
Chapter 1

Introduction

Visible light is a ubiquitous phenomenon, the true nature of which has always been studied by

mankind. From a physical point of view it represents a small fraction of the electromagnetic

spectrum that can be perceived by the human eye. Visible light is usually defined as having

wavelengths between the ultraviolet with 400 nm wavelength and the infrared with 700 nm

wavelength, which corresponds to a frequency range of about 430–750 THz, see Fig. 1.1. In

physics, the term ’light’ sometimes refers more generally to electromagnetic radiation of any

wavelength, whether it is visible or not. In this sense, also X-rays and gamma rays at shorter

wavelengths as well as microwaves and radio waves at longer wavelengths are called light.

Like all types of electromagnetic radiation, visible light propagates as waves, which are char-

acterized by certain primary properties. Apart from being characterized by a frequency or a

wavelength they have an amplitude, a polarization, an intensity, and a direction of propagation.

Furthermore, they propagate in vacuum with a speed of 299 792 458 m/s, which is one of the

fundamental constants of nature. The seminal Michelson-Morley experiment even showed that

this light speed turns out to be identical in all inertial systems.

However, the energy imparted by the waves is absorbed at single locations the way particles are

absorbed. The absorbed energy of electromagnetic waves is called a ’photon’ and represents

the quantum of light. When a wave of light is absorbed as a photon, its energy instantly

collapses to a single location, what is called the wave function collapse. This dual wave-like

and particle-like nature of light is known as the wave-particle duality.

Quantum optics studies the nature and effects of light as quantized photons and represents

an important research area in modern physics. The first major development leading to that

understanding was the correct modeling of the black-body radiation spectrum by Max Planck in

1900 under the hypothesis of light being emitted in discrete units of energy. Further evidence

for the corpuscular nature of light was revealed by Albert Einstein and his explanation in

1905 of the photoelectric effect, which deals with electromagnetic radiation hitting a material

and, as a consequence, electrons being emitted. And then in 1913 Niels Bohr showed that

the hypothesis of optical radiation being quantized corresponded to his theory of the quantized
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Figure 1.1: The electromagnetic spectrum with the visible light being highlighted.

energy levels of atoms. The understanding of the interaction between light and matter following

these developments was crucial for the development of quantum mechanics as a whole. However,

the subfields of quantum mechanics dealing with matter-light interaction were regarded for

decades as a research of matter rather than of light and one spoke, hence, of atomic physics.

This only changed in 1960 when the first laser was built by Theodore Maiman at Hughes

Research Laboratories based on theoretical work by Charles Townes and Arthur Schawlow.

This represents a device that emits light through a process of light amplification based on the

stimulated emission of electromagnetic radiation. Since then laser science, i.e. the research

into the principles, the design and the application of these devices, became an important field.

For instance, over the decades one managed to develop different laser types like gas lasers,

solid-state lasers, fiber lasers, photonic crystal lasers, semiconductor lasers, dye lasers, and

free-electron lasers, which operate at different wavelengths, see Fig. 1.2a). Furthermore, the

quantum mechanics underlying the laser principles was studied now with more emphasis on the

properties of light, and the name quantum optics became more and more customary.

The development of laser science was accompanied and triggered by the exploration of the the-

oretical foundations of quantum optics. This followed the basic work of Paul Dirac on quantum

field theory in 1927 and the birth of quantum electrodynamics around the Second World War as

the relativistic treatment of the light and matter interaction by Freeman Dyson, Richard Feyn-

man, Julian Schwinger, and Shinichiro Tomonaga. Namely, the quantum theory was applied

to the electromagnetic field in the 1950s and 1960s by Roy Glauber, John Klauder, Leonard

Mandel, George Sudarshan, and many others in order to gain a more detailed understanding

of the statistics of light, which quantifies its degree of coherence. In particular, this led to the

introduction and the manipulation of different states of light, such as thermal states, coherent
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Figure 1.2: Different light sources: a) Red (660 and 635 nm), green (532 and 520 nm), and

blue-violet (445 and 405 nm) laser light; b) Orange (585 nm) light of a photon Bose-Einstein

condensate in the center and thermal wings in green according to Ref. [18].

states or the more exotic squeezed states. As a consequence it became clear that light cannot

be fully described by just referring to the electromagnetic waves in the classical picture as also

its quantum or thermal fluctuations have to be taken into account as well.

On the application side many intriguing phenomena were discovered, some of which we mention

here. One of them was the development of mode-locked oscillators, which generate ultrashort

laser pulses with a time duration of the order of a picosecond. They have a broadband optical

spectrum and are characterized by a high peak intensity, that usually leads to nonlinear inter-

actions in various materials including air and are, thus, studied in the field of nonlinear optics.

Another line of research deals with applications in the realm of molecular or solid-state physics.

For instance, Raman spectroscopy is used to determine vibrational modes of molecules, which

provide a structural fingerprint by which molecules can be identified. Further remarkable results

were obtained by demonstrating quantum entanglement and quantum teleportation, quantum

cryptography as well as by realizing quantum logic gates. This led to the emergence of quan-

tum information technology, which represents a subfield of quantum optics and is devoted, for

instance, to build a quantum computer.

Another breakthrough was to apply the mechanical forces of light on matter in order to levitate

and to position an atomic cloud in a magneto-optical trap. Combined with the laser cooling

and the evaporative cooling this led, finally, to the experimental realization of a Bose-Einstein

condensate, which is a macroscopic quantum phenomenon predicted by Albert Einstein in 1925

on the basis of a work of Satyendranath Bose. Namely, in 1995 Wolfgang Ketterle, Eric Cornell,

and Carl Wieman managed to realize a macroscopic occupation of the ground state for a sample

of alkali atoms, which has the diluteness of a millionth of the density of air at temperatures in

the nanoKelvin regime. This discovery led to a new sub-field of quantum optics, which analyzes

these days the properties of ultracold atomic or molecular quantum gases.

The generic black-body radiation, i.e. an electromagnetic radiation in thermal equilibrium with

the cavity walls, does not show the phenomenon of Bose-Einstein condensation. In such systems
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photons have a vanishing chemical potential, meaning that their number is not conserved when

the temperature of the photon gas is varied. Thus, at low temperatures, photons disappear

in the cavity walls instead of occupying the cavity ground state. Nevertheless, the group

of Martin Weitz at the University of Bonn achieved in 2010 a Bose-Einstein condensate of

photons in this system. The cavity mirrors provide both a confining potential and a non-

vanishing effective photon mass, making the system formally equivalent to a two-dimensional

gas of trapped, bosons with a mass, which is about 10 orders of magnitude lower than the

mass of a single rubidium atom. Due to multiple scattering processes with dye molecules the

photons thermalize at the temperature of the dye solution, which is room temperature. Upon

increasing the photon density, the photon energies have a Bose-Einstein distribution with a

massively populated ground-state mode as the Bose-Einstein condensate, which corresponds to

the bright spot in the center, on top of a broad thermal wing, see Fig. 1.2b). Thus, in conclusion,

Bose-Einstein condensation, which demonstrates the wave nature of material particles, now

offers further illumination of wave-particle duality: it has been observed in light itself [19]. The

intriguing properties of photon Bose-Einstein condensates are investigated experimentally in

Bonn, London, Twente, Utrecht and, quite soon, also in Kaiserslautern, where a new set-up is

currently being built up.

This lecture provides an introduction into the intriguing field of quantum optics from a theo-

retical point of view, although partially also experimental set-ups and results are discussed. In

Chapter 2 we start with performing the formal quantization of the Maxwell field by applying

the canonical field quantization method. Furthermore, as concrete applications, we calculate

several quantum fluctuation effects like the electric field vacuum correlations, the Casimir effect,

and the Lamb shift. Afterwards, in Chapter 3 we discuss for a single electromagnetic mode the

properties of different quantum states of the radiation field together with both their density

matrices and their quasi-probability distributions in phase space as well as possible experimen-

tal realizations. Subsequently Chapter 4 is devoted to explore the emission and absorption of

light by matter, where the latter is treated non-relativistically. A perturbative treatment leads

to the three elementary Einstein processes. Restricting ourselves approximately to two atomic

states we can treat their interaction with the electromagnetic field exactly. In the case of a

classical or a quantum mechanical description of light this leads to the Rabi or the Jaynes-

Cummings model, respectively. A full quantum mechanical treatment of light field and atoms

is worked out in Chapter 5 both without and with a coupling to an environment, which provides

losses or pumping. As a prime example we deal here with the semiclassical and the quantum

mechanical laser theory. And, finally, Chapter 6 works out a theory of photon Bose-Einstein

condensation on the basis of a paraxial approximation in the microcavity. In particular, we

discuss consequences of the two sources of an effective photon-photon interaction, which is the

local and instantaneous Kerr interaction and the thermo-optic interaction being non-local in

both space and time. Thus, in summary, apart from a general overview about quantum optics,

this lecture strives for comparing specifically the properties of the two light sources shown in

Fig. 1.2, namely a laser and a photon Bose-Einstein condensate.



Chapter 2

Quantization of Maxwell Field

All electrodynamic processes are described by the Maxwell equations. Surprisingly they repre-

sent the equations of motion of a first-quantized theory, although the Planck constant ~ does

not appear explicitly. This apparent contradiction is resolved by the following consideration.

If the quanta of the Maxwell field, i.e. the photons, had a finite rest mass M , then it would

appear due to dimensional reasons together with spatio-temporal derivatives as a mass term

in the equations of motion in form of the inverse Compton wavelength. This length scale

1/λC = Mc/2π~ emerges from combining the Heisenberg uncertainty principle of quantum

mechanics with the principle of special relativity that the largest possible velocity is provided

by the light velocity. Thus, performing the limit of a vanishing rest mass, i.e. M → 0, also the

Planck constant ~ vanishes automatically from the respective equations of motion.

In this chapter we start with reviewing this first-quantized Maxwell theory. Afterwards, we

provide its field-theoretical formulation in the sense of Lagrange and Hamilton. On the basis

of this we then invoke the canonical field quantization formalism and work out systematically

the second quantization of the Maxwell theory. In particular, we have to deal with the intricate

consequences of the underlying local gauge symmetry, which is due to the vanishing rest mass

of the quanta of the Maxwell field. In this way we derive from first principles step by step the

respective properties of a single photon as, for instance, its energy.

Furthermore, we present three examples of quantum fluctuation effects of the second-quantized

Maxwell theory. At first we determine the vacuum correlation function of the electric field,

which cannot be measured directly with an intensity detector and was only recently proven

experimentally. Therefore, historically, it was important to provide an indirect evidence for

the existence of vacuum fluctuations of the electromagnetic field. To this end we calculate

the Casimir effect, that two plane-parallel metal plates with a vacuum in between turn out to

attract each other due to vacuum energy fluctuations. And, finally, we discuss the Lamb shift

that the degeneracy of the two hydrogen energy levels 22s1/2 and 22p1/2, which is an immediate

consequence of the Dirac equation, is lifted due to interaction of the vacuum energy fluctuations

with the hydrogen electron. Thus, we conclude that in physics the vacuum is not nothing [20].
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2.1 Maxwell Equations

Forces of an electromagnetic field upon electric charges, which are at rest or move, are mediated

by both the electric field strength E and the magnetic induction B. Physically both vector

fields are generated by the charge density ρ and the current density j. Mathematically they

are determined by partial differential equations, which were first formulated by James Clerk

Maxwell. The general structure of the Maxwell equations is prescribed by the Helmholtz

vector decomposition theorem, which states that any vector field is uniquely determined by its

respective divergence and rotation in combination with appropriate boundary conditions. With

this the electric field strength E follows from

div E =
ρ

ε0

, (2.1)

rot E = −∂B

∂t
, (2.2)

whereas the magnetic induction B is defined by

div B = 0 , (2.3)

rot B = µ0 j +
1

c2

∂E

∂t
. (2.4)

Here the vacuum dielectric constant ε0, the vacuum permeability µ0, and the vacuum light

velocity c are related via

c =
1

√
ε0µ0

. (2.5)

We remark that (2.1), (2.4) and (2.2), (2.3) are denoted as the inhomogeneous and homogeneous

Maxwell equations, respectively. Furthermore, we read off from the inhomogeneous Maxwell

equations (2.1) and (2.4) the consistency equation that charge density ρ and current density j

are not independent from each other but must fulfill the continuity equation

∂ρ

∂t
+ div j = 0 , (2.6)

which implies the charge conservation. Namely, considering the time derivative of the charge

Q =

∫
d3x ρ(x, t) , (2.7)

we obtain from (2.6) and applying the theorem of Gauß

∂Q

∂t
= −

∮
df · j(x, t) . (2.8)

Here the surface integral at infinity vanishes as the current density j(x, t) is assumed to vanish

fast enough at infinity, yielding

∂Q

∂t
= 0 . (2.9)
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Note that we formulate the Maxwell equations (2.1)–(2.4) according to the International System

of Units, which is abbreviated by SI from the French Système international d’unités. Instead,

in quantum field theory quite often the rational Lorentz-Heaviside unit system is used, where

one assumes ε0 = µ0 = c = 1 in order to simplify the notation. But we stick consistently to

the SI unit system, although this might be considered to be more cumbersome, as this has

the advantage that at each stage of the calculation one obtains results, which are, at least in

principle, directly accessible in an experiment.

2.2 Local Gauge Symmetry

From the homogeneous Maxwell equations (2.2) and (2.3) we conclude straight-forwardly that

both the electric field strength E and the magnetic induction B follow from differentiation of

a scalar potential ϕ and a vector potential A:

B = rot A , (2.10)

E = −gradϕ− ∂A

∂t
. (2.11)

From the inhomogeneous Maxwell equations (2.1) and (2.4) as well as from (2.10) and (2.11) we

then determine coupled partial differential equations for the scalar potential ϕ and the vector

potential A:

−∆ϕ− ∂

∂t
div A =

ρ

ε0

, (2.12)

1

c2

∂2A

∂t2
−∆A + grad

(
1

c2

∂ϕ

∂t
+ div A

)
= µ0 j . (2.13)

The equations (2.10)–(2.13) turn out to be invariant with respect to a local gauge transformation

with an arbitrary gauge function Λ:

ϕ′ = ϕ+
∂Λ

∂t
(2.14)

A′ = A− grad Λ . (2.15)

Thus, a local gauge transformation does not have any physical consequences, but it changes

the mathematical description of the electromagnetic field. For instance, choosing a particular

gauge allows to decouple the coupled equations of motion (2.12) and (2.13). In the following

we briefly discuss the two most prominent gauges.

The Coulomb gauge assumes that the longitudinal part of the vector potential A vanishes, i.e.

div A = 0 . (2.16)

With this (2.12) and (2.13) reduce to

∆ϕ = − ρ

ε0

, (2.17)

1

c2

∂2A

∂t2
−∆ A = µ0 j− 1

c2

∂

∂t
gradϕ . (2.18)
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As the scalar potential ϕ(x, t) obeys the Poisson equation (2.17), it is determined instantly at

each time t by the corresponding value of the charge density ρ(x, t) according to

ϕ(x, t) =

∫
d3x′

ρ(x′, t)

4πε0|x− x′|
. (2.19)

Due to (2.16) and (2.19) we conclude that from the original four fields ϕ and A only two

of them represent dynamical degrees of freedom. As a consequence, the quantization of the

electromagnetic field thus yields later on two types of photons. The advantage of the Coulomb

gauge is that the remaining two dynamical degrees of freedom of the electromagnetic field can

be physically identified with the two transversal degrees of freedom of the vector potential A.

The disadvantage of the Coulomb gauge is that it is not manifestly Lorentz invariant. Thus,

the Coulomb gauge is only valid in a particular inertial system.

The Lorentz gauge is defined via

1

c2

∂ϕ

∂t
+ div A = 0 . (2.20)

With this the coupled equations of motions (2.12) and (2.13) yield uncoupled inhomogeneous

wave equations:

1

c2

∂2ϕ

∂t2
−∆ϕ =

ρ

ε0

, (2.21)

1

c2

∂2A

∂t2
−∆ A = µ0 j . (2.22)

The advantage is here that the Lorentz gauge (2.20) as well as the decoupled equations of motion

(2.21), (2.22) are Lorentz invariant. On the other hand, the quantization of the electromagnetic

field on the basis of the Lorentz gauge, as worked out by Suraj Gupta and Konrad Bleuler,

turns out to have an essential disadvantage. Namely, apart from the two physical transversal

degrees of freedom also an unphysical longitudinal degree of freedom of the electromagnetic

field emerges, which has to be eliminated afterwards with some effort.

In the following we restrict us for simplicity to the free electrodynamic field, where neither

electric charges nor currents are present:

ρ(x, t) = 0 , j(x, t) = 0 . (2.23)

Furthermore, we assume from now on the Coulomb gauge (2.16) as it represents the basis of the

standard formulation for the second quantization of the Maxwell theory and is commonly used

in quantum optics. From (2.16), (2.19), and (2.23) we then conclude that the scalar potential

vanishes:

ϕ(x, t) = 0 . (2.24)

Note that (2.16) and (2.24) together is also known as the radiation gauge. From (2.17), (2.23),

and (2.24) we then read off that the vector potential obeys the homogeneous wave equation:

1

c2

∂2A(x, t)

∂t2
−∆A(x, t) = 0 . (2.25)
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Thus, in radiation gauge the vector potential A(x, t) is determined from solving the homoge-

neous wave equation (2.25) by taking into account the Coulomb gauge (2.16). Once the vector

potential is known, one obtains from (2.10) the magnetic induction, whereas the electric field

(2.11) reduces due to the radiation gauge (2.16) and (2.24) to

E(x, t) = −∂A(x, t)

∂t
. (2.26)

2.3 Lagrange Formulation

Now we work out a field-theoretic formulation of the Maxwell theory by setting up a variational

principle, whose Euler-Lagrange equations are equivalent to the Maxwell equations for the free

electrodynamic field. Thus, the action A represents a functional of the vector potential A alone

and is defined as a spatio-temporal integral of a Lagrange density L:

A [A(•, •)] =

∫
dt

∫
d3xL . (2.27)

As the underlying equation of motion in form of the homogeneous wave equation (2.25) is of

second order in the spatio-temporal derivatives of the vector potential, the Lagrange density

can only contain derivatives up to first order:

L = L
(
Ak(x, t),

∂Ak(x, t)

∂t
, ∂jAk(x, t)

)
. (2.28)

Then the corresponding Hamilton principle states that the functional derivative of the action

with respect to the components of the vector potential vanishes:

δA
δAk(x, t)

= 0 . (2.29)

An introduction into the technique of functional derivatives is found, for instance, in the

Refs. [21, Section 4.2] and [22, Section 2.3]. The resulting Euler-Lagrange equations of this

classical field theory then read

∂L
∂Ak(x, t)

− ∂j
∂L

∂ ∂jAk(x, t)
− ∂

∂t

∂L
∂ ∂Ak(x,t)

∂t

= 0 . (2.30)

Note that we use here the Einstein summation convention that one has to sum over all indices,

which appear twice. The underlying Lagrange density turns out to be the difference of the

electric and the magnetic energy density

L =
ε0

2
E2 − 1

2µ0

B2 , (2.31)

Then, using (2.10) and (2.26), the Lagrange density (2.31) reads in terms of the vector potential

as follows:

L =
ε0

2

(
∂A(x, t)

∂t

)2

− 1

2µ0

[
∇×A(x, t)

]2

. (2.32)
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With an additional calculation the Lagrange density (2.32) can be simplified. To this end we

consider

(∇×A)2 = εjkl ∂kAl εjmn ∂mAn , (2.33)

which reduces due to the contraction rule of the three-dimensional Levi-Cività symbol εijk

εijkεlmk = δilδjm − δimδjl (2.34)

to the expression

(∇×A)2 = ∂kAl∂kAl − ∂k (Al∂lAk) + Al∂l∂kAk . (2.35)

Inserting (2.35) into (2.32), the second term does not contribute to the action (2.27) due to

applying the Gauß theorem and can thus be neglected in the Lagrange density. Furthermore,

the third term in (2.35) is zero in the Coulomb gauge (2.16), so we end up with

L =
ε0

2

∂Ak(x, t)

∂t

∂Ak(x, t)

∂t
− 1

2µ0

∂jAk(x, t)∂jAk(x, t) . (2.36)

Thus, we obtain the following partial derivatives from the Lagrange density (2.36)

∂L
∂Ak(x, t)

= 0 ,
∂L

∂ ∂jAk(x, t)
= − 1

µ0

∂jAk(x, t) ,
∂L

∂ ∂Ak(x,t)
∂t

= ε0
∂Ak(x, t)

∂t
, (2.37)

so the corresponding Euler-Lagrange equations (2.30) reduce, indeed, to the homogeneous wave

equation (2.25).

2.4 Hamilton Formulation

In order to proceed from the Lagrange to the Hamilton formulation, we have to determine the

momentum field π, which is canonically conjugated to the vector potential A. Taking into

account (2.37) it follows as

π(x, t) =
δA

δ ∂A(x,t)
∂t

=
∂L

∂ ∂A(x,t)
∂t

= ε0
∂A(x, t)

∂t
. (2.38)

This corresponds to the classical expression for the momentum p = mẋ, provided we identify

the coordinate x with the vector potential A and the mass m with the vacuum dielectric

constant ε0. A subsequent Legendre transformation

H = π(x, t)
∂A(x, t)

∂t
− L (2.39)

converts then the Lagrange density (2.36) to the Hamilton density

H =
1

2ε0
πk(x, t)πk(x, t) +

1

2µ0

∂kAl(x, t)∂kAl(x, t) . (2.40)
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Due to (2.10), (2.26), and (2.38) this turns out to coincide with the well-known energy density

of the free electromagnetic field in SI units:

H =
ε0

2
E2 +

1

2µ0

B2 , (2.41)

which is the sum of the electric and the magnetic energy density. Furthermore, a spatial integral

over the Hamilton density yields the Hamilton function

H =

∫
d3xH , (2.42)

which follows from (2.40) to be

H =
1

2

∫
d3x

{
1

ε0
πk(x, t)πk(x, t) +

1

µ0

∂kAl(x, t)∂kAl(x, t)

}
. (2.43)

Note that the first (second) term represents the kinetic (potential) energy of the electromagnetic

field.

2.5 Canonical Field Quantization

The electrodynamic field is now quantized in the Heisenberg picture by exchanging the fields

Aj(x, t) and πj(x, t) with their corresponding field operators Âj(x, t) and π̂j(x, t). To this

end we perform a bosonic field quantization and demand equal-time commutation relations.

