si2

|0〉+ δpi1 ,p1δpi1 ,p2δsi1 ,s2δsi1 ,s2 〈0| b̂pi2 ,si2 b̂
†
pi2 ,si2

|0〉 .

Since it is assumed that the initial momenta pi1 ,pi2 differ from each other, the respective

fermionic operators b̂pi2 ,si2 , b̂†pi1 ,si1
and b̂pi1 ,si1 , b̂†pi2 ,si2

anticommute, respectively. Therefore,

the second and the third matrix element in (12.168) disappear, so we obtain

C(p1,p2; s1, s2) = 〈0|
(
−b̂†p2,s2

b̂pi2 ,si2 + δpi2 ,p2
δsi2 ,s2

)
b̂pi1 ,si1 b̂

†
pi1 ,si1

(
−b̂†pi2 ,si2 b̂p1,s1 + δpi2 ,p1

δsi2 ,s1

)
|0〉

+δpi1 ,p1
δpi2 ,p2

δsi1 ,s1δsi1 ,s2 〈0| 1− b̂
†
i2,si2

b̂pi2 ,si2 |0〉 = δp1,p2
δs1,s2

(
δp1,pi1

δs1,si1 + δp1,pi2
δs1,si2

)
.(12.169)

Inserting the vaccum expectation value (12.169) into (12.166) leads to the matrix element

〈ψi| : ĵµ(x) : |ψi〉 = c
Mc2

V Epi1

u(pi1 , si1)γµu(pi1 , si1) + c
Mc2

V Epi2

u(pi2 , si2)γµu(pi2 , si2) . (12.170)

Afterwards, we average this current density with respect to the polarizations of both incoming

electrons:

Jµ =
1

4

∑

si1

∑

si2

〈ψi| : ĵµ(x) : |ψi〉 . (12.171)
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Substituting (12.170) into (12.171) we obtain

Jµ =
Mc3

2V Epi1

∑

si1

uα(pi1 , si1)γµαβuβ(pi1 , si1) +
Mc3

2V Epi2

∑

si2

uα(pi2 , si2)γµαβuβ(pi2 , si2) . (12.172)

The polarisation sums with respect to si1 , si2 were already calculated according to (10.438) and

(10.447), yielding

Jµ =
Mc3

2V Epi1

γµαβ

(
pi1νγ

ν +Mc

2Mc

)

αβ

+
Mc3

2V Epi2

γµαβ

(
pi2νγ

ν +Mc

2Mc

)

αβ

. (12.173)

The sums with respect to the spinorial indices can be interpreted as traces:

Jµ =
c2

4V Epi1

{
pi1ν Tr[γµγν ] +McTr[γµ]

}
+

c2

4V Epi2

{
pi2ν Tr[γµγν ] +McTr[γµ]

}
. (12.174)

Due to the trace rules (12.62) and (12.63) the polarization averaged current density (12.174)

reduces to

Jµ =
pµi1c

2

V Epi1

+
pµi2c

2

V Epi2

. (12.175)

In the center of mass reference frame (12.122) applies, so that the polarization averaged current

density (12.175) vanishes:

Jµ = 0 . (12.176)

The relative current density, however, turns out to be

∆J =
2|p|c2

V Ep

(12.177)

and has, indeed, the correct physics unit [∆J ] = 1/(s m2). The cross section follows now from

the quotient of the averaged transition rate per volume W and the averaged relative current

density ∆J per volume:

σ =
W

∆J/V
. (12.178)

Substituting (12.164) and (12.177) into (12.178) yields the total cross section in the form of

σ =

∫
dΩ

dσ

dΩ
, (12.179)

so that the differential cross section is definied by

dσ

dΩ
=

e4M4c4

16π2ε20E
2

∣∣∣M (2)
fi

∣∣∣
2

. (12.180)