At first, we demand that the field operators Âj(x, t) and π̂j(x, t) commute, as usual, among

themselves, respectively: [
Âk(x, t), Âl(x

′, t)
]
−

= 0, (2.44)[
π̂k(x, t), π̂l(x

′, t)
]
−

= 0. (2.45)

But when it comes to the equal-time commutation relations between the field operators Âj(x, t)

and π̂j(x, t), the situation turns out to be more intriguing. Let us investigate tentatively whether

naive equal-time commutation relations of the form[
Âk(x, t), π̂l(x

′, t)
]
−

= i~ δklδ(x− x′) (2.46)

are possible. On the one hand, a derivative with respect to xk then yields at the left-hand side

of (2.46) to

∂k

[
Âk(x, t), π̂l(x

′, t)
]
−

=
[
∂kÂk(x, t), π̂l(x

′, t)
]
−

= 0 , (2.47)

as we have to demand the quantized version of the Coulomb gauge (2.16):

∂jÂj(x, t) = 0 . (2.48)
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On the other, a derivative with respect to xk at the right-hand side of (2.46) leads to

i~ δkl∂kδ(x− x′) = i~ ∂lδ(x− x′) 6= 0 , (2.49)

i.e. to an expression, which is non-zero in obvious contradiction to (2.47). Therefore, we are

forced to modify the naive equal-time commutation relations (2.46) in such a way that it

becomes compatible with the quantized version of the Coulomb gauge (2.48). To this end we

consider the Fourier transformed of the right-hand side of (2.46)

i~ δklδ(x− x′) = i~
∫

d3k

(2π)3
δkl e

ik(x−x′) (2.50)

and substitute this expression by a yet to be determined transversal delta function

i~ δTkl(x− x′) = i~
∫

d3k

(2π)3
δTkl(k) eik(x−x′) . (2.51)

The Fourier transformed of the transversal delta function is then fixed from demanding that

the derivative of (2.51) with respect to xk vanishes, i.e.

i~ ∂kδTkl(x− x′) = i~
∫

d3k

(2π)3
ikk δ

T
kl(k) eik(x−x′) = 0 . (2.52)

For this to be valid it is sufficient that the transversality condition

kk δ
T
kl(k) = 0 (2.53)

is fulfilled. By comparing (2.50) and (2.51) a suitable ansatz for the Fourier transformed of the

transversal delta function reads

δTkl(k) = δkl + kkkl f(k) . (2.54)

The yet unknown function f(k) follows then from inserting (2.54) into (2.53):

f(k) = − 1

k2
. (2.55)

Thus, from (2.51), (2.54), and (2.55) we then conclude for the transversal delta function

δTkl(x− x′) = δklδ(x− x′) + ∂′k∂
′
l

∫
d3k

(2π)3

1

k2
eik(x−x′) . (2.56)

The remaining integral is known, for instance, within the realm of electrostatics from deter-

mining the Green function of the Poisson equation and yields the Coulomb potential. Thus,

we obtain for the transversal delta function

δTkl(x− x′) = δkl δ(x− x′) +
1

4π
∂
′

k∂
′

l

1

|x− x′|
. (2.57)

And, finally, we summarize our derivation by stating that the naive equal-time commutation

relations (2.46) have to be modified by[
Âk(x, t), π̂l(x

′, t)
]
−

= i~ δTkl(x− x′) (2.58)
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in order to be compatible with the quantized version of the Coulomb gauge (2.48).

However, one should be aware that a derivation of commutation relations always has an essential

caveat. As hard as one tries to consistently determine such basic principles, they are always

attached with heuristic elements. Whether commutation relations are at the end correct or

not can only be verified by checking any prediction following from them against experimental

measurements. In this spirit we will show later on that demanding the bosonic equal-time

commutation relations (2.44), (2.45), and (2.58) leads, indeed, to a consistent description of

the electromagnetic field with the help of usual annihilation and creation operators for photons,

i.e. the quanta of light.

2.6 Heisenberg Equations

Furthermore, proceeding with the second-quantized formalism, we obtain from the Hamilton

function (2.43) the Hamilton operator

Ĥ =
1

2

∫
d3x′

{
1

ε0
π̂k(x

′, t)π̂k(x
′, t) +

1

µ0

∂′kÂl(x
′, t)∂′kÂl(x

′, t)

}
. (2.59)

Note that the order of the operators in (2.59) does not play a role due to the commutation

relations (2.44) and (2.45). Let us now evaluate the Heisenberg equation for the field operator

i~
∂Âj(x, t)

∂t
=
[
Âj(x, t), Ĥ

]
−

(2.60)

by inserting therein the Hamilton operator (2.59). In order to calculate (2.60) the following

ABC-rule for commutators turns out to be useful[
ÂB̂, Ĉ

]
− = Â

[
B̂, Ĉ

]
− +

[
Â, Ĉ

]
− B̂ , (2.61)

which follows immediately from the definition of the commutator. After applying (2.61) as well

as the equal-time commutation relations (2.44), (2.45), and (2.58) we get at first

i~
∂Âj(x, t)

∂t
=
i~
ε0

∫
d3x′ δTjk(x− x′) π̂k(x

′, t) . (2.62)

Taking into account the transversal delta function (2.57), a partial integration yields

i~
∂Âj(x, t)

∂t
=
i~
ε0

{
π̂j(x, t)−

1

4π

∫
d3x′

(
∂′j

1

|x− x′|

)
∂′kπ̂k(x

′, t)

}
. (2.63)

With this we reproduce the quantized version of (2.38), as the last term in (2.63) vanishes due

to the quantized version of the Coulomb gauge (2.48):

∂Âj(x, t)

∂t
=

1

ε0
π̂j(x, t) . (2.64)
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Correspondingly, the Heisenberg equation for the momentum field operator reads

i~
∂π̂j(x, t)

∂t
=
[
π̂j(x, t), Ĥ

]
−
. (2.65)

Using (2.61) as well as the equal-time commutation relations (2.44), (2.45), and (2.58) we get

at first

i~
∂π̂j(x, t)

∂t
=
−i~
µ0

∫
d3x′ ∂′kδ

T
jl(x− x′) ∂′kÂl(x

′, t) , (2.66)

so a partial integration yields

i~
∂π̂j(x, t)

∂t
=
i~
µ0

∫
d3x′ δTjl(x− x′) ∆′Âl(x

′, t) , (2.67)

Due to the explicit form of the transversal delta function (2.57) and a partial integration we

then get

i~
∂π̂j(x, t)

∂t
=
i~
µ0

{
∂k∂kÂj(x, t)−

1

4π

∫
d3x′

(
∂′j

1

|x− x′|

)
∆′ ∂′lÂl(x

′, t)

}
. (2.68)

With the quantized version of the Coulomb gauge (2.48) this reduces finally to

∂π̂j(x, t)

∂t
=

1

µ0

∆Âj(x, t) . (2.69)

Thus, we conclude from (2.5), (2.64), and (2.69) that the field operator Â(x, t) obeys like the

classical field A(x, t) in (2.25) the homogeneous wave equation:

1

c2

∂2Â(x, t)

∂t2
−∆Â(x, t) = 0 . (2.70)

2.7 Solution of Wave Equation

We start with solving the operator-valued wave equation (2.70) by a Fourier decomposition

into plane waves:

Â(x, t) =

∫
d3k Â(k, t) eikx . (2.71)

Inserting (2.71) into (2.70) one obtains for the expansion operators Â(k, t) the differential

equation

∂2Â(k, t)

∂t2
+ ω2

k Â(k, t) = 0 , (2.72)

where the dispersion relation turns out to be linear:

ωk = c|k| . (2.73)
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Thus, according to (2.72), the expansion operators Â(k, t) follow for each wave vector k the

dynamics of a harmonic oscillator:

Â(k, t) = Â(1)(k) e−iωkt + Â(2)(k) eiωkt , (2.74)

so that the field operator (2.71) results in

Â(x, t) =

∫
d3k

{
Â(1)(k)ei(kx−ωkt) + Â(2)(k)ei(kx+ωkt)

}
. (2.75)

Performing in the second integral the substitution k → −k and taking into account the sym-

metry of the dispersion relation (2.73), i.e.

ωk = ω−k , (2.76)

the Fourier decomposition (2.75) is converted into

Â(x, t) =

∫
d3k

{
Â(1)(k)ei(kx−ωkt) + Â(2)(−k)e−i(kx−ωkt)

}
. (2.77)

Thus, the adjoint field operator reads

Â†(x, t) =

∫
d3k

{
Â(1)†(k)e−i(kx−ωkt) + Â(2)†(−k)ei(kx−ωkt)

}
. (2.78)

As the vector potential of electrodynamics is real, we demand that the field operator as its

second-quantized counterpart is self-adjoint, i.e.

Â(x, t) = Â†(x, t) . (2.79)

Due to the completeness of the plane waves we then conclude from (2.77) and (2.78):

Â(1)(k) = Â(2)†(−k) , Â(2)(−k) = Â(1)†(k) , (2.80)

where the second condition follows from the first one and, thus, does not contain any new

information. Therefore, we deduce from (2.80)

Â(1)(k) = Â(k) , Â(2)(k) = Â†(−k) . (2.81)

Inserting the finding (2.81) into the Fourier decomposition (2.77), we finally obtain

Â(x, t) =

∫
d3k

{
Â(k)ei(kx−ωkt) + Â†(k)e−i(kx−ωkt)

}
. (2.82)

2.8 Polarization Vectors

Now we acquire a more detailed understanding of the description of plane waves. To this end

we define two linearly polarized plane waves with the wave vector k and the dispersion (2.73)

via

A1(x, t) = A1ε1e
i(kx−ωkt) , A2(x, t) = A2ε2e

i(kx−ωkt) . (2.83)
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Figure 2.1: Adding two linearly polarized plane waves according to (2.85) with complex ampli-

tudes A1 and A2, which have the same phase.

Here A1, A2 represent the respective complex-valued amplitudes and ε1, ε2 denote two complex-

valued polarization vectors, which are orthonormalized according to

ε∗i εj = δij . (2.84)

Let us consider now the sum of those two linearly polarized plane waves:

A(x, t) = A1(x, t) + A2(x, t) = (A1ε1 + A2ε2) ei(kx−ωkt) . (2.85)

Provided that both complex amplitudes A1 = |A1|eiϕ and A2 = |A2|eiϕ have the same phase ϕ,

also their sum (2.85) is linearly polarized and we get

A(x, t) = Aεei(kx−ωkt) . (2.86)

Here the resulting amplitude A is given by

A =
√
|A1|2 + |A2|2 eiϕ (2.87)

and the resulting polarization vector ε has the angle

ϑ = arctan
|A2|
|A1|

(2.88)

with respect to ε1, see Fig. 2.1. However, in the more general case that both complex amplitudes

A1 = |A1|eiϕ1 and A2 = |A2|eiϕ2 have different phases ϕ1 6= ϕ2, the sum (2.85) represents an

elliptically polarized plane wave. Let us illustrate this for the simpler situation of a circularly

polarized plane wave, which occurs provided that both complex amplitudes A1 and A2 have

the same absolute value and their phases differ by 90◦:

A1 =
A0√

2
, A2 = ±i A0√

2
. (2.89)

Inserting (2.89) into (2.85) we obtain for the sum of the two linearly polarized plane waves

A(x, t) =
A0√

2
(ε1 ± iε2) ei(kx−ωkt) . (2.90)
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Figure 2.2: Adding two linearly polarized plane waves according to (2.85) with complex ampli-

tudes A1 and A2 with the same absolute value and phases, which differ by 90◦.

In order to be concrete we choose now the coordinate axes in such a way that the plane wave

propagates in z-direction, whereas the two polarization vectors ε1 and ε2, which are normalized

according to (2.84), point in x- and y-direction:

k = k

0

0

1

 , ε1 =

1

0

0

 , ε2 =

0

1

0

 . (2.91)

With this Eq. (2.90) reduces to

A(x, t) =
A0√

2

 1

±i
0

 ei(kezx−ωkez t) . (2.92)

Considering the real part of the vector potential A(x, t) at a fixed space point x, it represents

a vector in the xy-plane with constant absolute value A0, which rotates on a circle with the

frequency ωkez :

ReAx(x, t) =
A0√

2
cos k(z − ct) , ReAy(x, t) = ∓A0√

2
sin k(z − ct) , ReAz(x, t) = 0 . (2.93)

For the upper (lower) sign the rotation is performed anti-clockwise (clockwise) for an observer

looking in the direction of the oncoming light beam. Such a plane wave is called in optics

left-(right-) circularly polarized light, whereas in elementary particle physics one says that such

a plane wave has positive (negative) helicity, see Fig. 2.2.

2.9 Construction of Polarization Vectors

Let us discuss the helicity of an electromagnetic wave in more detail. To this end one has

to take into account the two characteristic properties of the photon as the quantum of light.

Like any other elementary particle it has an internal angular momentum called spin S, which

corresponds to its intrinsic rotation. Furthermore, the photon turns out to have a rest mass,

which vanishes. This implies that the spin S points either in the direction of propagation k or

opposite to it, which is called positive or negative helicity, see Fig. 2.3.
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Figure 2.3: a) Positive or b) negative helicity: Spin S points in or opposite to the direction of

propagation k/|k|.

In order to quantify the notion of a spin further, we have to consider the representation theory of

rotations in the three-dimensional configuration space of the vector field A, which corresponds

to the space of coordinate vectors x. A general rotation matrix turns out to have the form [21]

Rjk(ϕ) =
ϕi
|ϕ|

εikj sin |ϕ|+ ϕjϕk
|ϕ|2

(1− cos |ϕ|) + δjk cos |ϕ| . (2.94)

We remark that the 3×3 matrix defined by (2.94) fulfills two properties, which are characteristic

for describing a rotation around the axis ϕ with the angle |ϕ|. On the one hand the rotation

axis ϕ is an eigenvalue of the rotation matrix R(ϕ) with eigenvalue 1:

R(ϕ)ϕ = ϕ . (2.95)

On other hand the trace of the rotation matrix R(ϕ) is related to the rotation angle |ϕ| via

TrR(ϕ) = 1 + 2 cos |ϕ| . (2.96)

Restricting (2.94) to an infinitesimal rotation yields

Rjk(ϕ) = ϕi εikj . (2.97)

With this we obtain for the spin S, which we identify with the generator S = (Sm) of rotations

(Sm)jk = i
∂Rjk(ϕ)

∂ϕm

∣∣∣∣
ϕ=0

, (2.98)

the components

(Sm)jk = i εmkj . (2.99)

The resulting spin matrices read explicitly

S1 = i

 0 0 0

0 0 −1

0 1 0

 , S2 = i

 0 0 1

0 0 0

−1 0 0

 , S3 = i

 0 −1 0

1 0 0

0 0 0

 (2.100)

and fulfill the commutation relations of the algebra of angular momenta:

[Si, Sj]− = i εijkSk . (2.101)
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Conversely, the knowledge of the generators of rotations (2.100) allows to reconstruct the rota-

tion matrix (2.94) on the basis of the Lie theorem by evaluating the matrix exponential function

[21]

R(ϕ) = exp
{
− iϕS

}
. (2.102)

With the representation theory of rotations, the helicity operator is now defined by projecting

the generator of rotations S upon the direction of propagation, which is defined by the wave

vector k:

ĥ(k) =
k

k
S . (2.103)

Inserting (2.100) into (2.102) yields the explicit form of the helicity operator:

ĥ(k) =
i

k

 0 −kz ky

kz 0 −kx
−ky kx 0

 . (2.104)

Now we introduce the polarization vectors ε(k, λ) for plane waves, which propagate with the

wave vector k and the helicity λ = ±1:

A(x, t) = Aε(k, λ)ei(kx−ωkt) . (2.105)

Here the polarization vectors ε(k, λ) represent the eigenvectors of the helicity operator (2.103)

with the eigenvalues λ = ±1:

ĥ(k)ε(k, λ) = λε(k, λ) . (2.106)

From (2.92) and (2.105) we read off the polarization vectors ε(kez, λ) for a propagation in

z-direction:

ε(kez, λ) =
1√
2

 1

λi

0

 . (2.107)

Indeed, the polarization vectors (2.107) fulfill due to (2.104) the eigenvalue problem

ĥ(kez)ε(kez, λ) = λε(kez, λ) . (2.108)

Now we construct the polarization vectors ε(k, λ) with a general wave vector k by rotating the

polarization vectors ε(kez, λ) in the same way as the original wave vector kez. To this end

we need the rotation matrix R(θ, φ), which rotates the original wave vector kez to the general

wave vector k, where the latter is described in terms of spherical coordinates k, θ, and φ:

k = k

sin θ cosφ

sin θ sinφ

cos θ

 . (2.109)
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Here the rotation matrix R(θ, φ) is constructed such that first the rotation Ry(θ) around the

y-axis with angle θ and then the rotation Rz(φ) around the z-axis with angle φ is applied:

R(θ, φ) = Rz(φ)Ry(θ) . (2.110)

The individual rotation matrices follow from evaluating matrix exponential functions

Rz(φ) = e−iL3φ =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 , (2.111)

Ry(θ) = e−iL2θ =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , (2.112)

where the respective generators stem from (2.100). As a result we obtain for the rotation

(2.110)

R(θ, φ) =

cos θ cosφ − sinφ sin θ cosφ

cos θ sinφ cosφ sin θ sinφ

− sin θ 0 cos θ

 . (2.113)

Indeed, the rotation matrix R(θ, φ) maps the original wave vector kez to the general wave

vector (2.109) as follows from the third column of (2.113):

R(θ, φ)kez = k . (2.114)

Transforming correspondingly also the polarization vectors ε(kez, λ) from (2.107) with the

rotation matrix R(θ, φ), i.e.

ε(k, λ) = R(θ, φ)ε(kez, λ) , (2.115)

we obtain the explicit result

ε(k, λ) =
1√
2

cos θ cosφ− λi sinφ

cos θ sinφ+ λi cosφ

− sin θ

 . (2.116)

Indeed, taking into account (2.104) and (2.109) one can show that the polarization vectors

(2.116) fulfill the eigenvalue problem of the helicity operator (2.106). Furthermore, as expected,

the polarization vectors (2.116) reduce for the special case θ = φ = 0 to the original polarization

vectors (2.107).

2.10 Properties of Polarization Vectors

Due to the Coulomb gauge (2.16) the Fourier components Â(k) in the decomposition (2.82)

must obey the transversality condition

k · Â(k) = 0 . (2.117)
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This means that the Fourier operators Â(k) have two transversal dynamical degrees of freedom.

Performing the ansatz

Â(k) = Nk

∑
λ=±1

ε(k, λ)âk,λ (2.118)

with some normalization constants Nk the transversality condition (2.117) is fulfilled provided

that the polarization vectors ε(k, λ) are perpendicular to the propagation direction, which is

defined by the wave vector (2.109):

k · ε(k, λ) = 0 . (2.119)

Due to (2.109) it is straight-forward to show that the polarization vectors determined in (2.116)

obey (2.119). As another property of the polarization vectors (2.116) we investigate whether

they obey the orthonormality relations (2.84). Showing separately

ε∗(k, λ)ε(k, λ) = 1 , (2.120)

ε∗(k, λ)ε(k,−λ) = 0 , (2.121)

we arrive, indeed, due to λ = ±1 at the orthonormality relations

ε∗(k, λ)ε(k, λ′) = δλ,λ′ . (2.122)

Another property of the polarization vectors (2.116), which will turn out to be quite useful

for later calculations, is their behaviour concerning the inversion k→ −k. Obviously, such an

inversion is obtained in spherical coordinates (2.109) via

φ→ φ+ π : sinφ→ − sinφ , cosφ→ − cosφ , (2.123)

θ → θ − π : sin θ → sin θ , cos θ → − cos θ . (2.124)

With this we then conclude from (2.116

ε(−k, λ) =
1√
2

cos θ cosφ+ λi sinφ

cos θ sinφ− λi cosφ

− sin θ

 . (2.125)

Thus, from (2.116) and (2.125) we read off

ε(−k, λ) = ε(k,−λ) = ε∗(k, λ) . (2.126)

And, inserting the decomposition (2.118) into (2.82) by taking into account (2.126), we finally

get for the field operator

Â(x, t) =
∑
λ=±1

∫
d3k Nk

{
ε(k, λ)ei(kx−ωkt)âk,λ + ε∗(k, λ)e−i(kx−ωkt)â†k,λ

}
. (2.127)

Note that this plane wave decomposition fulfills, indeed, the Coulomb gauge (2.16) due to the

transversality condition (2.119). In the following we aim at unraveling the physical interpre-

tation of the Fourier operators âk,λ and â†k,λ in the plane wave decomposition (2.127). As this

leads to straight-forward but quite lengthy calculations, we restrict ourselves in the subsequent

two sections to present a concise summary of the corresponding derivations.
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2.11 Fourier Operators

We start with noting the plane wave decomposition for the momentum field operator, which

follows from (2.64) and (2.127):

π̂(x, t) =
∑
λ=±1

∫
d3k ε0Nk

{
− iωkε(k, λ)ei(kx−ωkt)âk,λ + iωkε

∗(k, λ)e−i(kx−ωkt)â†k,λ

}
. (2.128)

The plane wave decompositions (2.127) and (2.128) for both the field operator Â(x, t) and the

momentum field operator π̂(x, t) can now be solved for the Fourier operators âk,λ and â†k,λ:

âk,λ =
1

2(2π)3Nk

∫
d3x ε∗(k, λ)e−i(kx−ωkt)

{
Â(x, t) + i

π̂(x, t)

ε0ωk

}
, (2.129)

â†k,λ =
1

2(2π)3Nk

∫
d3x ε(k, λ)ei(kx−ωkt)

{
Â(x, t)− i π̂(x, t)

ε0ωk

}
. (2.130)

Here we have used the symmetry of the dispersion (2.76) and the orthonormality relation of

the polarization vectors (2.122). The expressions (2.129) and (2.130) allows us to determine

the commutator relations between the Fourier operators âk,λ and â†k,λ from the equal-time

commutator relations (2.44), (2.45), and (2.58) for the field operator Â(x, t) and the momentum

field operator π̂(x, t): [
âk,λ, âk′,λ′

]
−

= 0 , (2.131)[
â†k,λ, â

†
k′,λ′

]
−

= 0 , (2.132)[
âk,λ, â

†
k′,λ′

]
−

=
~

2(2π)3ε0ωkN2
k

δλ,λ′ δ(k− k′) . (2.133)

In order to obtain this result we need again the symmetry of the dispersion (2.76) and the

orthonormality relation of the polarization vectors (2.122), but additionally we also have to

take into account the explicit form of the transversal delta function (2.57), the Gauß law, and

the transversality condition (2.119). From (2.133) we read off that, fixing the yet undetermined

normalization constant according to

Nk =

√
~

2(2π)3ε0ωk

, (2.134)

we end up with the bosonic canonical commutation relation[
âk,λ, â

†
k′,λ′

]
−

= δλ,λ′ δ(k− k′) . (2.135)

This means that the Fourier operators âk,λ and â†k,λ can be interpreted as the annihilation and

creation operators of bosonic particles, which are characterized by the wave vector k and the

polarization λ. In order to determine the respective properties of these particles we investigate

in the subsequent section their contribution to the energy of the electromagnetic field in second

quantization.
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2.12 Energy

Taking into account the normalization constant (2.134) in the plane wave decompositions

(2.127) and (2.128) for both the field operator Â(x, t) and the momentum field operator π̂(x, t)

we get

Â(x, t) =
∑
λ=±1

∫
d3k

√
~

2(2π)3ε0ωk

{
ε(k, λ)ei(kx−ωkt)âk,λ + ε∗(k, λ)e−i(kx−ωkt)â†k,λ

}
, (2.136)

π̂(x, t) =
∑
λ=±1

∫
d3k

√
~ωkε0
2(2π)3

{
− iε(k, λ)ei(kx−ωkt)âk,λ + iε∗(k, λ)e−i(kx−ωkt)â†k,λ

}
. (2.137)

Inserting (2.136) and (2.137) in the expression for the Hamilton operator (2.59) and using the

definition of the light velocity (2.5), the linear dispersion (2.73) together with its symmetry

(2.76) as well as the orthonormality relation of the polarization vectors (2.122), we yield after

a lengthy but straightforward calculation

Ĥ =
1

2

∑
λ=±1

∫
d3k ~ωk

(
â†k,λâk,λ + âk,λâ

†
k,λ

)
. (2.138)

First of all we remark that (2.138) turns out to be time independent, although the field operator

(2.136) and the momentum field operator (2.137) explicitly depend on time due to the Heisen-

berg picture. The resulting time independence of the second-quantized Hamilton operator

(2.138) reflects the fact that the energy of the electromagnetic field is conserved. Furthermore,

comparing (2.138) with the Hamilton operator (A.6) of a harmonic oscillator in the ladder

operator formalism, we recognize that the second quantized electromagnetic field consists of

independent harmonic oscillators, where each energy quantum ~ωk is doubly degenerate due to

the polarization degree of freedom λ = ±1. Defining the vacuum state according to

âk,λ|0〉 = 0 ⇐⇒ 〈0|â†k,λ = 0 , (2.139)

we find by taking into account the commutation relation (2.135) that the vacuum energy of

the electrodynamic field is given by a sum of the zero-point energy of all independent harmonic

oscillators

〈0|Ĥ|0〉 =

∫
d3k ~ωk δ(0) , (2.140)

which is divergent due to two reasons. On the one hand the factor δ(0) is divergent and on

the other hand the wave vector integral diverges as well due to the linear dispersion (2.73).