Inserting the polarisation-averaged matrix element (12.136) therein then yields

dσ

dΩ
=
α2h̄2c2

4E2

[
1− 8E4 − 4M2c4E2 −M4c8

(E2 −M2c4)2

1

sin2 θ
+

4(2E2 −M2c4)2

(E2 −M2c4)2

1

sin4 θ

]
. (12.181)
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Here we have introduced the Sommerfeld fine-structure constant

α =
e2

4πε0h̄c
, (12.182)

which quantifies the strength of the electromagnetic interaction between elementary charged

particles. It is a dimensionless quantity related to the elementary charge e, which denotes the

strength of the coupling of an elementary charged particle with the electromagnetic field. As a

dimensionless quantity, its numerical value is approximately given by

α ≈ 1

137
. (12.183)

The result (12.181) predicts the differential cross section for the elastic scattering of two un-

polarized electrons on the basis of quantum electrodynamics. It was first calculated in the

ultra-relativistic regime by Christian Møller in 1932 based on some guesses and consistency

requirements, not using quantunm electrodynamics. The full quantum electrodynamical calcu-

lation was provided only a few years later by Bethe and Fermi. Note that the indistinguishability

of the two electrons involved in the scattering is represented by the forward-backward symme-

try, i.e. the differential cross section is invariant with respect to the substitution θ → π − θ.
Within a classic experiment at the Laboratory of Nuclear Studies (Cornell University, Ithaca,

New York) the Møller scattering formula (12.181) was checked in detail [Phys. Rev. 94, 357

(1954)]. To this end the absolute differential electron-electron scattering cross section was mea-

sured for the incident electron energy in the laboratory frame varying in the interval from 0.6

to 1.2 Mev, which has to be compared with the rest energy of the electron of 0.513 MeV. The

technique of measurement combined good resolution with large energy transfers between the

particles, so this experiment allowed a sensitive test of the Møller scattering formula (12.181) in

the relativistic regime. The results verified the theoretical predictions within a 7% experimental

error.

In the ultra-relativistic limit E �Mc2 the differential cross section (12.181) reduces to:

dσ

dΩ

∣∣∣
ur

=
α2h̄2c2

4E2

(
1− 8

sin2 θ
+

16

sin4 θ

)
. (12.184)

With the help of the trigonometric formulae

sin

(
θ

2

)
cos

(
θ

2

)
=

1

2
sin θ , sin2

(
θ

2

)
=

1

2
(1− cos θ) , cos2

(
θ

2

)
=

1

2
(1 + cos θ) (12.185)

follows the trigonometric side calculation

1 + cos4
(
θ
2

)

sin4
(
θ
2

) +
2

sin2
(
θ
2

)
cos2

(
θ
2

) +
1 + sin4

(
θ
2

)

cos4
(
θ
2

) = 2

(
1− 8

sin2 θ
+

16

sin4 θ

)
. (12.186)

Inserting (12.186) into (12.184) leads to

dσ

dΩ

∣∣∣
ur

=
α2h̄2c2

8E2

[
1 + cos4

(
θ
2

)

sin4
(
θ
2

) +
2

sin2
(
θ
2

)
cos2

(
θ
2

) +
1− sin4

(
θ
2

)

cos4
(
θ
2

)
]
. (12.187)
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In the opposite non-relativistic limit E = Mc2 + ε we obtain with ε�Mc2 from (12.181)

dσ

dΩ

∣∣∣
nr

=
α2h̄2c2

16ε2

(
4

sin4 θ
− 3

sin2 θ

)
. (12.188)

With the trigonometric formulae (12.185) follows the trigonometric side calculation

1

sin4
(
θ
2

) +
1

sin2
(
θ
2

)
cos2

(
θ
2

) +
1

cos4
(
θ
2

) =
16

sin4 θ

{
1

4
(1 + cos θ)2 +

1

4
(1− cos θ)2

−1

4
(1− cos θ)(1 + cos θ)