Therefore, using the commutator relation (2.135) we obtain for the renormalized Hamilton

operator

:Ĥ : = Ĥ − 〈0|Ĥ|0〉 (2.141)
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the normal ordered result

:Ĥ : =
∑
λ=±1

∫
d3k ~ωk n̂k,λ . (2.142)

Here the occupation number operator

n̂k,λ = â†k,λâk,λ (2.143)

counts the number of photons with wave vector k and polarization λ once it is applied to a

photon state.

2.13 Momentum

Due to a theorem, which is due to Emmy Noether, the momentum of the electromagnetic field

is defined by [22]

P =

∫
d3x

S(x, t)

c2
(2.144)

with the Poynting vector

S(x, t) =
1

µ0

E(x, t)×B(x, t) . (2.145)

Taking into account (2.5), (2.10), and (2.26), the momentum (2.145) is expressed in terms of

the vector potential and the canonically conjugated momentum field via

P =

∫
d3x [∇×A(x, t)]× π(x, t) . (2.146)

Thus, in second quantization, the momentum operator of the electromagnetic field reads

P̂ =

∫
d3x

[
∇× Â(x, t)

]
× π̂(x, t) . (2.147)

The further evaluation is based on taking into account the plane wave decompositions (2.136)

and (2.137) for both the field operator Â(x, t) and the momentum field operator π̂(x, t). Fur-

thermore, the symmetry of the dispersion relation (2.76), the vector identity

(a× b)× c = (ac)b− (bc)a , (2.148)

the transversality condition (2.119), the orthonormality relation (2.122), and (2.126) are needed.

Subsequently, performing the substitution k → −k and applying (2.76), (2.131), (2.132), we

get the expression

P̂ =
∑
λ=±1

∫
d3k

~k

2

(
â†k,λâk,λ + âk,λâ

†
k,λ

)
. (2.149)
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Note that the vacuum state has a vanishing momentum

〈0|P̂|0〉 =

∫
d3k ~k δ(0) = 0 (2.150)

due to the odd symmetry of the integrand. Thus, taking into account the commutator relation

(2.135) we recognize that (2.149) coincides with the renormalized momentum operator

:P̂: = P̂− 〈0|P̂|0〉 , (2.151)

which finally yields the normal ordered result

:P̂: =
∑
λ=±1

∫
d3k ~k â†k,λâk,λ . (2.152)

2.14 Spin Angular Momentum

According to the Noether theorem the spin angular momentum of the electromagnetic is given

by [22]

S =

∫
d3xA(x, t)× π(x, t) . (2.153)

Thus, the corresponding second quantized spin angular momentum operator reads

Ŝ =

∫
d3x Â(x, t)× π̂(x, t) . (2.154)

Inserting the plane wave decompositions (2.136) and (2.137) for both the field operator Â(x, t)

and the momentum field operator π̂(x, t) and performing the substitution k→ −k then yields

the intermediate result

Ŝ =
∑
λ=±1

∑
λ′=±1

∫
d3k

i~
2

[
ε(k, λ)× ε(k, λ′)∗âk,λâ†k,λ′ + ε(k, λ

′)× ε(k, λ)∗â†k,λâk,λ′
]
. (2.155)

Now we evaluate the vector product between two polarization vectors. At first we obtain from

(2.126)

ε(k, λ)× ε(k,−λ)∗ = 0 , (2.156)

whereas we get from (2.109) and (2.116)

ε(k, λ)× ε(k, λ) = −iλ k

k
. (2.157)

Thus, both (2.156) and (2.157) can be summarized by

ε(k, λ)× ε(k, λ′)∗ = −iλ k

k
δλ,λ′ . (2.158)
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With this the intermediate result (2.155) for the spin angular momentum operator of the

electromagnetic field reduces to

Ŝ =
∑
λ=±1

∫
d3k λ

~
2

k

k

(
â†k,λâk,λ + âk,λâ

†
k,λ

)
. (2.159)

Thus, the vacuum state has a vanishing spin angular momentum

〈0|Ŝ|0〉 = ~

(∑
λ=±1

λ

)(∫
d3k

k

k

)
δ(0) = 0 (2.160)

due to the odd symmetry in both the summand and the integrand. Using the commutator

relation (2.135) we read off that (2.159) coincides with the renormalized spin angular momentum

operator

:Ŝ: = Ŝ− 〈0|Ŝ|0〉 , (2.161)

leading to the normal ordered result

:Ŝ: =
∑
λ=±1

∫
d3k λ~

k

k
â†k,λâk,λ . (2.162)

We observe that the decompositions of the second quantized expressions for the energy (2.142),

the momentum (2.152), and the spin angular momentum (2.162) of the electromagnetic field

turn out to be time independent and, thus, represent conserved quantities. Together with the

commutator relations (2.131), (2.132), and (2.135) we furthermore conclude that the Fourier

operators âk,λ and â†k,λ represent the annihilation and creation operators of photons with the

energy ~ωk, the momentum ~k, and the spin angular momentum λ~k/k, where the latter

amounts to the helicity λ~.

2.15 Fock Basis

Now we construct a basis of the underlying second quantized Hilbert space. To this end we take

advantage of the fact that âk,λ, â
†
k,λ denote the annihilation and creation operators for photons

with wave vector k and helicity λ, which fulfill the bosonic commutation relations (2.131),

(2.132), and (2.135). Thus, this second-quantized operator algebra is formally analogous to

the ladder operator approach for a first-quantized harmonic oscillator, which is outlined in

Appendix A. Based on this analogy we use (A.21) in order to obtain a state |nk,λ〉 with a fixed

number of nk,λ photons with wave vector k and helicity λ by applying nk,λ times the creation

operator â†k,λ to the vacuum state defined in (2.139):

|nk,λ〉 =
1√
nk,λ!

(
â†k,λ

)nk,λ

|0〉 . (2.163)
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In principle, we could allow for all wave vectors k and helicities λ an arbitrary number of

photons nk,λ, yielding

|{nk,λ}〉 =
∏
k,λ

|nk,λ〉 . (2.164)

In analogy to (A.24) and (A.25) we then read off that these states |{nk,λ}〉 are both orthonormal

〈{nk,λ}|{n′k,λ}〉 =
∏
k,λ

δnk,λ,n
′
k,λ

(2.165)

and complete ∑
λ=±1

∫
d3k

∞∑
nk,λ=0

|{nk,λ}〉 〈{nk,λ}| = 1 . (2.166)

Thus, the linear envelope of all possible number states (2.164) defines then the so-called Fock

space, which is named after the Soviet physicist Vladimir Fock:

F = Span
{
|0〉 , |1k,λ〉 , |1k,λ1k′,λ′〉 , |2k,λ〉 , . . .

}
. (2.167)

As we have continuous wave vectors k, the Fock space contains innumerable many photon

states.

2.16 Quantum Fluctuations of Electric Field

Here we restrict ourselves to investigate exemplarily the quantum fluctuations of the electric

field. The corresponding considerations for the magnetic field follow in an analogous way. We

start with reading off from (2.26) and (2.136) the explicit structure of the electric field operator:

Ê(x, t) =
∑
λ=±1

∫
d3k

√
~ωk

2(2π)3ε0
i
{
ε(k, λ)ei(kx−ωkt)âk,λ − ε∗(k, λ)e−i(kx−ωk)tâ†k,λ

}
. (2.168)

Its vacuum expectation value turns out to vanish due to (2.139):

〈0|Ê(x, t)|0〉 = 0 . (2.169)

Therefore, we investigate now the correlation function of the electric field operator for different

spatio-temporal arguments:

〈0|Êi(x, t)Êi′(x′, t′)|0〉 =
∑
λ=±1

∑
λ′=±1

∫
d3k

∫
d3k′

~√ωkωk′

2(2π)3ε0
i2〈0|

{
εi(k, λ)ei(kx−ωkt)âk,λ

−ε∗i (k, λ)e−i(kx−ωk)tâ†k,λ

}{
εi′(k

′, λ′)ei(k
′x′−ωk′ t

′)âk′,λ′ − ε∗i′(k′, λ′)e−i(k
′x′−ωk′ )t

′
â†k′,λ′

}
|0〉 . (2.170)

From the four terms, which arise from multiplying out both brackets, only one is non-vanishing

due to (2.139). Applying (2.135) we obtain

〈0|âk,λâ†k′,λ′|0〉 = 〈0|
[
âk,λ, â

†
k′,λ′

]
−
|0〉 = δλ,λ′δ(k− k′) . (2.171)
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With this the correlation function (2.170) reduces to

〈0|Êi(x, t)Êi′(x′, t′)|0〉 =
∑
λ=±1

∫
d3k

~ωk

2(2π)3ε0
ei[k(x−x′)−ωk(t−t′)] εi(k, λ)ε∗i′(k, λ) . (2.172)

A contraction of the components of the correlation function (2.172) yields due to the dispersion

(2.73) and the orthonormality relation (2.122):

〈0|Ê(x, t)Ê(x′, t′)|0〉 =

∫
d3k

~c|k|
(2π)3ε0

ei[k(x−x′)−|k|c(t−t′)] . (2.173)

Using spherical coordinates the integral goes over into

〈0|Ê(x, t)Ê(x′, t′)|0〉 =
~c

(2π)2ε0

∫ ∞
0

dk k3

∫ π

0

dϑ sinϑ ei[k|x−x
′| cosϑ−kc(t−t′)] . (2.174)

Evaluating the angular integral leads to

〈0|Ê(x, t)Ê(x′, t′)|0〉 =
~c

4π2iε0|x− x′|

∫ ∞
0

dk k2
{
e−ik[c(t−t′)−|x−x′| ] − e−ik[c(t−t′)+|x−x′| ]

}
. (2.175)

The remaining integral can be solved with the help of the Gamma function [23, (8.310.1)]

Γ(x) =

∫ ∞
0

dt tx−1 e−t , x > 0 . (2.176)

Performing a partial integration we obtain the useful recursion formula

Γ(x+ 1) = xΓ(x) , x > 0 . (2.177)

Thus, applying (2.177) recursively, we conclude that the Gamma function interpolates between

the factorials:

n! = Γ(n+ 1) . (2.178)

Now we perform the integration along the closed contour C = C1 + C2 + C3 of a quarter circle

with radius R according to Fig. 2.4 with the help of the residue theorem we get according to

the residue theorem∫
C1
dz zx−1 e−z +

∫
C2
dz zx−1 e−z +

∫
C3
dz zx−1 e−z = 0 , (2.179)

as the integrand has no singularity within the integration contour C. In the limit R → ∞ the

integral along C2 vanishes and with the parametrizations

C1 : z(t) = t , t ∈ [0,∞) , (2.180)

C3 : z(t) = it , t ∈ (∞, 0] (2.181)

we read off from (2.176) and (2.179)∫ ∞
0

dt tx−1 e−t +

∫ 0

∞
dt i (it)x−1 e−it = 0 =⇒ Γ(x) = ix

∫ ∞
0

dt tx−1 e−it . (2.182)
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Figure 2.4: Closed contour C = C1 + C2 + C3 of a quarter circle with radius R.

Performing subsequently the substitution t(τ) = aτ with a > 0, then (2.182) reduces to∫ ∞
0

dτ τx−1 e−iaτ =
Γ(x)

(ia)x
, a > 0 . (2.183)

Instead we could also have performed the substitution t(τ) = aτ with a > 0 in (2.176), yielding∫ ∞
0

dτ τx−1 e−aτ =
Γ(x)

ax
, a > 0 . (2.184)

Note that (2.184) is called the Schwinger trick, which is frequently used in statistical and

quantum field theory in order to evaluate Feynman diagrams [24, 25, 26]. Furthermore, we

recognize that (2.183) directly follows from (2.184) via an analytic continuation. Evaluating

the remaining integral in (2.175) with (2.183) by identifying x = 3 and a = c(t− t′)∓ |x− x′|,
we obtain

〈0|Ê(x, t)Ê(x′, t′)|0〉 =
~c

2π2ε0|x− x′|

{
1

[c(t− t′)− |x− x′| ]3
− 1

[c(t− t′) + |x− x′| ]3

}
. (2.185)

We mention that such a vacuum correlation function of the two electric field operators with

different space-time coordinates can not be measured with an intensity measurement as this

would necessarily involve the same space-time coordinates. Thus, a direct experimental proof

of such a vacuum correlation function was missing for quite a long time. This was achieved

only recently by using the electro-optic detection in a nonlinear crystal placed in a cryogenic

environment [27]. To this end two probe pulses with different space-time coordinates sample

the electric field of the propagating waves in the crystal with the repetition rate of the laser

used. With this the vacuum field fluctuations, which couple from the environment into the

detection crystal, are detected. They are found to be non-zero and their corresponding power

spectrum is measured. The latter is well reproduced in simulations, which take the specific

experimental set-up into account. The remaining difference between the simulations and the

experimental results is attributed to a remaining uncertainty in the phase matching of the two

waves.

Note that in Eq. (2.185) the limit |x− x′| → 0 can be performed with the rule of de l’Hôpital

or with a Taylor expansion, yielding

〈0|Ê(x, t)Ê(x, t′)|0〉 =
3~

π2ε0c3(t− t′)4
. (2.186)
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Figure 2.5: Set-up for Casimir effect: two plane-parallel metal plates of area A at distance d.

Thus, the correlation function for the same space points remains finite for different times t 6= t′.

In the limit t → t′, however, the correlation function diverges. This result is consistent with

the previous observation that the energy of the electromagnetic field in the vacuum (2.140)

turned out to be infinitely large. Despite of this divergency of the vacuum energy the quantum

fluctuations are responsible for the Casimir effect, which is discussed in the subsequent section.

2.17 Casimir Effect

In quantum field theory, the Casimir effect corresponds to a physical force acting on the macro-

scopic boundaries of a confined space, which arises from the quantum fluctuations of the field.

It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromag-

netic systems in 1948. In order to analyze the Casimir effect we consider two plane-parallel

metal plates of a large area A at distance d. According to Fig. 2.5 we choose the coordinate

system such that the metal plates are located at x = 0 and x = d.

2.17.1 Electromagnetic Modes

In order to find the electromagnetic modes for this configuration, we have to solve the Maxwell

equations (2.1)–(2.4) in vacuum, i.e. in case of (2.23). But in addition we have also to fulfill

the boundary conditions for the electromagnetic field at the metal plates. Applying at the

interface of vacuum and metal plates the Gauß law to the homogeneous Maxwell equation (2.3)

one obtains

ex ·B = 0 , for x = 0 and x = d (2.187)

and, correspondingly, the Stokes law together with (2.3) yields

ex × E = 0 , for x = 0 and x = d , (2.188)
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respectively. Solving this boundary value problem, the Maxwell theory admits two types of

standing-wave solutions, which read with the transversal wave vector k⊥ = kyey + kzez as an

abbreviation:

• Transversal electric (TE) modes, i.e. ex · E = 0:

E(x, y, z, t) = NTE iω sin(kxx) ex × k⊥ e
i(kyy+kzz−ωt) , (2.189)

B(x, y, z, t) = NTE

[
ik2
⊥ sin(kxx)ex − kx cos(kxx)k⊥

]
ei(kyy+kzz−ωt) . (2.190)

The boundary conditions (2.187) and (2.188) have the consequence that the x-component

of the wave vector k has discrete values:

0 = sin(kxx)
∣∣∣
x=0

= sin(kxx)
∣∣∣
x=d

=⇒ kx =
π

d
n , n = 1, 2, 3, . . . . (2.191)

Note that the mode n = 0, i.e. kx = 0, is not allowed as then both the electric field (2.189)

and the magnetic induction (2.190) vanish.

• Transversal magnetic (TM) modes, i.e. ex ·B = 0:

B(x, y, z, t) = NTM
ω

c2
cos(kxx) ex × k⊥ e

i(kyy+kzz−ωt) , (2.192)

E(x, y, z, t) = NTM

[
ikx sin(kxx)k⊥ − k2

⊥ cos(kxx)ex
]
ei(kyy+kzz−ωt) . (2.193)

Here the boundary condition (2.187) is already fulfilled and (2.188) yields for the x-

component of the wave vector k:

0 = sin(kxx)
∣∣∣
x=0

= sin(kxx)
∣∣∣
x=d

=⇒ kx =
π

d
n , n = 0, 1, 2, 3, . . . . (2.194)

We remark that now the mode with n = 0, i.e. kx = 0, is allowed in case of k⊥ 6= 0,

as then both electric field (2.193) and magnetic induction (2.193) are non-vanishing and

fulfill the Maxwell boundary value problem.

In addition, both for the transversal electric and the transversal magnetic modes (2.189), (2.190)

and (2.192), (2.193) the frequency ω is determined by a linear dispersion (2.73) with the quan-

tization conditions (2.191) and (2.194):

ωn = c

√
π2n2

d2
+ k2

⊥ , with

{
n = 1, 2, 3, . . . (TE modes)

n = 0, 1, 2, 3, . . . (TM modes)
. (2.195)

Furthermore, we assume that the lengths Ly and Lz of the metal plates in y- and z-direction

are much larger than d, so that the quantization of the transverse momenta becomes irrelevant.

For instance, invoking periodic boundary conditions the allowed wave vector component ky is

restricted as follows:

eikyy
∣∣
y=0

= eikyy
∣∣
y=Ly

=⇒ ky =
2π

Ly
ny , ny ∈ Z . (2.196)
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This means that changing the mode number in y-direction by one amounts to

1 = ∆ny =
Ly
2π

dky , (2.197)

so summing over all modes corresponds to an integral:

∞∑
ny=−∞

1 = Ly

∫ ∞
−∞

dky
2π

. (2.198)

Thus, in the thermodynamic limit of an infinitely large Ly, Lz yields a nearly continuous set of

states denoted by the transversal wave vectors k⊥ with the transverse density of states A/(2π)2,

where the area is given by A = LyLz. With this we obtain for the vacuum energy between the

two metal plates in analogy to (2.140):

Einside
plates = 2

∞∑
n=0

(
1− 1

2
δn,0

)
A

∫
d2k⊥
(2π)2

1

2
~c
√
π2n2

d2
+ k2

⊥ . (2.199)

Correspondingly, outside of two metal plates the wave vectors are not restricted at all, yielding

for a length Lx � d the vacuum energy

Eoutside
plates = 2(Lx − d)A

∫ ∞
−∞

dkx
2π

∫
d2k⊥
(2π)2

1

2
~c
√
k2
x + k2

⊥ . (2.200)

In absence of the metal plates the total vacuum energy in the box with volume LxA would read

Eno
plates = 2LxA

∫ ∞
−∞

dkx
2π

∫
d2k⊥
(2π)2

1

2
~c
√
k2
x + k2

⊥ . (2.201)

Note that in (2.200) as well as in (2.201) the prefactor two takes both transveral degrees of

freedom of the electromagnetic field into account, which are energetically degenerate. Installing

the metal plates, thus, leads to the following change of the vacuum energy:

EC = Einside
plates + Eoutside

plates − Eno
plates , (2.202)

which reduces with (2.199)–(2.201) to

EC = ~cA

(
∞∑
n=0

′ −
∫ ∞

0

dn

)∫
d2k⊥
(2π)2

√
π2n2

d2
+ k2

⊥ , (2.203)

Here we have introduced the abbreviation

∞∑
n=0

′fn =
∞∑
n=0

fn −
1

2
f0 , (2.204)

which formally takes into account that the respected TE and TM modes are enumerated dif-

ferently according to (2.195). Although both the sum and the integral in (2.203) is divergent

for itself, their difference turns out to be finite.
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2.17.2 Analytic Continuations

In order to evaluate (2.203) we have to tame the possible infinities by introducing some regu-

larization procedure. Note that the finite result for the difference (2.203) does not depend upon

the particular choice of the regularization procedure. Here we choose the method of dimen-

sional regularization, which was invented by Gerard ’t Hooft and Martinus Veltman in 1972, as

it is quite popular in quantum and statistical field theory. Instead of considering the Casimir

energy in D = 3 according to (2.203) one performs a calculation in an arbitrary dimension D

EC = ~cA

(
∞∑
n=0

′ −
∫ ∞

0

dn

)∫
dD−1k⊥
(2π)D−1

√
π2n2

d2
+ k2

⊥ (2.205)

and continues analytically its result to the physical dimension D = 3 at the end. At first, the

major problem is how to perform in (2.205) the integral over the transversal wave vector k⊥.

In order to investigate its superficial degree of divergence we introduce an ultraviolet cut-off Λ

and approximate the integrand for large transversal wave vectors k⊥:∫
dD−1k⊥
(2π)D−1

√
π2n2

d2
+ k2

⊥ ∼
∫ Λ

0

dk⊥ k
D−2
⊥ · k⊥ ∼ ΛD . (2.206)

Thus, at the physical dimension D = 3 the integral over the transversal wave vector k⊥ diverges,

and the ultraviolet divergency vanishes for any dimension D < 0.

In view of performing the transversal wave vector k⊥ we might have the idea to apply the

Schwinger trick (2.184) for x = −1/2 and a = π2n2/d2 + k2
⊥. However, at a first glance, this

is not allowed as the integral definition of the Gamma function Γ(x) in (2.176) is not defined

for negative arguments, i.e. x < 0. But it turns out that the recursion formula (2.177) for the

Gamma function Γ(x) allows to analytically continue it piecewise. Thus, the values of Γ(x) in

the interval −1 < x < 0 follow due to (2.177) from the interval 0 < x < 1 yielding, for instance

Γ

(
−1

2

)
= −2

√
π (2.207)

as Γ(1/2) =
√
π follows directly from the integral definition (2.176). In this way the Gamma

function Γ(x) can be defined for all real x 6= 0,−1,−2, . . . as depicted in Fig. 2.6. Having this

analytic continuation of the Gamma function in mind, we can now apply the Schwinger trick

(2.184) for x = −1/2 and a = π2n2/d2 + k2
⊥, yielding with (2.207)√

π2n2

d2
+ k2

y + k2
z =

1

(π2n2/d2 + k2
y + k2

z)
−1/2

=
−1

2
√
π

∫ ∞
0

dτ τ−3/2 e−(π2n2/d2+k2
⊥)τ . (2.208)

Inserting (2.208) into (2.205) reveals the advantage of the Schwinger trick. Namely, due to

having introduced the artificial Schwinger integral with respect to τ , the integral with respect

to the transversal wave vector k⊥ turns out to be Gaussian∫
dD−1k⊥
(2π)D−1

√
π2n2

d2
+ k2

⊥ =
−1

2
√
π

∫ ∞
0

dτ τ−3/2 e−π
2n2/d2τ

∫
dD−1k⊥
(2π)D−1

e−k
2
⊥τ , (2.209)
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Figure 2.6: Gamma function Γ(x) represents for x > 0 an interpolation between the factorials

(2.178) and is analytically continued to x < 0 via the recursion formula (2.177).

Figure 2.7: The Dirac comb (2.212) is an infinite series of Dirac delta functions with unity

spacing.

which can straight-forwardly be evaluated:∫
dD−1k⊥
(2π)D−1

e−k
2
⊥τ =

1

(4π)(D−1)/2
τ (1−D)/2 . (2.210)

Taking into account the side calculations (2.209) and (2.210), the Casimir (2.205) results in

EC =
−~cA

2
√
π(4π)(D−1)/2

∫ ∞
0

dτ τ−D/2−1

(
∞∑
n=0

′ −
∫ ∞

0

dn

)
e−π

2n2τ/d2

. (2.211)

Here it remains to evaluate the difference between a sum and an integral. This can be achieved

with the Poisson sum formula, which represents an intriguing tool for both quantum and

statistical field theory.

2.17.3 Poisson Sum Formula

Let us consider the Dirac comb function

K(x) =
∞∑

n=−∞

δ(x− n) , (2.212)

which is periodic

K(x+ k) = K(x) ; k = 0,±1,±2, . . . (2.213)
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and is illustrated in Fig. 2.7. Due to its periodicity the Dirac comb function (2.212) can be

decomposed into a Fourier series

K(x) =
∞∑

m=−∞

Km e
−2πimx , (2.214)

where the respective Fourier coefficients Km follow from an integration over one period:

Km =

∫ +1/2

−1/2

dxK(x) e2πimx . (2.215)

Inserting (2.212) into (2.214) by taking into account (2.215) then leads to the distributional

identity

∞∑
n=−∞

δ(x− n) =
∞∑

m=−∞

e−2πimx . (2.216)

Multiplying (2.216) with some function f(x) and integrating over the whole real axis finally

yields the celebrated Poisson sum formula:

∞∑
n=−∞

f(n) =
∞∑

m=−∞

∫ ∞
−∞

dx f(x) e−2πimx . (2.217)

Thus, the Poisson sum formula (2.217) allows to calculate a given sum on the left-hand side

by mapping it to another sum on the right-hand side, where the result of the summation is

possibly known. In case that the function f(x) is even, i.e. f(−x) = f(x), Eq. (2.217) reduces

with (2.204) to(
∞∑
n=0

′ −
∫ ∞

0

dn

)
f(n) =

∞∑
m=1

Re

∫ ∞
−∞

dx f(x) e−2πimx , f(−x) = f(x) . (2.218)

Thus, in view of the Casimir energy (2.211) we specialize the Poisson sum formula (2.218) to the

even function f(x) = e−π
2x2τ/d2

, where the remaining Gaussian function is directly evaluated:(
∞∑
n=0

′ −
∫ ∞

0

dn

)
e−π

2n2τ/d2

=
∞∑
m=1

Re

∫ ∞
−∞

dx e−π
2x2τ/d2−2πimx =

d√
πτ

∞∑
m=1

e−m
2d2/τ . (2.219)

Inserting (2.219) into (2.211) it is obvious to perform the substitution u(τ) = 1/τ

EC =
−~cAd

2π(4π)(D−1)/2

∞∑
m=1

∫ ∞
0

du u(D−1)/2 e−m
2d2u , (2.220)

as then the remaining integral with respect to u is again of the form of the form of the Schwinger

trick (2.184) but this time with x = (D + 1)/2 and a = m2d2, yielding

EC =
−Γ((D + 1)/2)ζ(D + 1)~cA

2π(4π)(D−1)/2dD
, (2.221)
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a) b)

Figure 2.8: Heuristic explanation of Casimir effect: a) Mode density is larger outside of the

plates than in between the plates, thus b) both plates are pressed together.

where we have introduced the Riemann zeta function

ζ(z) =
∞∑
n=1

1

nz
. (2.222)

Thus, specializing in (2.221) the dimension D to the physical dimension D = 3 and using the

value for the Riemann zeta function ζ(4) in (B.21), we get for the Casimir energy

EC = −π
2~cA

720d3
. (2.223)

2.17.4 Physical Discussion

First of all we read off from the negative sign that the vacuum fluctuations of the electromagnetic

field lead to a lowering of the energy. This manifests itself in an attractive force between the

two metal plates, which decreases with the inverse fourth power of the distance:

FC = −∂EC

∂d
= −π

2~cA
240d4

. (2.224)

The attraction of the Casimir force can be understood on heuristic grounds as follows. Ac-

cording to Fig. 2.8a) there is a larger number of modes outside of the plates than in between

the plates as the photons inside the plates have a wavelength, which is shorter than the dis-

tance between the plates. Thus, due to the larger density of states outside of the plates, both

plates are pressed together, see Fig. 2.8b). Furthermore, apart from the geometrical quantities

d and A the force (2.224) depends only on fundamental values of the Planck constant ~ and

the speed of light c. At scales, which are smaller than 1µm, this Casimir force turns out to be

the dominant one between electrically neutral objects and is, thus, relevant for nanotechnology.

For an area of A = (1µm)2 the Casimir force amounts to the value FC = 1.3 pN, which is an

order of magnitude being measurable with a force microscope. Experimentally it is hard to

configure two parallel plates uniformly separated by distances less than a micron. Therefore,
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Figure 2.9: Schematic diagram of the experimental setup in Ref. [30]. Application of voltage

to the piezo results in the movement of the plate towards the sphere.

it is advantageous in an experiment to replace one of the plates by a metal sphere of radius R

with the condition R� d. For such a geometry the Casimir force reads instead of (2.224) [30]:

FC = −π
3~cR

360d3
. (2.225)

A high-precision measurement of such a Casimir force between a metallized sphere of diameter

196µm and a flat plate was performed with an atomic force microscope, see Fig. 2.9. The

force was measured for plate-sphere surface separations from 0.1 to 0.9µm. The experimental

results turned out to be consistent with present theoretical calculations including the finite

conductivity, roughness, and temperature corrections.

An interesting application of the Casimir effect occurs when one searches for non-Newtonian

gravity in the micrometre range [31]. Subtracting the respective contributions of the Casimir

force from experimental data reveals a possible contribution from a so-called fifth force. Here a

deviation from the Newtonian potential by an additional Yukawa potential is described by the

parameters A and Λ in the phenomenological ansatz

1

r
=⇒ 1 + Ae−r/Λ

r
, (2.226)

for which an upper bound can be determined. In order to obtain precise predictions one has to

take into account several theoretical corrections. Usually a different geometry is considered as,

for instance, two spheres. In addition to the vacuum fluctuations also thermal fluctuations occur

in experiments, whose magnitude has to be estimated. Furthermore deviations occur provided

that the two surfaces are not perfectly conducting. Also surface roughnesses are important to

study. And in case of magnetic materials other boundary conditions might occur so that the

Casimir force can become repulsive. Although the last decade of experiments has resulted in

solid demonstrations of the Casimir force, the situation is not yet conclusive with respect to

being able to discover new physics in the context of non-Newtonian gravity.
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Figure 2.10: Not to scale sketch of hydrogen energy levels according to a) Bohr-Sommerfeld

theory, b) Dirac theory, and c) quantum electrodynamics.

2.18 Lamb Shift

As discussed in the previous section the Casimir effect tells us that the presence of the two plane-

parallel metal plates affects the vacuum fluctuations of the electromagnetic field. In contrast

to that the Lamb shift, named after Willis Lamb, describes a difference in energy between two

energy levels 22s1/2 and 22p1/2, which was not predicted by the Dirac equation, according to

which these states should have the same energy. Subsequent to its discovery in 1947 it was

explained by the interaction between vacuum energy fluctuations of the electromagnetic field

and the hydrogen electron in these different orbitals. The importance of the Lamb shift is best

illustrated by a statement of Freeman Dyson on the occasion of Lamb’s 65th birthday: ,,Those

years, when the Lamb shift was the central theme of physics, were golden years for all the

physicists of my generation. You were the first to see that this tiny shift, so elusive and hard

to measure, would clarify our thinking about particles and fields.” The Lamb shift has since

played a significant role through vacuum energy fluctuations in theoretical prediction in general

and in the Hawking radiation from black holes in particular [32].

2.18.1 Energy Levels of Hydrogen Atom

We start with reviewing the development of atomic physics by the example how the energy

levels of the hydrogen atom have become known more and more precisely.
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In the Bohr-Schrödinger theory one treats the hydrogen atom within non-relativistic quantum

mechanics without taking into account the spin of the electron. The resulting energy levels

(C.12) are determined by the Rydberg energy (C.11)–(C.15) as the relevant energy scale and the

principal quantum number n. Thus, they are degenerate with respect to the azimuthal quantum

number l = 0, 1, 2, . . . , n − 1, the magnetic quantum number ml = −l,−l + 1, . . . , l − 1, l and

the spin quantum number ms = −1/2, 1/2. Each atomic state is described by a term symbol of

the form n2s+1L, where 2s+1 = 2 denotes the multiplicity with respect to the spin s = 1/2 and

L abbreviates a letter s, p, d, f, . . . corresponding to l = 0, 1, 2, 3, . . .. Thus, according to the

Bohr-Schrödinger theory, the ground state of the hydrogen atom with the energy E1 = −Ry is

denoted by 12s, whereas the first excited states 22s and 22p are degenerate and have the energy

E2 = −Ry/4, see Fig. 2.10a).

The Dirac theory treats the hydrogen atom within relativistic quantum mechanics, where the

spin of the electron is taken into account. The energy states of the hydrogen atom can be

calculated exactly within the Dirac theory and read:

Enj = Mc2

√
1− α2

n2 + 2(n− j − 1/2) [(j + 1/2)2 − α2]− j − 1/2
. (2.227)

Here (2.227) depends apart from the principal quantum number n also from the total angular

momentum quantum number j = l ± 1/2, which accounts for the spin-orbit coupling. Ex-

panding (2.227) in powers of the Sommerfeld fine-structure constant α defined in (C.11) yields

for the leading relativistic correction of the non-relativistic energy values (C.12) three different

contributions. The first one stems from taking into account the relativistic energy-momentum

dispersion, the second one from the spin-orbit coupling, and the third one is the Darwin term,

which describes the Zitterbewegung of an electron in an s-shell around its position due its inter-

action with virtual electron-positron pairs. With all three contributions together one obtains

Enj = −Ry
1

n2
+ EFS

nj + . . . . (2.228)

Here the fine-structure energy

EFS
nj = −Ryα2

n4

(
n

j + 1/2
− 3

4

)
(2.229)

turns out to be always negative. Note that the relativistic energy reduction (2.229) was origi-

nally determined by Arnold Sommerfeld by discarding Bohr circles in favour of Kepler ellipses

for the electron orbits with the proton being located at the focus. Is the electron nearer to the

proton it moves faster and gets due to special relativity a larger mass, which implies according

to (C.13) a lowering of the energy. As the fine-structure energy (2.229) depends on the total

angular momentum quantum number j, the original term symbol n2s+1L for the atomic states

is extended to the form n2s+1Lj. As a consequence of the fine-structure (2.229) the ground

state 12s1/2 is just reduced by the energy Ryα2/4. But the impact for the first excited state

is more significant. Although the original degeneracy between the Bohr-Schrödinger atomic
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Figure 2.11: Experimental set-up from Lamb and Retherford for detecting the Lamb shift in

the microwave range.

states 22s and 22p is lifted, a new degeneracy with respect to the total angular momentum

quantum number j emerges. Now we have the energetically higher state 22p3/2, which has just

a fine-structure reduction of Ryα2/64, whereas the two degenerate energy states 22s1/2 and

22p1/2 get the same fine-structure reduction 5Ryα2/64, see Fig. 2.10b).

A full quantum electrodynamic treatment takes into account that the electron of the hydrogen

atom is interacting with the vacuum fluctuations of the electromagnetic field. As we will

show shortly, this only affects in leading order only the s-states, where the electron has a non-

vanishing probability to stay in the vicinity of the proton, and leads to a positive shift of the

energy levels. For the ground state 12s1/2 this amounts to an upwards shift of

∆EL(12s1/2)/h = 8.17 GHz . (2.230)

And for the two degenerate energy states 22s1/2 and 22p1/2 this has the consequence that the

energy level 22p1/2 is not affected, whereas 22s1/2 acquires a Lamb shift of

∆EL(22s1/2)/h = 1.0578 GHz , (2.231)

which amounts to 1/10 of the fine-structure spacing Ryα2/16 between the states 22p1/2 and

22p3/2, see Fig. 2.10c). Thus, we conclude, that the vacuum fluctuations of the electromagnetic

field ultimately lift the degeneracy of the Dirac energy levels with respect to the total angular

momentum quantum number j.

2.18.2 Detection in Microwave Range

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave tech-

niques to stimulate radio-frequency transitions between the 22s1/2 and 22p1/2 levels of hydrogen.

The corresponding experimental set-up is sketched in Fig. 2.11. With an oven at 2 500 ◦C H2-

molecules thermally dissociate into H-atoms. The resulting beam of 12s1/2 hydrogen atoms

travels past an electron beam, which excites a smaller fraction of atoms to the metastable state

22s1/2. Note that optical transitions from the 22s1/2 to the 12s1/2 state are forbidden due to the

selection rule ∆l = ±1, see Appendix F. The atoms then pass a microwave resonator, which is
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tunable within the range of 1 and 10 GHz, see Fig. 1.1, and then hit a Wolfram plate. There the

metastable 22s1/2-atoms release their excitation energy as they go over into the ground state

12s1/2 by liberating electrons from the metal plate. One then detects the number of electrons,

which is a measure for the number of metastable 22s1/2 atoms. But those atoms, which are

excited within the resonator from the 22s1/2 to the 22p3/2 level in the range of 10 000 MHz lead

to a reduction of the electron current. Their number is detected due to an optical transition

into the ground state 12s1/2. Additionally, Lamb and Retherford found in 1947 that the same

effect, i.e. a reduction of the electron current, occurs when 22s1/2 atoms absorb microwaves at

the frequency 1 000 MHz, which leads to a transition from the 22s1/2 to the 22p1/2 state, see

Fig. 2.10. This showed impressively that even states with the same total angular momentum j

are energetically different.

2.18.3 Qualitative Explanation

Let us qualitatively discuss the interaction of electrons with the vacuum of the light field. Due

to the energy-time uncertainty the conservation of energy can briefly be violated, allowing the

hydrogen electron to virtually absorb and emit photons, see Fig. 2.12. This leads to an atomic

energy shift, which is infinitely large. Also a free electron can continuously absorb and emit

photons, which leads likewise to an infinite decrease of its energy. But experimentally it turns

out that the atoms have a finite energy. The basic idea for solving this ,,infinity problem” of

the energy shift is therefore the following. One has to subtract from the infinitely large energy

shift of the bound electrons the corresponding infinitely large energy shift of the free electrons

in order to obtain an experimentally finite value. This process is called renormalization in

physics. It also involves a renormalization of the electron mass. Within the realm of the

renomalization theory of quantum electrodynamics one has worked out a procedure, which

eliminates systematically all infinities of the theory. With this one can calculate, for instance,

the Lamb shift and the Landé factor of the electron with an unprecedented precision. In this

way one finds the highest agreement between theory and experiment in all natural sciences.

This is best illustrated by a statement of Richard Feynman in the introduction of his book [35]:

,,To give you a feeling for the accuracy of these numbers, it comes out something like this: If

you were to measure the distance from Los Angeles to New York to this accuracy, it would be

exact to the thickness of a human hair.”

2.18.4 Vacuum Fluctuations

In quantum electrodynamics one would have to determine the Lamb shift via a quantization of

both the Dirac and the Maxwell field. But as the Lamb shift represents the leading quantum

electrodynamical correction, the matter can still be treated non-relativistically. Thus, it is

sufficient to take into account in perturbation theory the impact of the quantized light field

upon the hydrogen atom described by the Schrödinger theory. This leads to a surprisingly simple
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Figure 2.12: A moving electron can emit and absorb a virtual photon.

physical interpretation: The quantum mechanical zero-point fluctuations of the electromagnetic

field act statistically upon the hydrogen electron, which effectively leads to a shift of its potential

energy.

The starting point is the Coulomb potential for the electron in the hydrogen atom:

V (x) = − e2

4πε0|x|
. (2.232)

In case that the electron is elongated by some fluctuations of the electromagnetic field due

to absorption and emissions of photons, one has to consider instead of (2.232) the potential

V (r + s), where the inequality |s| � |r| holds. Thus, applying a Taylor expansion is physically

justified:

V (x + s) = V (x) +
3∑
i=1

∂V (x)

∂xi
si +

1

2

3∑
i=1

3∑
j=1

∂2V (x)

∂xi∂xj
sisj + . . . . (2.233)

Denoting with 〈•〉 the averaging over all fluctuations s we get

〈V (x + s)〉 = V (x) +
3∑
i=1

∂V (x)

∂xi
〈si〉+

1

2

3∑
i=1

3∑
j=1

∂2V (x)

∂xi∂xj
〈sisj〉+ . . . . (2.234)

Due to the isotropy of the fluctuations we can assume

〈si〉 = 0 , 〈sisj〉 =
1

3
〈s2〉 δij , (2.235)

so (2.234) reduces on average in leading order to the following change in potential energy

〈V (x + s)〉 − V (x) =
1

6
∆V (x) 〈s2〉 . (2.236)

For the hydrogen atom this leads to the following energy shift of the atomic state in first order

of perturbation theory:

∆EL =

∫
d3xψ∗nlm(x)

[
〈V (x + s)〉 − V (x)

]
ψnlm(x) . (2.237)

Inserting (2.232) and (2.236) into (2.237) and taking into account

∆
1

|x|
= −4π δ(x) (2.238)
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Figure 2.13: Zitterbewegung of an electron: The length scale δr corresponds in case of the

Darwin term to the Compton wavelength λC due to the creation of electron-positron pairs,

whereas the Lamb shift stems from the average of the squared displacement of the electron√
〈s2〉, which is due to the absorption and emission of photons and occurs on a much smaller

length scale, see Eqs. (2.268) and (2.269).

then yields

∆EL =
e2

6ε0
|ψnlm(0)|2 〈s2〉 . (2.239)

We read off from (2.239) that the Lamb shift occurs only for hydrogen wave functions, which

are non-vanishing at the origin, i.e. for s-states, where the energy levels are increased. Note

that the result (2.239) should not be confused with the Darwin term, which arises within the

non-relativistic limit of the Dirac equation, see the remark on page 39. There the length scale√
〈s2〉 of the Zitterbewegung of the electron can be interpreted by the Compton wave length

λC = 2π~/Mc. Vacuum quantum fluctuations allow for the creation of electron-positron pairs

during the lifetime 2π~/Mc2, where the pairs travel the distance λC = 2π~/Mc. In contrast to

that the Lamb shift (2.239) stems from the Zitterbewegung of the electron due to absorption

and emission of virtual photons, which occurs on a much smaller length scale as we will see

below, see Fig. 2.13.

As the probability density of the hydrogen electron in an s-state with principal quantum number

n is given by

|ψnlm(0)|2 =
1

πa3
Bn

3
, (2.240)

where aB denotes the Bohr radius (C.8), the Lamb shift (2.239) reduces to

∆EL,n =
e2

6πε0a3
Bn

3
〈s2〉 . (2.241)

Ignoring for the moment a possible dependence of 〈s2〉 from the principal quantum number n, we

expect that the Lamb shifts for n = 1 and n = 2 have the ratio ∆EL(12s1/2)/∆EL(22s1/2) = 8,

which agrees quite well with the experimentally measured ratio 7.7 following from (2.230) and

(2.231). In order to determine the Lamb shift from (2.241) it remains to determine the average

of the squared displacement of the electron due to the absorption and emission of photons. In
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the following we provide both a classical and a quantum mechanical calculation of 〈s2〉 and

show that both turn out to agree.

2.18.5 Classical Approach

At first we consider at first within a classical treatment the Newton equation

M s̈ω(t) = −eEω(t) (2.242)

for a periodic change of the electric field

Eω(t) = E0(ω) eiωt . (2.243)

The solution of (2.242) and (2.243) follows straight-forwardly

sω(t) = s0(ω) eiωt , s0(ω) =
e

Mω2
E0(ω) . (2.244)

Interpreting the averaging over all fluctuations 〈•〉 as a time average then yields for the average

of the squared displacement of the electron

〈s2〉ω =
ω

2π

∫ 2π/ω

0

dt |s2
ω(t)|2 =

e2|E0(ω)|2

M2ω4
. (2.245)

Now we have to determine the amplitude E0(ω) of the electric field. To this end we take into

account that both electric and magnetic field equally contribute to the the zero-point energy

of the electromagnetic field. Thus we obtain in the frequency interval between ω and ω + dω

in volume V for the density of the electric field:

ε0
2
|E0(ω)|2 =

1

2

~ω
2
ρ(ω)dω . (2.246)

Here appears the mode density ρ(ω), which represents the number of electromagnetic modes

per angular frequency ω and per volume V . Thus, the total number of modes is given on the

one hand by

Nmodes = V

∫ ∞
0

dω ρ(ω) . (2.247)

On the other hand the total number of modes also follows similar to (2.196)–(2.198) by inte-

grating over all wave vectors and by taking into account the two transversal degrees of freedom

Nmodes = 2V

∫
d3k

(2π)3
. (2.248)

Thus, introducing in the integrand of (2.248) the identity

1 =

∫ ∞
0

dω δ (ω − c|k|) , (2.249)
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Figure 2.14: Comparison of length scales: electromagnetic wavelength versus extension of an

atom.

where we use the linear dispersion (2.73), we obtain by comparison with (2.248) for the mode

density

ρ(ω) = 2

∫
d3k

(2π)3
δ (ω − c|k|) . (2.250)

Evaluating the integral yields due to the isotropy of the integrand

ρ(ω) =
ω2

π2c3
, (2.251)

i.e. the mode density increases quadratically with the frequency ω. With this mode density the

absolute square of the electric field amplitude E0(ω) in (2.246) reduces to

|E0(ω)|2 =
~ω3

2π2ε0c3
dω . (2.252)

Inserting (2.252) into (2.245) we have to integrate over all frequencies ω, yielding for the average

of the squared displacement of the electron

〈s2〉 =

∫ ∞
0

dω 〈s2〉ω =
~e2

2π2ε0M2c3

∫ ∞
0

dω
1

ω
. (2.253)

This integral has both an infrared and an ultraviolet divergency as it diverges both for the

lower and the upper integration boundary.

2.18.6 Quantum Mechanical Approach

We show now that a quantum mechanical treatment of the electromagnetic field yields precisely

the same divergent result (2.253). To this end we have to go back to the electric field operator

(2.168). Here the absolute value of the wave vector k, i.e. |k| = 2π/λ is determined by the

wavelength λ. In the optical range, the wavelength varies between 400 nm and 700 nm according

to Fig. 1.1. Thus, we obtain the following estimate for an atom with an extension in the range

of an Angström, see Fig. 2.14:

|k · x| ≤ |k| · |x| ≈ 2π

600 nm
· 1Å ≈ 10−3 � 1 . (2.254)
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This means that the electric field operator (2.168) does not change over the extension of an atom

and is, therefore, approximately homogeneous. This leads to the so-called dipole approximation,

where we can approximately neglect the spatial dependence of the electric field operator (2.168)

for spatial vectors x pointing at the atom and yield

Ê(t) =
∑
λ=±1

∫
d3k

√
~ωk

2(2π)3ε0
i
{
ε(k, λ)e−iωktâk,λ − ε∗(k, λ)eiωktâ†k,λ

}
. (2.255)

The corresponding Newton equation reads now instead of (2.242)

M ¨̂s(t) = −eÊ(t) , (2.256)

which has the solution

ŝ(t) =
∑
λ=±1

∫
d3k

e

Mω2
k

√
~ωk

2(2π)3ε0
i
{
ε(k, λ)e−iωktâk,λ − ε∗(k, λ)eiωktâ†k,λ

}
. (2.257)

This operator-valued elongation (2.257) describes the Zitterbewegung of the electron, which is

due to the vacuum fluctuations of the electromagnetic field. Therefore, the average over the

squared elongation 〈s2〉 needed for (2.239) is interpreted as the vacuum expectation values

〈s2〉 =
〈
0
∣∣ŝ(t)2

∣∣ 0〉 . (2.258)

Inserting (2.257) into (2.258) we have to evaluate:

〈s2〉 =
∑
λ=±1

∑
λ′=±1

∫
d3k

∫
d3k′

−e2

M2ω2
kω

2
k′

√
~ωk

2(2π)3ε0

√
~ωk′

2(2π)3ε0
(2.259)

×
〈

0
∣∣∣{ε(k, λ)e−iωktâk,λ − ε∗(k, λ)eiωktâ†k,λ

}{
ε(k′, λ′)e−iωk′ tâk′,λ′ − ε∗(k′, λ′)eiωk′ tâ†k′,λ′

}∣∣∣ 0〉 .
Multiplying out the brackets yields in total four terms, but among them is only one, which

does not vanish due to (2.131), (2.132), and (2.135), and this one coincides with (2.171). With

this we obtain

〈s2〉 =
e2~
ε0M2

∫
d3k

(2π)3

1

ω3
k

, (2.260)

which reduces due to the linear dispersion (2.73) finally to the previous classical result (2.253).