}
=

16

sin4 θ

(
1− 3

4
sin2 θ

)
= 4

(
4

sin4 θ
− 3

sin2 θ

)
. (12.189)

With this (12.188) goes over into

dσ

dΩ

∣∣∣
nr

=
α2h̄2c2

64ε2

[
1

sin4
(
θ
2

) +
1

cos4
(
θ
2

) − 1

sin2
(
θ
2

)
cos2

(
θ
2

)
]
. (12.190)

With the non-relativistic dispersion relation ε = p2/(2M) it follows finally

dσ

dΩ

∣∣∣
nr

=
α2h̄2c2M2

16p4

[
1

sin4
(
θ
2

) +
1

cos4
(
θ
2

) − 1

sin2
(
θ
2

)
cos2

(
θ
2

)
]
. (12.191)

The first term in (12.191) just corresponds to the cross section of the Rutherford scattering

dσ

dΩ

∣∣∣
R

=
α2h̄2c2M2Z2

4p4

1

sin4
(
θ
2

) . (12.192)

with the nuclear charge number Z = 1 and the mass M being substituted by the reduced mass

M/2. This means that the forward peak of the non-relativistic Møller scattering at θ ≈ 0 agrees

with the prediction of Rutherford prediction. Beyond that, however, there is another significant

backward peak at θ = π that stems from interferences. Note that the latter must occur due

to above mentioned forward-backward symmetry following from the indistinguishability of the

electrons.

While formerly many particle colliders were designed specifically for electron-electron collisions,

recently electron-positron colliders have become more common. Here one uses the so-called

crossing symmetry, one of the useful tricks often used in quantum field theory to evaluate

Feynman diagrams. Namely, from the Feynman rules follows directly that the unpolarized

scattering matrix for any process involving a particle with momentum p in the initial state can

be converted into the unpolarized scattering matrix for an otherwise identical process but with

an antiparticle of momentum −p in the final state. This implies that the Møller scattering

between two electrons (12.1) goes over into the corresponding unpolarized cross section of the

Bhabha scattering, i.e. the electron-positron scattering:

e− e+ → e− e+ . (12.193)
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Applying this crossing symmetry to the unpolarized Møller cross section turns out to have the

consequence that the unpolarized Bhabha cross section follows by interchaging the Mandelstam

parameter s and u in (12.108), (12.109), and (12.112):

s ⇐⇒ u . (12.194)

We refrain here from discussing the respective energy and angle dependence of the Bhabha

differential cross section. Instead we refer to the above mentioned classic experiment at the

Laboratory of Nuclear Studies, where the absolute differential positron-electron scattering cross

section was checked in the energy interval from 0.6 to 1.0 Mev, which verified the Bhabha for-

mula within the 10% experimental error. Furthermore, the ratio of the Møller and the Bhabha

cross sections was also measured with somewhat increased accuracy, yielding a verification

within about 8% experimental error.

In the last three decades Bhabha scattering has been used as a luminosity monitor in a number

of e−e+ collider physics experiments. The accurate measurement of luminosity is necessary for

accurate measurements of cross sections. Small-angle Bhabha scattering was used to measure

the luminosity of the 1993 run of the Stanford Large Detector (SLD), with a relative uncertainty

of less than 0.5%. Electron-positron colliders operating in the region of the low-lying hadronic

resonances (about 1 GeV to 10 GeV), such as the Beijing Electron Synchrotron (BES) and the

Belle and BaBar ”B-factory” experiments, use large-angle Bhabha scattering as a luminosity

monitor. To achieve the desired precision at the 0.1% level, the experimental measurements

must be compared to a theoretical calculation including next-to-leading-order radiative correc-

tions. The high-precision measurement of the total hadronic cross section at these low energies

is, for instance, a crucial input into the theoretical calculation of the anomalous magnetic dipole

moment of the muon, which is used to constrain supersymmetry and other models of physics

beyond the Standard Model.
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