2.18.7 Infrared and Ultraviolet Cut-Off

In order to proceed further we identify the prefactor in (2.253) with the Compton wave length

λC from (C.10) and the Sommerfeld fine-structure constant from (C.11). Furthermore, in order

to regularize the divergent frequency integral (2.253), we introduce both an infrared and an

ultraviolet cut-off ωmin and ωmax. With this (2.253) reduces to

〈s2〉 =
αλ2

C

2π3

∫ ωmax

ωmin

dω
1

ω
, (2.261)
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which can be straight-forwardly calculated:

〈s2〉 =
αλ2

C

2π3
ln
ωmax

ωmin

. (2.262)

Thus, the averaged squared elongation turns out to depend on the choice of both cut-offs, which

have now to be specified. The ultraviolet cut-off ωmax can be physically reasonably fixed as

follows. As we perform a non-relativistic calculation, we have to exclude relativistic effects.

Therefore, we choose for the ultraviolet cut-off the frequency ωmax = Mc2/~, above which

relativistic effects kick-in. In contrast to that the infrared cut-off ωmin can not that clearly be

defined and turns out to depend on the principal quantum number n. One possibility would

be to choose for ωmin the frequency of an electron at the Bohr radius. From the equality of the

Coulomb force and the centrifugal force then follows

e2

4πε0a2
n

= Mω
(1)2
min,nan =⇒ ω

(1)
min,n =

cα

aBn3
, (2.263)

where we have used the Sommerfeld fine-structure constant from (C.11) and the dependence

of the Bohr radius an from the principal quantum number n according to (C.7). Another

possibility would be to identify the infrared cut-off with the frequency of the photon on the

Bohr radius, which yields

ω
(2)
min,n =

2πc

an
=

2πc

aBn2
. (2.264)

Taking into account the Compton wave length λC from (C.10) and the Sommerfeld fine-structure

constant from (C.11) this yields for the ratios of the cut-offs

ωmax

ω
(1)
min,n

=
n3

α2
,

ωmax

ω
(2)
min,n

=
n2

2πα
. (2.265)

The logarithms of their ratios yield for the principle quantum number n = 1 the values

ln
ωmax

ω
(1)
min,1

= 9.8 , ln
ωmax

ω
(2)
min,1

= 3.1 , (2.266)

whereas we get for n = 2

ln
ωmax

ω
(1)
min,2

= 11.9 , ln
ωmax

ω
(2)
min,2

= 4.4 . (2.267)

In both cases the estimates (2.266) and (2.267) differ by a factor of the order 3. With this the

average displacement following from (2.262) turns out to be of the order of a few per cent of

the Compton wave length:√
〈s2〉1
λC

=

√
α

2π3
ln

ωmax

ωmin,1

=

{
3.4 %

1.9 %
, (2.268)√

〈s2〉2
λC

=

√
α

2π3
ln

ωmax

ωmin,2

=

{
3.7 %

2.3 %
. (2.269)
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Inserting the result (2.262) into the Lamb shift (2.241) and taking into account the atomic

units from Appendix C we obtain

∆EL,n =
8

3πn3
Ryα3 ln

ωmax

ωmin,n

, (2.270)

which also depends on the choice of both cut-offs. Evaluating the Lamb shift (2.270) for

n = 1 we find that ∆EL(12s1/2) must be in the interval [0.39, 1.3] GHz, which is, indeed fulfilled

according to the measurement result (2.230). Furthermore, for n = 2 we factorize the Lamb

shift (2.270) according to

∆EL,2 =
1

16
Ryα2 · F2 , (2.271)

where the first factor denotes the 22s1/2–22p3/2 fine structure splitting and the second factor

yields

F2 =
16α

3π
ln

ωmax

ωmin,2

, (2.272)

which leads to the values

F
(1)
2 = 0.15 , F

(2)
2 = 0.05 (2.273)

for the two choices of the infrared cut-off. The experimental result F2 = 0.1, which corresponds

to (2.231), turns out to lie within the interval [F
(2)
2 , F

(1)
2 ] = [0.05, 0.15]. In order to document

the precision in the comparison of the full quantum electrodynamic theory and experiment we

finally mention the following results for the Lamb shift of the hydrogen state 12s1/2:

experiment (1986) : 1057845(9) kHz (2.274)

QED theory (1984) : 1057857(14) kHz (2.275)

Thus, quantum electrodynamics is extremely successful.



Chapter 3

Quantum States of Radiation Field

According to the previous chapter the quantized light field can be in different states. In the

following we focus on a single mode of the electromagnetic field. This may be considered to be

an oversimplification, but single-mode fields have become part of the experimental reality with

the advent of high-quality optical cavities. These devices provide within the region between

two well-reflecting mirrors an electromagnetic field, whose amplitude is much higher at some

resonant frequencies. In this case the mode function is not a plane wave but a certain standing

wave. In the transverse directions, one often has a Gaussian profile. Around a cavity resonance,

it is an ubiquitous approximation to treat the full field as if it contained only a single mode.

The inherent coupling to other modes can be modelled by taking into account a loss.

With these assumptions in mind the simplest quantum states of the single mode field are the

so-called Fock states or number states, which correspond to the well-known stationary states of

a harmonic oscillator. Another class are the coherent states, which are specific quantum states

of the quantum harmonic oscillator, whose dynamics most closely resembles the oscillatory be-

havior of a classical harmonic oscillator. Furthermore, a squeezed state is a quantum state that

is characterized by two non-commuting observables, where one of them has a standard devia-

tion below and the other one above that of the ground state with the Heisenberg uncertainty

being still valid. And, finally, being more general than the pure states mentioned so far, we also

introduce a thermal state as an example for a mixed state. It appears in the realm of quantum

statistics in the context of the Planck black-body radiation.

All these quantum states of a single radiation mode can be vividly represented in a pictorial

way in phase space, which is spanned by two conjugate variables. Due to Heisenberg’s un-

certainty relation a quantum optical state can not be characterized by a single point in phase

space. Therefore, we cannot attribute a probability to a point in phase space. Nevertheless,

quasi-probability distributions exist and are useful in the quantum mechanical description of

electromagnetic field states. Here we restrict ourselves in introducing as a particular example

for such a quasi-probability distribution the Husimi function. To this end we determine the

Husimi function for all the single mode quantum states introduced above.

49
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Figure 3.1: Ground-state transversal magnetic mode of a cavity: cavity axis, electric field (3.1),

and magnetic induction (3.5) represent a legal system, with the magnetic induction lagging

behind the electric field by a quarter period.

3.1 Single Cavity Mode

For the sake of simplicity we restrict ourselves in the following to one mode of the electromag-

netic field. In vacuum this would mean that the electric field operator would just consist of one

of the terms from (2.168), which is characterized by some wave vector k and some polarization

λ. But in a cavity of length L the electric field operator is given instead in the Heisenberg

picture by

Ê(x, t) = iE0 ε
(
â e−iωt − â† eiωt

)
sin(kxx) , (3.1)

where x denotes the coordinate along the cavity axis and the transversal extension of the mode

is assumed to be homogeneous in the yz-plane, see Fig. 3.1. Note that (3.1) follows both from

the transversal electric mode (2.189) and the transversal magnetic mode (2.193) by identifying

the normalization constants via

NTE =
E0

ωk⊥
, NTM =

E0

kxk⊥
(3.2)

and by performing formally the limit k⊥ → 0. The resulting polarization vector ε points

perpendicular to the cavity axis, but in case of the transversal electric mode (2.189) it is given

by

ε = ex × lim
k⊥→0

k⊥
k⊥

, (3.3)

whereas for the transversal magnetic mode (2.193) we yield

ε = lim
k⊥→0

k⊥
k⊥

. (3.4)

In the same limiting procedure also the magnetic induction corresponding to (3.1) follows from

the transversal electric mode (2.190) and the transversal magnetic mode (2.192), see Fig. 3.1:

B̂(x, t) =
E0

c
ex × ε

(
â e−iωt + â† eiωt

)
cos(kxx) . (3.5)
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In order to guarantee that the transversal component of (3.1) vanishes at the cavity mirrors

positioned at x = 0 and x = L as demanded by (2.188), the longitudinal component of the wave

vector is fixed according to kx = mπ/L with m = 1, 2, 3, . . .. Furthermore, the linear dispersion

(2.73) reduces here to ω = ckx. And the electric field amplitude E0, which represents the

electric field per photon in the cavity, corresponds to the prefactor in (2.168), where the term

2(2π)3 is substituted by the cavity volume V = AL, which is filled by the mode, see Fig. 3.1:

E0 =

√
~ω
V ε0

. (3.6)

Indeed, with (3.1) and (3.5) the operators for the electric and magnetic field energy density in

the cavity read

ε0
2

Ê2(x, t) =
ε0
2
E2

0 sin2(kxx)
(
ââ† + â†â− â2e−2iωt − â† 2e2iωt

)
, (3.7)

1

2µ0

B̂2(x, t) =
E2

0

2µ0c2
cos2(kxx)

(
ââ† + â†â+ â2e−2iωt + â† 2e2iωt

)
, (3.8)

so the Hamilton operator for the electromagnetic field

Ĥ = A

∫ L

0

dx

[
ε0
2

Ê2(x, t) +
1

2µ0

B̂2(x, t)

]
(3.9)

is time-independent due to (2.5). Furthermore, taking into account (3.6), we get

Ĥ =
~ω
2

(
ââ† + â†â

)
, (3.10)

which corresponds to the Hamilton operator of a single harmonic oscillator. Here the operators

â and â† fulfill the same algebra as the ladder operators of the harmonic oscillator discussed in

Appendix A, i.e. [
â, â
]
− =

[
â†, â†

]
− = 0 ,

[
â, â†

]
− = 1 , (3.11)

but here they describe the annihilation and the creation of a single photon. Applying (3.11)

and using the photon number operator

n̂ = â†â , (3.12)

the Hamilton operator (3.10) reduces to its standard form

Ĥ = ~ω
(
n̂+

1

2

)
. (3.13)

The corresponding intensity per photon, i.e. the electromagnetic field energy passing through

a certain area per unit time, follows then to be

I0 =
~ωc
V

. (3.14)

For a transverse mode size of 1µm and a cavity length of 1 cm, we obtain for the ground mode

m = 1 the intensity I0 = 0.3 W/m2. This is about a factor 10−4 smaller than the solar constant

IE =1.361 kW/m2, which measures the mean solar electromagnetic radiation arriving on the

surface of the earth.
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3.2 Fock States of Single Mode

According to the second quantization of the electromagnetic field introduced in the previous

chapter it is possible to define quantum states |n〉, where the quantum number n = 0, 1, 2, . . .

represents the number of photons occupying that field mode. They are called Fock states, span

an infinite-dimensional Hilbert space, and are defined by the eigenvalue problem of the photon

number operator (3.12):

n̂ |n〉 = n |n〉 . (3.15)

As the quantum states |n〉 have the properties

â |n〉 =
√
n |n− 1〉 , (3.16)

â† |n〉 =
√
n+ 1 |n+ 1〉 , (3.17)

they lead to the matrix elements

〈n′| â |n〉 =
√
n δn′,n−1 , (3.18)

〈n′| â† |n〉 =
√
n+ 1 δn′,n+1 , (3.19)

which play an important role when one computes the probability amplitude that an atomic

state absorbs or emits a photon. From all these relations it follows that the quantum states |n〉
can be obtained via

|n〉 =

(
â†
)n

√
n!
|0〉 (3.20)

with the vacuum state |0〉 obeying

â |0〉 = 0 ⇐⇒ 〈0| â† = 0 . (3.21)

Note that they fulfill both the orthonormality relation

〈n|n′〉 = δn,n′ (3.22)

and the completeness relation

∞∑
n=0

|n〉〈n| = 1 . (3.23)

Let us denote the expectation value with respect to such number states |n〉 according to

〈•〉n = 〈n| • |n〉 . (3.24)

Then the expectation value of the number operator (3.12) and its square with respect to the

number states |n〉 turn out to be

〈n̂〉n = 〈n| n̂ |n〉 = n , (3.25)

〈n̂2〉n = 〈n| n̂2 |n〉 = n2 . (3.26)
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Thus, we conclude that the standard deviation vanishes:

∆n =

√
〈n2〉n − 〈n〉

2
n = 0 , (3.27)

so the photon number is sharply defined. This is physically interesting insofar as the energy of

the electromagnetic field is proportional to the photon number according to (3.13) and, thus,

no energy fluctuations occur in these states. Concerning the electric field operator of a single

cavity mode (3.1) we conclude that its expectation value with respect to any Fock state vanishes

due to (3.21):

〈Ê(x, t)〉n = 0 . (3.28)

But there are fluctuations around this average called ,,quantum noise”, for which we get ac-

cording to (3.7) and (3.21):

〈Ê2(x, t)〉n = E2
0(2n+ 1) sin2(kxx) . (3.29)

Thus, we conclude that the expectation values (3.28) and (3.29) differ considerably from what

one would expect from a ,,classical” state, where the first moment of the electric field operator

should be non-vanishing and its variance should be small or even zero. Therefore, in quantum

optics, the number states |n〉 represent extremely ,,non-classical” states that are difficult to

prepare experimentally [36].

3.3 Quadratures

In order to further characterize a quantum state of the electromagnetic field we introduce now

a family of operators

x̂θ =
1√
2

(
âe−iθ + â†eiθ

)
, (3.30)

which depend on a phase θ. They represent observables as they are hermitian:

x̂†θ = x̂θ . (3.31)

Such operators (3.30) appear ubiquitously in quantum optics. For instance, we obtain from

(3.1) and (3.5) that the dynamics of the electromagnetic field operators of a single cavity mode

is characterized by

Ê(x, t) =
√

2E0 ε x̂ωt−π/2 sin(kxx) ∼ x̂ωt−π/2 , (3.32)

B̂(x, t) =

√
2E0

c
ex × ε x̂ωt cos(kxx) ∼ x̂ωt . (3.33)

We note that the latter proportionalities emphasize the photonic content of the amplitudes

of the electric field and the magnetic induction (3.1) and (3.5), which is independent from
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the respective polarization and the spatial profile. Furthermore, from (3.32), (3.33) we read

off directly that the magnetic induction operator lags behind the electric field operator by a

quarter period, see Fig. 3.1. Another application for the family of operators (3.30) occurs when

we consider the position and the momentum operator of a harmonic oscillator of frequency

ω in the Heisenberg picture. On the basis of Appendix A we obtain in dimensionless units

~ = 1 = M :

x̂(t) =
1√
2

(
âe−iωt + â†eiωt

)
= x̂ωt , (3.34)

−p̂(t) =
1√
2i

(
âe−iωt − â†eiωt

)
= x̂ωt−π/2 . (3.35)

Thus, a comparison of (3.32), (3.33) with (3.34), (3.35) yields the fundamental result

Ê(x, t) ∼ −p̂(t) , (3.36)

B̂(x, t) ∼ x̂(t) , (3.37)

i.e. the electric field (magnetic induction) operator corresponds to the negative momentum

(position) operator of a harmonic oscillator. Note that (3.36) agrees formally with (2.26),

(2.38). Later on the finding (3.36), (3.37) will be the key point for working out a phase space

representation of the electromagnetic field, which is quite popular in quantum optics [14].

For the commutator of two family operators (3.30) with the phases θ and θ′ we find

[x̂θ, x̂θ′ ]− =
1

2

{
e−i(θ−θ

′)
[
â, â†

]
− + ei(θ−θ

′)
[
â†, â

]
−

}
= −i sin(θ − θ′) . (3.38)

Thus, two family operators x̂θ and x̂θ′ with the property θ − θ′ = −π/2 are canonically conju-

gated: [
x̂θ, x̂θ+π

2

]
− = i . (3.39)

Such operators x̂θ and x̂θ+π/2 are called quadratures. We read off from (3.36), (3.37) that

position operator x̂(t) = x̂ωt and momentum operator p̂(t) = x̂ωt+π/2 represent a prominent

example for such quadratures.

Now we use the Heisenberg uncertainty, which is derived in Appendix D. To this end we apply

(D.7) for two family operators Â = x̂θ and B̂ = x̂θ′ by taking into account (3.38):

〈∆x̂2
θ〉 〈∆x̂2

θ′〉 ≥
1

4
sin2(θ − θ′) . (3.40)

Note that this result is independent of the state |ψ〉 with which we define the expectation value

(D.1), thus it is generally valid. Furthermore, we remark that the largest possible uncertainty

occurs for two quadratures with θ− θ′ = −π/2, where (3.39) holds, which is valid, for instance,

for position and momentum operator of a harmonic oscillator:

〈∆x̂2
θ〉 〈∆x̂2

θ+π
2
〉 ≥ 1

4
. (3.41)
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Now we specialize these expectation values for the Fock states of a mode defined in (3.24),

i.e. we consider |ψ〉 = |n〉. For the first moment we get

〈x̂θ〉n =
1√
2
〈n| âe−iθ + â†eiθ |n〉 = 0 , (3.42)

whereas the expectation value of the product of two family operators turns out to be

〈x̂θx̂θ′〉n =
1

2

{
e−i(θ−θ

′) 〈n| ââ† |n〉+ ei(θ−θ
′) 〈n| â†â |n〉

}
= n cos(θ − θ′) +

1

2
e−i(θ−θ

′) . (3.43)

Thus, for the special case θ′ = θ Eq. (3.43) reduces to

〈x̂2
θ〉n = n+

1

2
, (3.44)

so taking into account (3.42) we get the uncertainty

〈∆x̂2
θ〉n = n+

1

2
. (3.45)

As the result (3.45) is independent of θ, it also holds for the uncertainties of both the position

operator x̂(t) = x̂ωt and the momentum operator p̂(t) = x̂ωt+π/2 of the harmonic oscillator.

Thus, we conclude from (3.45)

〈∆x̂2(t)〉n · 〈∆p̂
2(t)〉n =

(
n+

1

2

)2

, (3.46)

from which we read off the Heisenberg uncertainty relation (D.7) for position and momentum

operator:

〈∆x̂2(t)〉n · 〈∆p̂
2(t)〉n ≥

1

4
. (3.47)

Note that the uncertainty becomes minimal for the vacuum fluctuations n = 0.

With these considerations we arrive at the following phase space representation for a Fock state

with n photons. According to (3.25), (3.27) it is characterized by a fixed photon number, i.e. we

have ∆n = 0, and an arbitrary phase. Thus, a Fock state corresponds in phase space to a circle,

which is centered around the origin due to (3.42) and has the radius
√
n+ 1/2 due to (3.45),

see Fig. 3.2.

3.4 Unitary Transformation

We now aim for introducing new photon states. To this end we consider a certain unitary

transformation, which is characterized by

Û †Û = 1̂ ⇐⇒ Û † = Û−1 , (3.48)
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Figure 3.2: Representation of a Fock state |n〉 in phase space.

and apply it to a Fock state:

|n〉′ = Û |n〉 ⇐⇒ |n〉 = Û † |n〉′ . (3.49)

We then define the unitary transformation for an operator Ô such that its expectation values

remain unchanged

′〈n|Ô′|m〉′ = 〈n| Û †Ô′Û |m〉 = 〈n| Ô |m〉 , (3.50)

so we conclude

Ô = Û †Ô′Û ⇐⇒ Ô′ = ÛÔÛ † . (3.51)

For instance, the transformation of the creation and annihilation operator reads

â†′ = Û â†Û † , â′ = Û âÛ † . (3.52)

With this we observe that the canonical commutator relations (3.11) remain unchanged:

[â′, â′]− =
[
â†′, â†′

]
− = 0 ,

[
â′, â†′

]
− = 1 . (3.53)

Thus, also the transformed operators â†′, â′ represent creation and annihilation operators of the

transformed Fock states as they fulfill analogous to (3.15)–(3.17)

n̂′ |n〉′ =
√
n |n〉′ , (3.54)

â†′ |n〉′ =
√
n+ 1 |n+ 1〉′ , (3.55)

â′ |n〉′ =
√
n |n− 1〉′ . (3.56)

Here n̂′ = â†′â′ denotes the transformed particle number operator. Furthermore, also the

transformed Fock states form a basis in the Hilbert space. For instance, the transformed

ground state is defined according to

â′ |0〉′ = 0 〈0|′ â† ′ = 0 . (3.57)

Although the algebraic relations between the transformed states and operators are identical to

the original ones, the properties of the transformed states |n〉′ can differ significantly from those

of the original states |n〉. This depends, of course, on the particular choice of the unitary trans-

formation Û . In the following we discuss in detail two prominent examples for such a unitary

transformation in quantum optics, which lead to coherent and squeezed states, respectively.
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3.5 Shifting Operator

Let us consider for some complex number α ∈ C the transformation

D̂(α) = eαâ
†−α∗â . (3.58)

Then we conclude for its adjoint at first

D̂†(α) = eα
∗â−αâ† = e−(αâ†−α∗â) = D̂(−α) . (3.59)

Due to the property

D̂(α)D̂(−α) = D̂(0) = 1̂ (3.60)

we then have

D̂†(α) = D−1(α) , (3.61)

so that the transformation (3.58) is, indeed, unitary.

Now we can reveal the properties of the transformed annihilation operator

â′(α) = D̂(α)âD̂†(α) . (3.62)

To this end we calculate the derivative

dâ′(αt)

dt
= D̂(αt)

{ (
αâ† − α∗â

)
â− â

(
αâ† − α∗â

) }
D̂(−αt)

= D̂(αt)
[
αâ† − α∗â, â

]
− D̂(−αt) = −αD̂(αt)D̂(−αt) = −α . (3.63)

Integrating (3.63) then yields

â′(αt) = ĉ− αt (3.64)

with the operator-valued integration constant ĉ. As we read off from (3.58) and (3.62) the

initial condition â′(0) = â, we obtain from (3.64) ĉ = â and conclude

â′(α) = â− α . (3.65)

This finding justifies to call (3.58) a ,,shifting operator”. Let us denote the transformed vacuum

state according to

|α〉 = |0〉′ = D̂(α) |0〉 , (3.66)

which parametrically depends on α. Then it follows from (3.57) and (3.65):

â′(α) |α〉 = (â− α) |α〉 = 0 =⇒ â |α〉 = α |α〉 . (3.67)

Thus, the transformed vacuum state |α〉 is an eigenstate of the annihilation operator. One calls

it a coherent state or a Glauber state as the seminal pioneer of theoretical quantum optics and

Nobel laureate Roy Glauber invented this new photon state in 1963.
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3.6 Group Property

Let us consider the successive execution of two displacement operators:

D̂(α)D̂(β) = eαâ
†−α∗â eβâ

†−β∗â . (3.68)

In order to evaluate (3.68) we apply Baker-Campbell-Hausdorff formula [28, Appendix 2A]

eÂ eB̂ = exp

{
Â+ B̂ +

1

2

[
Â, B̂

]
−

+
1

12

[
Â,
[
Â, B̂

]
−

]
−
− 1

12

[
B̂,
[
Â, B̂

]
−

]
−

+ . . .

}
. (3.69)

To this end we identify the operators Â and B̂ via

Â = αâ† − α∗â , B̂ = βâ† − β∗â , (3.70)

so their commutator turns out to be[
Â, B̂

]
−

= αβ∗ − α∗β = 2i Im (αβ∗) . (3.71)

From (3.68), (3.69), and (3.71) we then obtain

D̂(α)D̂(β) = D̂(α + β) ei Im (αβ∗) . (3.72)

This result is connected to group theory. In case that the phase factor vanishes, then the

mapping α→ D̂(α) corresponds to a representation of the addition of complex numbers in the

space of unitary transformations of the Hilbert space. In case that the phase factor does not

vanish, then (3.72) defines a so-called projective representation.

3.7 Properties of Coherent States

Let us denote the expectation value with respect to a coherent state |α〉 according to

〈•〉α = 〈α| • |α〉 . (3.73)

Then we get the expectation value (3.73) for the family of operators (3.30) by taking into

account (3.67):

〈x̂θ〉α = 〈α| x̂θ |α〉 =
1√
2

{
〈α| â |α〉 e−iθ + 〈α| â† |α〉 eiθ

}
=

1√
2

{
αe−iθ + α∗eiθ

}
=
√

2 (Reα cos θ + Imα sin θ) . (3.74)

This can be physically interpreted in two ways. On the one hand, we yield that the averages

of the electric field operator (3.32) and the magnetic induction operator (3.33) are non-zero

〈Ê(x, t)〉α = 2E0 |α| ε sin(ωt− ϕ) sin(kxx) , (3.75)

〈B̂(x, t)〉α =
2E0

c
|α| ex × ε cos(ωt− ϕ) cos(kxx) (3.76)
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with the phase ϕ = arctan(Imα/Reα). In fact, (3.75) and (3.76) correspond to a classical

standing wave in the cavity. Therefore, we conclude that coherent states are quite useful to

represent laser fields. Furthermore, we read off from (3.75) and that (3.76) that the strength

of the averaged electromagnetic field operators depend on both the electric field per photon E0

from (3.6) and the absolute value of α. Computing the average photon number in a coherent

state, we get due to (3.67)

〈n̂〉α = 〈α|â†â|α〉 = 〈âα|âα〉 = |α|2 . (3.77)

Therefore, the average of the electric field operator (3.75) with respect to a coherent state

turns out to be of the order |〈E(x, t)〉α| ≈ E0

√
〈n̂〉α, i.e. it increases with the square root of

the photon number 〈n̂〉α.

On the other hand, we obtain for the expectation value of position and momentum operator

(3.34) and (3.35) in the Heisenberg picture:(
〈x̂(t)〉α
〈p̂(t)〉α

)
=
√

2

(
cos(ωt) sin(ωt)

− sin(ωt) cos(ωt)

)(
Reα

Imα

)
. (3.78)

This means that real and imaginary part of the complex number α can be interpreted as the

expectation value of the position and the momentum operator at time t = 0, respectively.

Correspondingly also the expectation value of two family operators x̂θ and x̂θ′

〈x̂θx̂θ′〉α =
1

2
〈α| â2e−i(θ+θ

′) + â†âe−i(θ
′−θ) + ââ†e−i(θ−θ

′) + â†2ei(θ+θ
′) |α〉 (3.79)

is evaluated by using (3.67), yielding

〈x̂θx̂θ′〉α =
1

2
e−i(θ−θ

′) + 2 (Reα)2 cos θ cos θ′ + 2 (Imα)2 sin θ sin θ′

+2 Reα Imα (sin θ cos θ′ + cos θ sin θ′) . (3.80)

Combining (3.74) and (3.80) we get

〈x̂θx̂θ′〉α =
1

2
e−i(θ−θ

′) + 〈x̂θ〉α 〈x̂θ′〉α . (3.81)

In the special case θ′ = θ Eq. (3.81) reduces to

〈(∆x̂θ)2〉α = 〈x̂2
θ〉α − 〈x̂θ〉

2
α =

1

2
, (3.82)

so the variance of a family operator (3.30) for coherent states does not depend on the angle θ.

We recall that the Heisenberg uncertainty relation (3.40) for two family operators x̂θ and

x̂θ′ holds for any expectation value and that the largest possible uncertainty occurs for two

quadratures, which obey θ − θ′ = π/2 according to (3.41). Thus, we conclude from (3.41) and

(3.82) that coherent states have a minimal uncertainty irrespective of the choice of α ∈ C.

With this we finally arrive at a phase space representation for a coherent state |α〉 as depicted

in Fig. 3.3. From (3.78) we read off that the expectation values of position and momentum
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Figure 3.3: Representation of a coherent state |α〉 in phase space.

operator rotate in phase space clockwise with frequency ω on a radius, whose size is deter-

mined by the photon number n via |α| =
√

(Reα)2 + (Imα)2 =
√
〈n̂〉α according to (3.77).

Furthermore, the coherent state has due to (3.82) at each time instant t both in position and

momentum the minimal standard deviation 1/
√

2.

3.8 Squeezing Operator

We have seen so far by several examples that the quantized electrodynamic field essentially

differs from a classical field due to the unavoidable presence of quantum fluctuations. This

raises the question whether it may be possible to reduce the quantum noise at least in one of

the two field quadratures to realize a state that is even more classical. As one cannot beat

the Heisenberg inequality, the reduced fluctuations in one quadrature have to be paid by an

enhanced quantum noise in the other one.

In order to describe such a situation we consider in the following for some complex parameter

ξ ∈ C the transformation

Ŝ(ξ) = e(ξ
∗â2−ξâ†2)/2 . (3.83)

In contrast to the shifting operator (3.58), where the argument of the exponential function con-

tains the creation and annihilation operator linearly, the argument of the exponential function

(3.83) depends quadratically on these operators. Analogous to the reasoning (3.59)–(3.61) we

obtain that also the transformation (3.83) is unitary:

Ŝ†(ξ) = Ŝ(−ξ) = Ŝ−1(ξ) . (3.84)

We are interested to determine the the properties of the transformed annihilation operator

â′(ξ) = Ŝ(ξ)âŜ†(ξ) . (3.85)

Also here we proceed by calculating a derivative:

dâ′(ξt)

dt
= Ŝ(ξt)

1

2

{ (
ξ∗â2 − ξâ†2

)
â− â

(
ξ∗â2 − ξâ†2

) }
Ŝ(−ξt) (3.86)

= Ŝ(ξt)
1

2

[(
ξ∗â2 − ξâ†2

)
, â
]
− Ŝ(−ξt) = Ŝ(ξt)

ξ

2

[
â, â†2

]
− Ŝ(−ξt) = ξŜ(ξt)â†Ŝ(−ξt) .
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Thus, taking into account (3.85) we obtain from (3.86) the operator-valued ordinary differential

equation

dâ′(ξt)

dt
= ξâ†′(ξt) . (3.87)

In order to obtain a closed set of ordinary differential equations, also the transformed creation

operator must be considered in a similar way. Performing the corresponding calculation leads

to

dâ†′(ξt)

dt
= ξ∗â′(ξt) . (3.88)

The coupled system (3.87) and (3.88) is now decoupled as follows:

d

dt

dâ′(ξt)

dt
=

d

dt
â†′(ξt)ξ = |ξ|2 â′(ξt) . (3.89)

The general solution of second-order differential equation (3.89) reads

â′(ξt) = ĉ1 e
|ξ|t + ĉ2 e

−|ξ|t (3.90)

and depends on two operators ĉ1 and ĉ2. Inserting (3.90) in (3.87) leads to

â†′(ξt) =
|ξ|
ξ

(
ĉ1e
|ξ|t − ĉ2e

−|ξ|t) . (3.91)

With the help of (3.90) and (3.91) we now adjust the initial condition

â′(ξt)

∣∣∣∣
t=0

= ĉ1 + ĉ2 = â , (3.92)

â†′(ξt)

∣∣∣∣
t=0

=
|ξ|
ξ

(ĉ1 − ĉ2) = â† . (3.93)

In order to facilitate the analysis, we now perform a polar decomposition of the complex pa-

rameter ξ into its absolute value and its phase

ξ = |ξ| eiϕ . (3.94)

With this the solution of (3.92) and (3.93) reads as follows:

ĉ1 =
1

2

(
â+ eiϕâ†

)
, (3.95)

ĉ2 =
1

2

(
â− eiϕâ†

)
. (3.96)

Inserting (3.95) and (3.96) into (3.90) and (3.91), respectively, leads to:

â′(ξt) = cosh(|ξ| t)â+ eiϕ sinh(|ξ| t)â† , (3.97)

â†′(ξt) = cosh(|ξ| t)â† + e−iϕ sinh(|ξ| t)â . (3.98)
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Evaluating this result at t = 1 leads to the transformed creation and annihilation operator

â′(ξ) = µâ+ νâ† , (3.99)

â†′(ξ) = µâ† + ν∗â . (3.100)

Here we have introduced the new parameters

µ = cosh |ξ| , (3.101)

ν = eiϕ sinh |ξ| , (3.102)

which fulfill the constraint

µ2 − |ν|2 = cosh2 |ξ| − sinh2 |ξ| = 1 . (3.103)

Note that this constraint could be used, for instance, to eliminate the parameter µ. Further-

more, this constraint corresponds to the invariance of the standard commutator relation:[
â′(ξ), â†′(ξ)

]
− = µ2

[
â, â†

]
− + νν∗

[
â†, â

]
− = µ2 − |ν|2 = 1 . (3.104)

With these results we define now the squeezed states by applying the unitary transformation

(3.83) upon the vacuum state:

|0〉′ = Ŝ(ξ) |0〉 = |ξ〉 . (3.105)

Sometimes (3.105) is also called a squeezed vacuum.

3.9 Expectation Value of Squeezed States

At first we calculate the expectation value for the family of operators (3.30) with respect to a

squeezed state:

〈x̂θ〉ξ = 〈ξ| x̂θ |ξ〉 =
1√
2

{
〈ξ| â |ξ〉 e−iθ + 〈ξ| â† |ξ〉 eiθ

}
. (3.106)

Here the adjoint state to (3.105) is defined by taking into account (3.84):

′ 〈0| = 〈0| Ŝ†(ξ) = 〈ξ| = 〈0| Ŝ(−ξ) . (3.107)

From (3.105)–(3.107) follows then

〈x̂θ〉ξ =
1√
2
〈0| â′(−ξ)e−iθ + â†′(−ξ)eiθ |0〉 . (3.108)

A polar decomposition of −ξ similar to (3.94)

−ξ = |ξ| ei(ϕ+π) (3.109)
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then yields due to (3.101) and (3.102) the symmetry relations

µ(−ξ) = µ(ξ) , (3.110)

ν(−ξ) = −ν(ξ) . (3.111)

From (3.99), (3.100), (3.108), and (3.109) follows then

〈x̂θ〉ξ =
1√
2
〈0|
(
µâ− νâ†

)
e−iθ +

(
µâ† − ν∗â

)
eiθ |0〉 = 0 . (3.112)

The expectation value of the quadrature operator vanishes with respect to a squeezed state

independent of θ. This means, in particular, that both the position and the momentum expec-

tation values of squeezed states vanish also.

3.10 Variance of Squeezed States

For the expectation value of the product of two quadrature operators (3.30) we obtain with

(3.105) and (3.107)

〈x̂θx̂θ′〉ξ =
1

2
〈0| Ŝ(−ξ)

[
â2e−i(θ+θ

′) + â†âei(θ−θ
′) + ââ†ei(θ

′−θ) + â†2ei(θ+θ
′)
]
Ŝ(ξ) |0〉 . (3.113)

Taking into account the action of the unitary transformation (3.83) according to (3.85), we get

〈x̂θx̂θ′〉ξ =
1

2
〈0| â′(−ξ)2e−i(θ+θ

′) + â†′(−ξ)â′(−ξ)ei(θ−θ′)

+â′(−ξ)â†′(−ξ)ei(θ′−θ) + â†′(−ξ)2ei(θ+θ
′) |0〉 . (3.114)

Thus, implementing (3.99) and (3.100) as well as the symmetry relations (3.110) and (3.111)

yields

〈x̂θx̂θ′〉ξ =
1

2
〈0| ââ†[−µνe−i(θ+θ′) + |ν|2 ei(θ−θ′) + µ2e−i(θ−θ

′) − µν∗ei(θ+θ′)] |0〉 . (3.115)

With the side calculation

〈0| ââ† |0〉 = 〈0|
[
â, â†

]
− |0〉 = 1 (3.116)

then follows for the variance (3.115)

〈x̂θx̂θ′〉ξ =
1

2

[
µ2ei(θ

′−θ) + |ν|2 ei(θ−θ′) − µνe−i(θ+θ′) − µν∗ei(θ+θ′)
]
, (3.117)

which factorizes according to

〈x̂θx̂θ′〉ξ =
1

2

[
µe−iθ − ν∗eiθ

][
µeiθ

′ − νe−iθ′
]
. (3.118)

This result specialises for θ′ = θ to

〈x̂2
θ〉ξ =

1

2

∣∣µ− νe−2iθ
∣∣2 . (3.119)
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Figure 3.4: Angle dependence of expectation value (3.120) for ϕ = π/2 with minimum (maxi-

mum) at θmin = π/4 (θmax = 3π/4) according to (3.124) and (3.129) with k = 0.

Taking into account (3.101)–(3.103) this reduces to

〈x̂2
θ〉ξ =

1

2

[
1 + 2 |ν|2 − 2 |ν|

√
1 + |ν|2 cos(2θ − ϕ)

]
. (3.120)

Thus, the expectation value 〈x̂2
θ〉ξ, which coincides due to (3.112) with the variance 〈(∆x̂θ)2〉ξ

is π-periodic with respect to θ, see Fig. 3.4. For any fixed ξ the expectation value 〈x̂2
θ〉ξ depends

sensitively on the chosen parameter θ. In the limit ξ → 0, i.e. |ν| ↓ 0, this sensitivity disappears

and we obtain the variance of the ground state

lim
ξ→0
〈x̂2

θ〉ξ =
1

2
. (3.121)

Instead for ξ 6= 0 the variance can be larger or smaller than this minimal uncertainty.

A smaller uncertainty occurs provided that the inequality√
1 + |ν|2

|ν|2
cos(2θ − ϕ) > 1 (3.122)

is fulfilled. The smallest possible uncertainty is present for

cos(2θ − ϕ) = 1 , (3.123)

which yields

θmin = kπ +
ϕ

2
, k ∈ Z . (3.124)

This minimal uncertainty follows from inserting (3.124) into (3.120)

〈x̂2
θmin
〉
ξ

=
1

2

[
1 + 2 |ν|2 − 2 |ν|

√
1 + |ν|2

]
. (3.125)

Using (3.102) this finally reduces to

〈x̂2
θmin
〉
ξ

=
1

2
e−2|ξ| . (3.126)
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This means that the smallest possible uncertainty can be made exponentially small.

A larger uncertainty occurs for√
1 + |ν|2

|ν|2
cos(2θ − ϕ) < 1 . (3.127)

The largest possible uncertainty is present provided

cos(2θ − ϕ) = −1 , (3.128)

which leads to

θmax =

(
k +

1

2

)
π +

ϕ

2
, k ∈ Z . (3.129)

Inserting (3.129) into (3.120) this yields

〈x̂2
θmax
〉
ξ

=
1

2

[
1 + 2 |ν|2 + 2 |ν|

√
1 + |ν|2

]
. (3.130)

Taking into account (3.102) we conclude

〈x̂2
θmax
〉
ξ

=
1

2
e2|ξ| . (3.131)

Thus, the largest possible uncertainty can therefore be made exponentially large.

We note that the family operator with θ = θmax in (3.129) and θ = θmin in (3.124) are canonically

conjugated to each other due to (3.38) and (3.39):

θmin − θmax = −π
2
. (3.132)

It now follows from (3.125) and (3.130) that squeezed states, like coherent states, have minimal

uncertainty in accordance with the Heisenberg uncertainty principle (3.41):

〈(∆x̂θmax)2〉ξ 〈(∆x̂θmin
)2〉ξ =

1

4
. (3.133)

The phase space representation for a squeezed state is more complicated as it basically amounts

to an ellipse centered around the origin, whose semi-axes can be rotated. Before we can dis-

cuss this in more detail we have to define the density operator and work out its phase space

representation in terms of a quasi-probability distribution.

3.11 Density Operator

In quantum mechanics, the state of a quantum system is represented by a state vector, denoted

by |ψ〉. Provided that the state of a quantum system is only described by such a state vector

|ψ〉, it is called a pure state. However, it is also possible for a quantum system to be in a
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statistical ensemble of different state vectors. For example, there may be a 50 % probability

that the state vector is |ψ1〉 and a 50 % chance that the state vector is |ψ2〉. This system would

then be in a mixed state.

A generic example of pure and mixed states in quantum optics is provided by light polarization.

Photons can have two helicities, corresponding to two orthogonal quantum states, |R〉 for right

circular polarization and |L〉 for left circular polarization. A photon can also be in a superpo-

sition state, such as (|R〉+ |L〉)/
√

2, which represents a vertical polarization or |R〉 − |L〉)/
√

2,

which denotes a horizontal polarization. More generally, it can be in any state α|R〉+β|L〉 with

the coefficients α and β fulfilling the normalization constraint |α|2 + |β|2 = 1, corresponding

to linear, circular, or elliptical polarization. If we pass (|R〉+ |L〉)/
√

2 polarized light through

a circular polarizer, which allows either only |R〉 polarized light, or only |L〉 polarized light,

the intensity would be reduced by half in both cases. This may make it seem like half of the

photons are in state |R〉 and the other half in state |L〉, but this is not correct: both |R〉 and

|L〉 photons are partly absorbed by a vertical linear polarizer, but the (|R〉+ |L〉)/
√

2 light will

pass through that polarizer with no absorption whatsoever.

In quantum statistics, one describes a mixture of pure states with the help of the density

operator ρ̂, which was introduced by John von Neumann in 1927. In an axiomatic approach,

the density operator is defined by the following axioms. The density operator ρ̂ is a linear,

hermitian operator according to axiom A1. Furthermore, axiom A2 prescribes that the density

operator ρ̂ is positive, i.e.

〈ψ| ρ̂ |ψ〉 ≥ 0 for all |ψ〉 ⇐⇒ all eigenvalues are positive . (3.134)

And, axiom A3 expresses the normalization of the density operator ρ̂ via

Tr (ρ̂) = 1 . (3.135)

At first we conclude from axiom A1 that the density operator ρ̂ obeys an eigenvalue problem

ρ̂ |ψi〉 = pi |ψi〉 (3.136)

with real eigenvalues

pi = p∗i (3.137)

as well as the eigenstates |ψi〉 fulfill both the orthonormality

〈ψi|ψj〉 = δij (3.138)

and the completeness ∑
i

|ψi〉 〈ψi| = 1 . (3.139)
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Thus, the trace can be defined with the help of these eigenstates |ψi〉 as follows:

Tr (•) =
∑
i

〈ψi| • |ψi〉 . (3.140)

And we read off that the density operator ρ̂ has the representation

ρ̂ =
∑
i

pi |ψi〉 〈ψi| . (3.141)

Furthermore, we deduce from axiom A2 and (3.134) that the eigenvalues pi of the density

operator are positive:

pi = 〈ψi| ρ̂ |ψi〉 ≥ 0 . (3.142)

And we conclude from axiom A3 due to (3.135), (3.140), and (3.141) that the sum over the

eigenvalues yields unity: ∑
i

pi = 1 . (3.143)

In combination with (3.142) we then obtain the inequality

0 ≤ pi ≤ 1 . (3.144)

Thus, from (3.139) and (3.141) we get for the diagonal matrix elements of the density matrix

〈ψ| ρ̂ |ψ〉 =
∑
i

pi 〈ψ|ψi〉 〈ψi|ψ〉 ≤
∑
i

〈ψ|ψi〉 〈ψi|ψ〉 = 〈ψ|ψ〉 = 1 . (3.145)

This finding means that the diagonal matrix elements of the density operator can be interpreted

as probabilities. An important application is to calculate the expectation value of an observable

for a mixed state, which is defined by

〈Â〉 = Tr (Âρ̂) . (3.146)

Due to the orthonormality (3.138), the definition of the trace in (3.140), and the representation

(3.141) this leads to

〈Â〉 =
∑
i

〈ψi| Âρ̂ |ψi〉 =
∑
i

pi 〈ψi| Â |ψi〉 . (3.147)

This means that the quantum mechanical expectation value 〈ψi| Â |ψi〉 in state i is weighted

with the probability pi in the mixture.

We now continue the axiomatic reasoning in view of the density operator ρ̂ and specify when

it is a pure state. A density operator ρ̂ is pure provided that the idempotence property

ρ̂2 = ρ̂ (3.148)
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holds, i.e. provided that ρ̂ represents a projector. Let us illustrate this definition by two

examples. The first one deals with the density matrix

ρ̂ = |n〉 〈n| (3.149)

corresponding to a pure Fock state. Due to the orthonormality (3.22) we conclude here that

(3.148), indeed, holds:

ρ̂2 = |n〉 〈n|n〉 〈n| = |n〉 〈n| = ρ̂ . (3.150)

In the second example we consider the density operator

ρ̂ = |ψ〉 〈ψ| , |ψ〉 =
1√
2

(|0〉+ |1〉) (3.151)

and find that it also represents a pure state:

ρ̂2 = |ψ〉 〈ψ|ψ〉 〈ψ| = |ψ〉 〈ψ| = ρ̂ . (3.152)

But note in this case

ρ̂2 =
1

2
(|0〉+ |1〉) (〈0|+ 〈1|) 6= 1

2
(|0〉 〈0|+ |1〉 〈1|) . (3.153)

The notion of purity P for a density operator ρ̂ can now be quantified as follows:

P (ρ̂) = Tr (ρ̂2) . (3.154)

In the eigenbasis of the density operator ρ̂ we then obtain from the representation (3.141) by

taking into account the orthonormality (3.138)

ρ̂2 =
∑
i

∑
j

pipj |ψi〉 〈ψi|ψj〉 〈ψj| =
∑
i

p2
i |ψi〉 〈ψi| . (3.155)

Thus, the purity (3.155) results to

P (ρ̂) =
∑
i

p2
i (3.156)

and due to the inequality (3.144) and the normalization condition (3.143) we conclude

0 ≤ P (ρ̂) ≤ 1 . (3.157)

Let us finalize the discussion of the purity by the following interpretation. From the normal-

ization of the density operator (3.135) and the definition of the purity (3.154) we get

P (ρ̂) = Tr (ρ̂2 + 1− ρ̂) = 1 + Tr (ρ̂2 − ρ̂) , (3.158)

which implies

ρ̂2 = ρ̂ ⇐⇒ P (ρ̂) = 1 . (3.159)

Indeed, from (3.148) and (3.158) follows (3.159) from left to right. Let us now, conversely,

assume that the right-hand side of (3.159) holds. Due to (3.144) and (3.156) we must have

exactly one j with pi = δij, which yields (3.148) due to (3.141).
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3.12 Husimi Function of Coherent State

There exist different quasi-probability distributions, which are commonly used in quantum

mechanics to represent a quantum state such as light in the phase space formulation of quantum

optics. The first one was introduced by Eugene Wigner in 1932 to study quantum corrections

to classical statistical mechanics [37]. The goal was to link the wave function that appears in

Schrödinger’s equation to a quasi-probability distribution in phase space. Expectation values

turn out to be accessible for observables in the Weyl order, where the corresponding operators

are ordered in a totally symmetric way. An equivalent formulation was worked out by George

Sudarshan and Roy Glauber in 1963, where the so-called Sudarshan-Glauber P -representation

expresses observables in normal order and which is further elaborated in the exercises. In the

present lecture notes, however, we will focus on the Husimi function, introduced by Kôdi Husimi

in 1940. It represents a quasi-probability distribution, also called the Q-function, which allows

to calculate expectation values for observables in the anti-normal order as we will see below.

It is defined as the expectation value of the density operator ρ̂ with respect to a coherent state

as follows:

Qρ̂(α) =
1

π
〈α| ρ̂ |α〉 . (3.160)

This phase space function indicates the probability that the coherent state |α〉 is to be found

in the density matrix ρ̂. Note that the reason for the additional prefactor 1/π in the definition

(3.160) is only revealed below.

In order to get a first insight into the Husimi function, we evaluate it for the case of a pure

coherent state, i.e. the density operator ρ̂ is assumed to be given by

ρ̂ = |α0〉 〈α0| . (3.161)

Inserting (3.161) in (3.160) leads to

Q|α0〉〈α0|(α) =
1

π
|〈α|α0〉|2 . (3.162)

Thus, the evaluation of (3.162) necessitates to determine the overlap of two coherent states,

which we accomplish with the following three steps:

• A useful special case of the Baker-Campbell-Hausdorff formula (3.69) reads

eÂ+B̂ = eÂeB̂e
−[Â,B̂]−/2 , if

[
Â, B̂

]
−
∈ C . (3.163)

With the identifications

Â = αâ† , B̂ = −α∗â ,
[
Â, B̂

]
−

= |α|2
[
â, â†

]
− = |α|2 (3.164)

we then obtain with (3.163) for the shift operator (3.58) its normal ordered form:

D̂(α) = eαâ
†
e−α

∗â e−|α|
2/2 . (3.165)
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• Applying (3.165) to the vacuum state yields for a coherent state (3.66) the representation

|α〉 = D̂(α) |0〉 = e−|α|
2/2 eαâ

† |0〉 . (3.166)

Note that we have used here the identity

e−α
∗â |0〉 = |0〉 , (3.167)

which follows immediately from the property (3.21) that the annihilation operator â being

applied to the vacuum state |0〉 vanishes. The adjoint of (3.166) results correspondingly

in

〈α| = e−|α|
2/2 〈0| eα∗â . (3.168)

With (3.166) and (3.168) we then get for the scalar product between two coherent states:

〈α|α0〉 = e−(|α|2+|α0|2)/2 〈0| eα∗â eα0â†e−α
∗â |0〉 , (3.169)

where we have applied again (3.167).

• Performing a Taylor expansion we obtain

eα
∗â
(
eα0â†

)
e−α

∗â = exp
{
α0 e

α∗â â† e−α
∗â
}
. (3.170)

In order to evaluate this expression we define the operator-valued function

f̂(t) = etα
∗ââ†e−tα

∗â (3.171)

and determine its derivative with respect to the parameter t:

df̂(t)

dt
= etα

∗âα∗
(
ââ† − â†â

)
e−tα

∗â = α∗ , (3.172)

where the latter equality follows from the commutator relation (3.11). As (3.172) is a

c-number, its integration can be straight-forwardly performed, yielding

f̂(t) = ĉ+ α∗t . (3.173)

As we read off from (3.171) the operator-valued initial condition f̂(0) = ĉ = â† it follows

from (3.171) and (3.173):

f̂(1) = eα
∗ââ†e−α

∗â = â† + α∗ . (3.174)

Inserting (3.174) in (3.170) we get

eα
∗â eα0â†e−α

∗â = e(â
†+α∗)α0 . (3.175)
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Substituting (3.175) into (3.169) finally leads to the scalar product between two coherent states:

〈α|α0〉 = e−(|α|2+|α0|2)/2 eα
∗α0 , (3.176)

as the adjoint of (3.167) yields

〈0| eα∗â† = 〈0| . (3.177)

This can algebraically be rewritten as

〈α|α0〉 = e−(|α|2+|α0|2−α0α∗−α∗0α)/2 e(α∗α0−α∗0α)/2 = e−|α−α0|2/2 e(α∗α0−α∗0α)/2 . (3.178)

We read off that the coherent states are normalized in the sense of

〈α0|α0〉 = 1 , (3.179)

but not orthogonal

〈α|α0〉 6= 0 , for α 6= α0 . (3.180)

Note that this non-orthogonality is an immediate consequence of the fact that they are eigen-

states of a non-hermitian operator according to (3.67). Thus, coherent states have mathematical

features that are very different from those of a number state, for instance, two different coherent

states are not orthonormal according to

〈α|α0〉 6= δ(α− α0) . (3.181)

Substituting (3.178) into (3.162) shows that the Q-function of a coherent state turns out to be

an isotropic Gaussian function:

Q|α0〉〈α0|(α) =
1

π
e−|α−α0|2 . (3.182)

Thus, depicting the lines of constant values of the Q-function (3.182) in the phase space spanned

by both the real and imaginary part of α yields circles centered around α0 as depicted in

Fig. 3.5, which corresponds to the phase space representation of a coherent state in Fig. 3.3.

Furthermore, we can explicitly show the normalization∫
d2αQ|α0〉〈α0|(α) = 1 , (3.183)

where the two-dimensional integral is defined according to∫
d2α =

∫ ∞
−∞

dReα

∫ ∞
−∞

dImα . (3.184)

Note that the prefactor 1/π in (3.182) is important in order to guarantee the normalization

(3.183).
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Figure 3.5: Phase space density (3.182) of the Q-function for a coherent state.

Furthermore, inserting (3.160) and (3.161) in the normalization (3.182) leads to

〈α0|
{∫

d2α

π
|α〉〈α|

}
|α0〉 = 1 , (3.185)

which suggests the identity ∫
d2α

π
|α〉〈α| = 1 . (3.186)

This turns out to be, indeed, valid as is proven below and represents the overcompleteness of

the coherent states.

3.13 Decomposition of Coherent State into Fock States

As the number states |n〉 represent a basis according to (3.23), a coherent state |α〉 can be

expanded with respect to it:

|α〉 =
∞∑
n=0

|n〉 〈n|α〉 . (3.187)

Due to (3.20) the matrix element in (3.187) is given by

〈n|α〉 =
1√
n!
〈0| ân |α〉 . (3.188)

Applying (3.58) and (3.67) in (3.188) leads to

〈n|α〉 =
αn√
n!
〈0|α〉 =

αn√
n!
〈0| D̂(α) |0〉 . (3.189)

Substituting the normal ordered shifting operator (3.165) into (3.189) and taking into account

the identities (3.167) and (3.177) then yields

〈n|α〉 =
αn√
n!
e−|α|

2/2 , (3.190)

from which we can draw two insightful conclusions.
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a) b)

Figure 3.6: Husimi function for a pure Fock state (3.191): a) Maximum occurs at |αmax| =
√
n;

b) Contour plot in complex α-plane reveals a volcano shape.

On the one hand we read off from (3.190) the Husimi function (3.160) for a pure Fock state

Q|n〉〈n|(α) =
1

π
|〈n|α〉|2 =

1

π

|α|2n

n!
e−|α|

2

, (3.191)

which turns out to be normalized. Indeed, due to the isotropy of (3.191) in phase space, we

express the integration measure by polar coordinates

α = Reα + iImα = reiϕ (3.192)

d2α = dReα dImα = rdrdϕ , (3.193)

so the normalization integral of (3.191) yields at first∫
d2αQ|n〉〈n|(α) =

2

n!

∫ ∞
0

dr r2n+1 e−r
2

. (3.194)

Subsequently, the radial integral reduces due to the substitution u(r) = r2 to the Gamma

function (2.176), which interpolates for integers according to (2.178) between the factorials,

thus we get ∫
d2αQ|n〉〈n|(α) = 1 . (3.195)

Furthermore, extremizing the Husimi function for a pure Fock state (3.191)

∂Q|n〉〈n|(α)

∂|α|

∣∣∣∣
α=α0

= 0 , (3.196)

we obtain that the maximum occurs for |αmax| =
√
n, see Fig. 3.6a). As a consequence,

the Husimi function (3.191) has in phase space a shape, which is reminiscent of a volcano as

indicated in Fig. 3.6b).

On the other hand (3.190) implies that the probability of a coherent state |α〉 having n photons

is determined by a Poisson statistics:

pn(α) =
|α|2n

n!
e−|α|

2

. (3.197)
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Figure 3.7: Poisson statistics (3.202) for finding n photons in a coherent state with having on

average 〈n̂〉α = 6 photons.

The normalisation of the Poisson statistics (3.197) follows straight-forwardly:

∞∑
n=0

pn(α) = e−|α|
2
∞∑
n=0

(|α|2)
n

n!
= e−|α|

2

e|α|
2

= 1 . (3.198)

For the average photon number we obtain in accordance with (3.77):

〈n̂〉α =
∞∑
n=0

npn(α) = e−|α|
2
∞∑
n=0

1

n!
n
(
|α|2
)n

= e−|α|
2
∞∑
n=0

1

(n)!
|α|2 ∂

∂|α|2
(
|α|2
)n

= e−|α|
2 |α|2 ∂

∂|α|2
∞∑
n=0

1

(n)!

(
|α|2
)n

= e−|α|
2 |α|2 ∂

∂|α|2
e|α|

2

= |α|2 . (3.199)

Thus, the mean photon number 〈n̂〉α in a coherent state is determined by |α|2. Correspondingly

we also calculate the second moment:

〈n̂2〉α =
∞∑
n=0

n2pn(α) = e−|α|
2|α|2 ∂

∂|α|2
|α|2 ∂

∂|α|2
e|α|

2

= e−|α|
2|α|2 ∂

∂|α|2
(
|α|2e|α|2

)
= |α|2 + |α|4 . (3.200)

We read off that variance and mean photon number turn out to coincide:

〈(∆n̂)2〉α = 〈n̂2〉α − 〈n̂〉
2
α = |α|2 . (3.201)

This represents the characteristic property of a Poisson statistics. Inserting the finding (3.199)

into the Poisson statistics (3.197), the photon number distribution can also be written in the

form

pn(〈n̂〉α) =
(〈n̂〉α)n

n!
e−〈n̂〉α , (3.202)

which is depicted in Fig. 3.7. The Mandel Q-parameter was introduced in quantum optics by

Leonard Mandel in 1979. It measures the departure of the occupation number distribution

from Poissonian statistics:

Q =
〈(∆n̂)2〉 − 〈n̂〉

〈n̂〉
=
〈n̂2〉 − 〈n̂〉2

〈n̂〉
− 1 . (3.203)
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Thus, for coherent states, which have a Poissonian photon-number statistics (3.197), we imme-

diately obtain Q = 0. A positive value of Q occurs for a super-Poissonian photon statistics,

where the variance is larger than the mean, i.e. the distribution is broader than a Poissonian:

Q ≥ 0 ⇐⇒ 〈(∆n̂)2〉 ≥ 〈n̂〉 . (3.204)

In contrast to that a negative value of Q corresponds to a state, whose variance of the photon

number is less than the mean:

−1 ≤ Q ≤ 0 ⇐⇒ 〈(∆n̂)2〉 ≤ 〈n̂〉 . (3.205)

The Mandel Q-parameter is a convenient way to characterize non-classical states with negative

values (3.205) indicating a sub-Poissonian statistics, which have no classical analog. Their

photon statistics is characterized by being narrower than a Poissonian.

From the above we now deduce that the coherent states are overcomplete along the following

lines. Taking into account the completeness of the Fock states from (3.23) and the overlap

(3.190) we obtain∫
d2α |α〉 〈α| =

∞∑
n=0

∞∑
m=0

|n〉 〈m|
∫
d2α 〈n|α〉 〈α|m〉 .

=
∞∑
n=0

∞∑
m=0

|n〉 〈m|
∫
d2α

αn√
n!
e−|α|

2/2 α
∗m
√
m!

e−|α|
2/2 . (3.206)

Using the polar coordinate coordinates in phase space (3.192) and (3.193), the integral (3.206)

yields ∫
d2α |α〉 〈α| =

∞∑
n=0

∞∑
m=0

|n〉 〈m|√
n!m!

∫ ∞
0

dr rn+m+1 e−r
2

∫ 2π

0

dϕ ei(n−m)ϕ . (3.207)

The angle integral leads to the Kronecker symbol∫ 2π

0

dϕ ei(n−m)ϕ = 2π δn,m (3.208)

and the radial integral reduces due to the substitution u(r) = r2 to the Gamma function (2.176),

which interpolates for integers according to (2.178) between the factorials, thus yielding∫ ∞
0

dr r2n+1 e−r
2

=
n!

2
. (3.209)

As a result we obtain from (3.207)–(3.209) due to the completeness (3.23) of the Fock states∫
d2α |α〉 〈α| = π

∞∑
n=0

|n〉 〈n| = π , (3.210)

which coincides with the identity (3.186) suggested above. The deviation from 1 in (3.210)

expresses the overcompleteness. This surprising finding can also be illustrated from a different



76 CHAPTER 3. QUANTUM STATES OF RADIATION FIELD

angle. To this end we work with coherent states, which are defined on a circle, i.e. α = reiϕ,

and obtain similar to (3.206):

|reiϕ〉 =
∞∑
n=0

|n〉 〈n|reiϕ〉 =
∞∑
n=0

|n〉 r
neinϕ√
n!

e−r
2/2 . (3.211)

Inverting (3.211) according to

|n〉 =
er

2/2

rn

√
n!

2π

∫ 2π

0

dϕ e−inϕ |reiϕ〉 (3.212)

reveals that already one circle is enough to characterize all Fock states. This illustrates vividly

that the complex plane of all coherent states contains more information than would be necessary

for spanning the Fock space.

3.14 Properties of Husimi Function

Let us discuss now some generic properties of the Husimi function (3.160), which are not only

valid for a pure state but also for a mixed state. At first, we consider the normalization of the

density operator (3.135) and take into account the overcompleteness relation of the coherent

states (3.186) in order to obtain the normalization of the Husimi function (3.160):

1 = Tr (ρ̂) =

∫
d2α

π
〈α| ρ̂ |α〉 =

∫
d2αQρ̂(α) . (3.213)

This justifies a posteriori having evaluated the normalizations (3.183) and (3.195) for the partic-

ular Husimi functions (3.182) and (3.191). Furthermore, as the diagonal matrix elements of the

density operator are positive according to (3.134), we read off from (3.160) that also the Husimi

function is positive and, thus together with (3.213), allows for a probabilistic interpretation.

This observation becomes even more conclusive by considering the expectation value (z156) of

an anti-normally ordered operator product âpâ†q, where p, q denote some natural numbers. Us-

ing the completeness relation of the Fock states (3.23) as well as the overcompleteness relation

of the coherent states (3.186) yields

〈âpâ†q〉 = Tr
(
âpâ†qρ̂

)
=
∞∑
n=0

〈n| âpâ†qρ̂ |n〉 =
∞∑
n=0

∫
d2α

π
〈n| âp |α〉 〈α| â†qρ̂ |n〉 . (3.214)

Inserting the fundamental property of a coherent state (3.67), the completeness relation of the

Fock states (3.23) and the definition of the Husimi function (3.160) yield:

〈âpâ†q〉 =

∫
d2α

π
αpα∗q 〈α| ρ̂

∞∑
n=0

|n〉 〈n|α〉 =

∫
d2α

π
αpα∗q 〈α| ρ̂ |α〉 =

∫
d2αQρ̂(α)αpα∗q . (3.215)

This confirms the probability interpretation of the Husimi function.
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3.15 Husimi Function of Squeezed State

Let us now specialize to the case that the density operator is defined by a pure squeezed state:

ρ̂ = |ξ〉 〈ξ| . (3.216)

Inserting (3.216) into (3.160) leads to the corresponding Husimi function

Q|ξ〉〈ξ|(α) =
1

π
|〈α|ξ〉|2 . (3.217)

We need now the following two steps for calculating (3.217):

• At first we consider the scalar product between a coherent state (3.66) and a squeezed

state (3.105) and take (3.61) into account:

〈α|ξ〉 = 〈D̂(α)0|Ŝ(ξ)0〉 = 〈0|D̂(−α)Ŝ(ξ)|0〉 . (3.218)

Then we use from the literature the involved proof that the normal ordered form of the

squeezing operator reads [38, (6.177)]

Ŝ(ξ) = e−νâ
†2/2µ

(
1

µ

)n̂+1/2

eν
∗â2/2µ . (3.219)

Applying (3.219) to the vacuum state then yields straight-forwardly

Ŝ(ξ) |0〉 =
1
√
µ
e−νâ

†2/2µ |0〉 . (3.220)

Subsequently we insert (3.168) and (3.220) in (3.218):

〈α|ξ〉 =
e−|α|

2/2

√
µ
〈0| eα∗âe−νâ†2/2µ |0〉 . (3.221)

• Due to the identity (3.167) we obtain from (3.221):

〈α|ξ〉 =
e−|α|

2/2

√
µ
〈0| eα∗âe−νâ†2/2µe−α∗â |0〉 . (3.222)

A Taylor expansion of the exponential function then yields

eα
∗â
(
e−νâ

†2/2µ
)
e−α

∗â = exp

{
− ν

2µ

(
eα
∗ââ†e−α

∗â
)2
}
. (3.223)

Applying the previous result (3.174) in (3.223) then leads to

eα
∗âe−νâ

†2/2µe−α
∗â = exp

{
− ν

2µ

(
â† + α∗

)2
}
. (3.224)

Substituting (3.224) into (3.222) and using (3.177) determines the scalar product between

a squeezed and a coherent state:

〈α|ξ〉 =
e−|α|

2/2

√
µ

e−να
∗2/2µ . (3.225)
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From (3.217) and (3.225) we then obtain the Husimi function of the squeezed state:

Q|ξ〉〈ξ|(α) =
1

πµ
exp

{
−|α|2 − να∗2 + ν∗α2

2µ

}
. (3.226)

The straight-forward algebraic manipulation

2Re
(
να∗2

)
= 2|ν|

{
cosϕ

[
(Reα)2 − (Imα)2]+ 2 sinϕReα Imα

}
(3.227)

converts into (3.226) into

Q|ξ〉〈ξ|(α) =
1

πµ
exp

{
−
(

1 +
|ν|
µ

cosϕ

)
(Reα)2 −

(
1− |ν|

µ
cosϕ

)
(Imα)2

−2
|ν|
µ

sinϕReα Imα

}
. (3.228)

We examine now the form of this Q-function:

• At first we consider the special case ϕ = 0. In the exponent of (3.228) appears then an

ellipse with semi-axes parallel to the Reα- and Imα-axes, whose values read with (3.101)

and (3.102):

a =

√
µ

µ+ |ν|
=

√
cosh |ξ|

cosh |ξ|+ sinh |ξ|
=

1√
2

√
1 + e−2|ξ| < 1 , (3.229)

b =

√
µ

µ− |ν|
=

√
cosh |ξ|

cosh |ξ| − sinh |ξ|
=

1√
2

√
e2|ξ| + 1 > 1 . (3.230)

• In case of the angle ϕ 6= 0, we carry out a rotation around an angle γ, which is still to be

determined: (
Reα

Imα

)
=

(
cos γ − sin γ

sin γ cos γ

)(
Reα′

Imα′

)
. (3.231)

Thus, inserting (3.231) into the generic quadratic form of (3.228)

A (Reα)2 +B (Imα)2 + C Reα Imα (3.232)

yields

= A (cos γ Reα′ − sin γ Imα′)
2

+B (sin γ Reα′ + cos γ Imα′)
2

+C (cos γ Reα′ − sin γ Imα′) (sin γ Reα′ + cos γ Imα′) . (3.233)

Thus, we can now determine the rotation angle γ from the condition that the mixed terms

Reα′ Imα′ in (3.233) vanish:

−(A−B)2 sin γ cos γ + C
(
cos2 γ − sin2 γ

)
= 0 . (3.234)
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a) b)

Figure 3.8: Contour plot of Husimi function for a pure squeezed state (3.228): Semi-axes of

ellipses (3.229), (3.230) are a) not rotated for ϕ = 0 and b) rotated by the angle (3.236) in case

of ϕ 6= 0.

Due to trigonometric addition theorems we then obtain

(A−B) sin(2γ) = C cos(2γ) =⇒ tan(2γ) =
C

A−B
. (3.235)

The explicit evaluation of (3.235) due to the identification of (3.228) with (3.232) yields:

tan(2γ) =
2 |ν|
µ

sinϕ(
1 + |ν|

µ
cosϕ

)
−
(

1− |ν|
µ

cosϕ
) = tanϕ =⇒ γ =

ϕ

2
. (3.236)

The prefactor of (Reα′)2 in (3.233) reads then with (3.236)

A cos2 γ +B sin2 γ + C sin γ cos γ = 1 +
|ν|
µ

cos(ϕ− 2γ) = 1 +
|ν|
µ

=
2

1 + e−2|ξ| (3.237)

and, correspondingly we obtain for the prefactor of (Imα′)2 in (3.233)

A cos2 γ +B sin2 γ + C sin γ cos γ = 1− |ν|
µ

cos(ϕ− 2γ) = 1− |ν|
µ

=
2

1 + e2|ξ| , (3.238)

so (3.237) and (3.238) lead to the semi-axes (3.229) and (3.230), respectively. With this we

conclude that the complex parameter ξ = |ξ|iϕ of a squeezed state allows for the following

interpretation. The angle ϕ describes a rotation of the ellipse in the mathematical sense,

while the amplitude |ξ| defines the magnitude of the semi-axes of the ellipse.

The resulting contour plot of the Husimi function for a squeezed state is sketched in Fig. 3.8.

3.16 Decomposition of Squeezed State into Fock States

As the number states |n〉 represent a basis according to (3.23), a squeezed state |ξ〉 can be

expanded with respect to it:

|ξ〉 =
∞∑
n=0

|n〉 〈n|ξ〉 . (3.239)



80 CHAPTER 3. QUANTUM STATES OF RADIATION FIELD

Instead of determining the amplitude 〈n|ξ〉 directly, we consider its generating function

f(t) =
∞∑
n=0

tn√
n!
〈n|ξ〉 . (3.240)

At first we get due to the definition of both Fock states (3.20) and and a squeezed state (3.105)

f(t) =
∞∑
n=0

tn√
n!
〈0| â

n

√
n!
|ξ〉 = 〈0| etâŜ(ξ) |0〉 . (3.241)

Inserting (3.220) in (3.241) and taking into account the identity (3.167) leads to

f(t) =
1
√
µ
〈0| etâ e−νâ†2/2µ |0〉 =

1
√
µ
〈0| etâ

(
e−νâ

†2/2µ
)
e−tâ |0〉 . (3.242)

A Taylor expansion of the exponential function and an application of (3.174) then yields

f(t) =
1
√
µ
〈0| exp

{
− ν

2µ

(
etââ†e−tâ

)2
}
|0〉 =

1
√
µ
〈0| e−ν(â†+t)

2
/2µ |0〉 . (3.243)

As we can imagine that the annihilation operator â† is acting to the vacuum bra-state, it

vanishes according to (3.177) and we finally get

f(t) =
1
√
µ
e−νt

2/2µ . (3.244)

We now use the generating function of the Hermite polynomials [23, (8.957.1)]:

e−t
2+2tx =

∞∑
n=0

Hn(x)

n!
tn . (3.245)

Substituting (3.245) into (3.244), a comparison with (3.240) gives

f(t) =
1
√
µ

∞∑
n=0

1

n!
Hn(0)

(
ν

2µ

)n
2

tn =
∞∑
n=0

tn√
n!
〈n|ξ〉 , (3.246)

so we conclude

〈n|ξ〉 =
1√
µn!

Hn(0)

(
ν

2µ

)n
2

. (3.247)

Evaluating the generating function of the Hermite polynomials (3.245) for x = 0 involves the

Hermite polynomials Hn(0):

e−t
2

=
∞∑
n=0

(−1)n

n!
t2n =

∞∑
n=0

Hn(0)

n!
tn . (3.248)

Thus, we directly read off

H2n+1(0) = 0 , n = 0, 1, 2, . . . , (3.249)
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i.e., due to (3.247), a squeezed state consists only of an even number of photons. This indicates

that squeezed light is generated by some nonlinear process [39]. As a prominent example you

analyse in the exercises the generation of squeezed light from parametric down conversion. It

represents a nonlinear optical process that converts one photon of higher energy, namely a

pump photon, into a pair of photons, namely a signal photon and an idler photon of lower

energy.

Furthermore, we obtain from (3.248):

H2n(0) =
(2n)!

n!
(−1)n . (3.250)

The finding (3.249) reduces (3.239) to

|ξ〉 =
∞∑
n=0

|2n〉 〈2n|ξ〉 (3.251)

and the corresponding amplitudes result from (3.247) and (3.250) by taking into account (3.101)

and (3.102):

〈2n|ξ〉 =
1√
µ(2n)!

(
ν

2µ

)n
H2n(0) =

1√
cosh |ξ|

√
(2n)!

n!

(
−1

2
eiϕ tanh |ξ)

)n
. (3.252)

The probability of encountering 2n photons in a squeezed state amounts therefore to

p2n(ξ) = |〈2n|ξ〉|2 =
(2n)!

(n!)2 cosh |ξ|

(
1

2
tanh |ξ|

)2n

. (3.253)

Using the elementary Taylor expansion

1√
1− 4x

=
∞∑
n=0

(2n!)

(n!)2
xn (3.254)

allows to check the normalisation of this probability distribution:

∞∑
n=0

p2n(ξ) =
1

cosh |ξ|
√

1− tanh2 |ξ|)
= 1 . (3.255)

Let us calculate now the mean photon number, which amounts to evaluating the series

〈n̂〉ξ =
∞∑
n=0

2np2n(ξ) =
1

cosh |ξ|

∞∑
n=0

(2n)!

(n!)2
(2n)

(
1

2
tanh(|ξ|)

)2n

. (3.256)

To proceed further, we need the side calculation

∂

∂|ξ|
(tanh |ξ|)2n = 2n (tanh(|ξ|))2n−1 1

cosh2 |ξ|
, (3.257)

which leads to

2n (tanh(|ξ|))2n = tanh |ξ| cosh2 |ξ| ∂

∂|ξ|
(tanh |ξ|)2n . (3.258)



82 CHAPTER 3. QUANTUM STATES OF RADIATION FIELD

Applying (3.257) in (3.256) allows to evaluate the series, yielding

〈n̂〉ξ =
1

cosh |ξ|
tanh |ξ| cosh2 |ξ| ∂

∂|ξ|
cosh |ξ| , (3.259)

which reduces to the result

〈n̂〉ξ = sinh2 |ξ| . (3.260)

Accordingly, the amplitude of the squeezing parameter ξ = |ξ|eiϕ determines the mean photon

number. In a similar way we proceed to determine also the second moment:

〈n̂2〉ξ =
∞∑
n=0

(2n)2P2n =
1

cosh |ξ|
tanh |ξ| cosh2(|ξ|) ∂

∂|ξ|
tanh |ξ| cosh2 |ξ| ∂

∂|ξ|
cosh |ξ|

= sinh |ξ| ∂

∂|ξ|
(
sinh2 |ξ| cosh |ξ|

)
= 2 sinh2 |ξ| cosh2 |ξ|+ sinh4 |ξ| . (3.261)

Thus the variance amounts to

〈(∆n̂)2〉ξ = 〈n̂2〉ξ − 〈n̂〉
2
ξ =

1

2
sinh2(2|ξ|) . (3.262)

Furthermore, combining (3.260) with (3.261) yields for the corresponding Mandel Q-parameter

(3.203)

Q = cosh(2|ξ|) , (3.263)

which is positive and corresponds to a super-Poissonian photon statistics. Inserting the finding

(3.260) into (3.253), the photon statistics for a single-mode squeezed state reads

p2n(ξ) =
(2n)! (〈n̂〉ξ)n

4n(n!)2 (1 + 〈n̂〉ξ)n+1/2
. (3.264)

A typical distribution for such a squeezed vacuum is shown in Fig. 3.9a) and is, indeed, broader

than a Poisson distribution with the same average photon number, see Fig. 3.7.

Note that squeezed coherent states represent an even more general class of photonic states.

They are generated by applying successively a squeezing operator Ŝ(ξ) and a shifting operator

D̂(α) to the vacuum state:

|α, ξ〉 = |D̂(α)Ŝ(ξ)|0〉 . (3.265)

Thus, the properties of squeezed coherent states (3.265) depend on both complex parameters

α = |α|eiψ and ξ = |ξ|eiϕ. In particular, tuning the respective phases ψ and ϕ has the

consequence that squeezed coherent states have photon statistics, which can change between a

super-Poissonian and a sub-Poissonian distribution as is depicted in Fig. 3.9b).
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Figure 3.9: a) Histogram illustrating the photon number distribution for a squeezed vacuum

state (3.264). b) Photon probability distributions (valid only at integers) for the coherent state

with |α|2 = 50 (solid line) and the squeezed states for |α|2 = 50, |ξ| = 0.5 with the phase

differences ψ − ϕ/2 = 0 (dotted line) and ψ − ϕ/2 = π/2 (dashed line). Taken from Ref. [6].

3.17 Thermal States

In statistical physics, Boltzmann studied stationary states in the canonical ensemble. The

probability of finding a microstate with energy E in the canonical ensemble is given by the

Boltzmann distribution:

p(E) ∼ e−βE , (3.266)

where β = 1/kBT denotes the reciprocal temperature. The application to a photon gas with

the energies En = ~ω(n+ 1/2) then results in

p(En) ∼ e−~βω(n+1/2) . (3.267)

As such a photon gas in the canonical ensemble represents a mixture of pure Fock states, it is

adequately described in quantum statistics with a density operator ρ̂ of the form

ρ̂T =
1

Z
e−βĤ , (3.268)

where the Hamilton operator reads

Ĥ = ~ω
(
n̂+

1

2

)
. (3.269)

The normalisation of the density operator (3.268) allows to determine the partition function Z:

Tr (ρ̂T ) =
1

Z
Tr
(
e−βĤ

)
= 1 =⇒ Z = Tr

(
e−βĤ

)
. (3.270)

The trace in (3.270) is straight-forwardly evaluated in the basis of the Fock states, as they

diagonalize the Hamilton operator (3.269):

Z =
∞∑
n=0

〈n| e−βĤ |n〉 =
∞∑
n=0

e−β~ω(n+1/2) = e−~βω/2
∞∑
n=0

(
e−β~ω

)n
. (3.271)



84 CHAPTER 3. QUANTUM STATES OF RADIATION FIELD

The remaining series is geometric, so we end up with

Z =
e−~βω/2

1− e−~βω
=

1

2 sinh(~βω/2)
. (3.272)

Inserting (3.272) into (3.268) leads with the completeness relation of Fock states (3.23) to the

following representation of the density operator:

ρ̂T =
(
1− e−~βω

)
e−~βωn̂ =

∞∑
n=0

(
1− e−~βω

)
e−~βωn |n〉 〈n| . (3.273)

This is of the general form (3.141) of a density operator, i.e.

ρ̂T =
∞∑
n=0

pn |n〉 〈n| (3.274)

with the probabilities

0 ≤ pn =
e−~βωn

Z ′
≤ 1 , (3.275)

where we have introduced the new partition function:

Z ′ = Tr
(
e−β~ωn̂

)
=

1

1− e−~βω
. (3.276)

The representation (3.274) of the thermal density operator ρ̂T means that the quantum mechan-

ical pure states |n〉 〈n| are weighted therein with the classical probability pn given by (3.275).

Therefore it represents a mixed state. In order to quantify the degree of mixedness further, we

have to determine the purity of the thermal state (3.154) and to show according to (3.159) that

P (ρ̂T ) is, indeed, smaller than one. From (3.154) and (3.275) we obtain at first

P (ρ̂T ) =
∞∑
n=0

p2
n =

1

Z ′ 2

∞∑
n=0

e−2~βωn , (3.277)

which also represents a geometric series:

P (ρ̂T ) =

(
1− e−~βω

)2

1− e−2~βω = tanh (~βω/2) . (3.278)

The dependence of the purity (3.278) on the dimensionless parameter ~βω is depicted in

Fig. 3.10a) . For small ~βω we have hot temperatures, which represents the classical limit

with a quite small purity, so the state is clearly mixed. In the opposite limit of large ~βω,

where have nearly absolute zero temperature, we reach the quantum mechanical limit with

purity of nearly one, which corresponds to a pure state.

Let us discuss these general considerations in more detail by considering some concrete num-

bers. For yellow light we have a wavelength of 500 nm, which amounts according to the linear

dispersion (2.73) to the circular frequency ω = 2πc/λ = 2π × 6 · 1014 1/s. At the temperature
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a) b)

Figure 3.10: a) Purity of thermal light (3.278) as a function of dimensionless parameter ~βω.

b) Sketch of a black body: thermal light emerges from a tiny hole in the walls.

T = 300 K this then yields a dimensionless parameter ~βω = ~ω/kBT of about 95.6, which is

much larger than one. Thus, thermal visible light can safely be treated quantum mechanically.

Thermal states occur in black-body radiation. Here, a black body can be modelled by consid-

ering a cavity in which the light field is in thermal equilibrium with its walls, see Fig. 3.10b).

In this way, the light field is coupled to a heat bath with a fixed temperature and can be

described in the canonical ensemble. The expectation value of the particle number operator

results in the mean photon number in thermodynamic equilibrium. Evaluating the trace in the

corresponding expression

〈n̂〉T = Tr (n̂ρ̂T ) (3.279)

in the Fock basis yields due to (3.274) and (3.275):

〈n̂〉T =
∞∑
n=0

〈n| n̂ρ̂T |n〉 =
∞∑
n=0

n
e−~βωn

Z ′
=

1

Z ′

(
− ∂

∂~βω

)
Z ′ . (3.280)

Inserting the new partition function (3.276) we obtain

〈n̂〉T =
(
1− e−~βω

)(
− ∂

∂~βω

)
1

1− e−~βω
=

1

e~βω − 1
, (3.281)

which represents the seminal Bose-Einstein distribution. In the classical high-temperature limit

we have

〈n̂〉T ≈
1

~βω
, ~βω � 1 , (3.282)

whereas the quantum mechanical low-temperature limit yields

〈n̂〉T ≈ e−~βω , ~βω � 1 (3.283)

For yellow light, i.e. λ = 500 nm, and room temperature T = 300 K we obtain the extremely

small average photon number 〈n̂〉T ≈ e−95.6 ≈ 3 · 10−42. At the temperature T = 6 000 K,

which corresponds to the temperature at the surface of the sun, we have instead ~βω = 95.6 ·
300/6 000 = 4.78, which yields already 〈n̂〉T ≈ e−4.78 = 0.008. In general we record that the
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Figure 3.11: Comparison of a thermal distribution (3.286) and a Poisson distribution (3.202)

with the same number of average photons 〈n̂〉T = 10.

mean photon occupation increases with increasing wavelength. At T = 300 K the wavelengths

λ = 10 − 100µm in the infrared amount to 〈n̂〉T ≈ 1, but already for the wavelengths of

microwaves λ = 1 mm− 300 mm we get 〈n̂〉T � 1.

The Bose-Einstein distribution (3.281) allows to determine the average photon number 〈n̂〉T
for a given dimensionless parameter ~βω. But this relation can also be inverted

e−~βω =
〈n̂〉T

1 + 〈n̂〉T
, (3.284)

which allows, conversely, to determine the dimensionless parameter ~βω from a given average

photon number 〈n̂〉T . Inserting (3.284) into the probability of finding n photons in the thermal

state, which follows from (3.274) and (3.275)

pn =
(
1− e−~βω

)
e−~ωβn , (3.285)

we get

pn =
(〈n̂〉T )n

(1 + 〈n̂〉T )n+1 . (3.286)

Thus, we read off that pn decreases monotonically with n and the largest possible probability

occurs for the vacuum state n = 0. The dependence of the probabilities (3.286) from the photon

number n is sketched in Fig. 3.11

Let us now determine also the second moment of the photon number for a thermal state:

〈n̂2〉T = Tr
(
n̂2ρ̂T

)
. (3.287)

The trace is evaluated in the Fock basis, yielding due to (3.274) and (3.275)

〈n̂2〉T =
∞∑
n=0

n2 e
−~βωn

Z ′
=

1

Z ′

(
− ∂

∂~βω

)2

Z ′ . (3.288)

With the new partition function (3.276) this reduces to

〈n̂2〉T =
(
1− e−~βω

)(
− ∂

∂~βω

)2
1

1− e−~βω
, (3.289)
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which, finally, results in

〈n̂2〉T =
e~βω + 1

(e~βω − 1)2 . (3.290)

From (3.281) and (3.290) follows then the variance

〈∆n̂2〉T = 〈n̂2〉T − 〈n̂〉
2
T =

e~βω

(e~βω − 1)2 , (3.291)

which reduces due to (3.284) to

〈∆n̂2〉T = 〈n̂〉2T + 〈n̂〉T . (3.292)

On the one hand we conclude from (3.292) that the black-body radiation is characterized

by a Mandel Q-parameter (3.203), which coincides with the average of the photon number,

i.e. Q = 〈n̂〉T and is, thus, positive. Therefore, thermal light is a prominent example for a

super-Poissonian photon statistics. This is illustrated in Fig. 3.11, where the thermal photon

distribution is obviously broader than a Poissonian statistics with the same average number of

photons. On the other hand we read off from (3.292) that the corresponding standard deviation

amounts to √
〈∆n̂2〉T =

√
〈n̂〉2T + 〈n̂〉T =

〈n̂〉T + 1/2 ; 〈n̂〉T � 1√
〈n̂〉T ; 〈n̂〉T � 1

, (3.293)

so the relative standard deviation leads to√
〈∆n̂2〉T
〈n̂〉T

=

1 ; 〈n̂〉T � 1

1/
√
〈n̂〉T ; 〈n̂〉T � 1

. (3.294)

Here the conditions 〈n̂〉T � 1 and 〈n̂〉T � 1 correspond to the classical and the quantum limit,

respectively.

Furthermore, we determine the first moment of the family of operators (3.30)

〈x̂θ〉T = Tr (x̂θρ̂T ) . (3.295)

Inserting therein (3.30) as well as (3.274) and (3.275) yields

〈x̂θ〉T =
∞∑
n=0

〈n| 1√
2

(
âe−iθ + â†eiθ

)
|n〉 pn = 0 . (3.296)

In the same way also the second moment is calculated

〈x̂2
θ〉T = Tr (x̂2

θρ̂T ) =
∞∑
n=0

〈n| 1
2

(
âe−θ + â†e−iθ

)2 |n〉 pn =
∞∑
n=0

(
n+

1

2

)
pn = 〈n̂〉T +

1

2
, (3.297)

yielding with the Bose-Einstein distribution (3.281)

〈x̂2
θ〉T =

1

2
coth ~βω/2 . (3.298)
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a) b)

Figure 3.12: Properties of thermal light: a) Variance (3.298) as function of the dimensionless

parameter 1/~βω ∼ T ; b) Husimi function (3.302) with 〈n̂〉T = 0 and 〈n̂〉T > 0.

Thus (3.298) represents the variance of thermal light, which is plotted in Fig. 3.12a) as a

function of the dimensionless parameter 1/~βω ∼ T . In the quantum mechanical limit of zero

temperature the variance gets minimal, i.e. 〈x̂2
θ〉T → 1/2 for T ↓ 0, whereas in the classical

limit of an infinitely large temperature the Dulong-Petit law occurs, i.e. 〈x̂2
θ〉T → kBT/~ω for

T →∞.

Finally, we also calculate the Husimi function of the thermal state (3.274):

Qρ̂T (α) =
1

π
〈α| ρ̂T |α〉 =

1

π

∞∑
n=0

pn |〈α|n〉|2 . (3.299)

With the matrix element (3.190) and the probabilities (3.275) this gives

Qρ̂T (α) =
1

π

∞∑
n=0

e−~βωn

Z ′
|α|2n

n!
e−|α|

2

=
e−|α|

2

πZ ′

∞∑
n=0

(
|α|2 e−~βω

)n
n!

. (3.300)

Evaluating the geometric series yields

Qρ̂T (α) = =
1

π

(
1− e−~βω

)
exp

{
− |α|2

(
1− e−~βω

)}
, (3.301)

which gives due to (3.284)

Qρ̂T (α) =
1

π

1

1 + 〈n̂〉T
exp

{
− |α|2 1

1 + 〈n̂〉T

}
. (3.302)

Thus, the thermal state looks like the vacuum state, which corresponds to 〈n̂〉T = 0, but is

wider by the factor
√

1 + 〈n̂〉T , see Fig. 3.12b).

We conclude this section with the radiation formula, whose derivation by Max Planck in 1900

marks the birth of quantum mechanics. It describes how much energy per volume and frequency

is radiated by a black body, see Fig. 3.10. To this end we have to multiply the energy ~ω of one

photon with both the mode density (2.251) and the Bose-Einstein distribution (3.281), yielding

U(ω) = ~ω · ω
2

π2c3
· 1

e~ω/kBT − 1
=

~ω3

π2c3

1

e~ω/kBT − 1
. (3.303)

This Planck law of black-body radiation is sketched in Fig. 3.13. In the classical limit ~ω � kBT
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Figure 3.13: Planck law of black-body radiation (3.303) together with the classical Rayleigh-

Jeans law (3.304) and the quantum mechanical Wien law (3.305).

one obtains the Rayleigh-Jeans law

URJ(ω) ≈ ω2kBT

π2c3
. (3.304)

It does not contain anymore the Planck constant ~ and follows from multiplying the mode den-

sity (2.251) with the average energy ~ω of a harmonic oscillator according to the equipartition

theorem of classical statistical mechanics. And in the quantum mechanical limit ~ω � kBT we

obtain from (3.303) the Wien law

UW(ω) ≈ ~ω3

π2c3
e−~ω/kBT . (3.305)

It is obtained from multiplying the quantum mechanical energy ~ω with the mode density

(2.251) and with a classical Boltzmann distribution.

Let us now investigate, where the maximal energy per volume occurs. This so-called Wien

displacement law turns out to exist in two different formulations. Extremizing (3.303) with

respect to the circular frequency ω yields for the dimensionless abbreviation x = ~ω/kBT the

transcendental equation

ex =
1

1− x/3
, (3.306)

which is solved by x1 ≈ 2.8214393721. Thus, in this case the Wien displacement law determines

the frequency for maximal energy according to

ωmax = x1
kBT

~
=⇒ νmax =

ωmax

2π
≈ 5.879 · 1010 Hz

T

K
. (3.307)

But, alternatively, we could also analyze the Planck law of black-body radiation (3.303) as a

function of wavelength λ, for which holds

U(λ) = U(ω)

∣∣∣∣dωdλ
∣∣∣∣ , (3.308)

so that we have the same amount of energy per volume in the frequency interval dω and in the

wavelength interval dλ, respectively. Taking into account the linear dispersion (2.73) yields

ω =
2πc

λ
=⇒

∣∣∣∣dωdλ
∣∣∣∣ =

2πc

λ2
(3.309)
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and we get from (3.308)

U(λ) =
16π2~c
λ5

1

e2π~c/kBTλ − 1
. (3.310)

Extremizing now (3.310) with respect to the wavelength λ and introducing the dimensionless

abbreviation x = 2π~c/kBTλ, we end up with a transcendental equation different from (3.306)

ex =
1

1− x/5
, (3.311)

which has the solution x2 ≈ 4.9651142317. As a consequence, the wavelength for maximal

energy leads to another form of the Wien displacement law:

λmax =
2π~c
x2kBT

=⇒ λmax ≈
2 898µm K

T
. (3.312)

Note that (3.307) and (3.312) represent different positions for the maximal energy, as they do

not fulfill the linear dispersion (3.309)

ωmax 6=
2πc

λmax

(3.313)

due to the fact that the functions U(ω) and U(λ) are related via the transformation law (3.308).

But (3.307) and (3.312) have in common to describe how the frequency and the wavelength

emitted most intensely by a black body shifts, i.e. is displaced, with the temperature, which is

why they are called to be a displacement law. For instance, this law may be used to determine

the temperature of bodies of stars by measuring the frequency or wavelength of their maximally

emitted energy. Inserting the solar surface temperature of T ≈ 6 000 K into the (3.312) we find

λmax ≈ 480 nm, which is approximately the wavelength of green light, whereas (3.307) yields

a frequency corresponding to about 830 nm, which is in the near infrared being invisible for

human beings.

The total average energy per volume follows then from integrating (3.303) over all frequencies:

U =

∫ ∞
0

dω
~ω3

π2c3

1

e~ω/kBT − 1
. (3.314)

Introducing as a dimensionless integration variable x = ~ω/kBT then converts (3.314) to

U =
k4

BT
4

π2~3c3
I , (3.315)

where the remaining integral reads

I =

∫ ∞
0

dx
x3

ex − 1
. (3.316)

According to Appendix B we obtain

I =
π4

15
, (3.317)

thus from (3.315) follows the Stefan-Boltzmann law:

U =
π2k4

BT
4

15~3c3
. (3.318)

It states that the energy U per volume of a black body increases with the fourth power of its

temperature T .



Chapter 4

Emission and Absorption of Light

by Matter

This chapter focuses on the intricate interaction between light and matter and, thus, represents

the main part of the whole quantum optics lecture. In Section 4.1 we start with outlining

general aspects. To this end the individual atoms are modelled quantum mechanically, but we

leave it open whether light is treated either classically or quantum mechanically. In particular,

we revisit the dipole approximation, which was already introduced in Subsection 2.18.6, and

show that it allows to simplify the light-matter interaction within the radiation gauge. As a

result we recognize that the electromagnetic field interacts effectively only with the electric field

via a coupling to the electric dipole moment of the matter.

Subsequently, the interaction of an atom with a classical and a quantum mechanical electric

field is treated perturbatively in Sections 4.2 and 4.3, respectively. In the classical case we

find that the probability for a transition does not depend upon whether the initial or the final

atomic state is energetically higher or lower. This symmetry is then broken in the quantum

mechanical case and, ultimately, leads to the three elementary processes for the interaction of

light and matter, which were discovered by Albert Einstein in 1916 within his rederivation of

the black-body radiation formula of Max Planck. Whereas absorption and induced emission

happen to be identical as a consequence of an incident electromagnetic wave, the spontaneous

emission can even occur randomly in the absence of any photons and, thus, is exclusively of

quantum mechanical origin.

These perturbative results are only valid provided that the population transfer between the

initial and the final state is small. Therefore, Sections 4.4 and 4.5 investigates the classical

or quantum mechanical light-matter interaction exactly. But one simplifies the analysis by

restricting oneself to light, which is approximately resonant to two atomic states, so that all

other atomic states can safely be neglected. The classical case represents the Rabi model,

which turns out to be formally equivalent to the interaction of a spin 1/2 with a magnetic field.

Thus, the transition between the two atomic states is described by the optical Bloch equations,
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whose solution we work out in detail. The corresponding quantum electrodynamic version of

the Rabi model is known as the Jaynes-Cummings model whose dynamics turns out to be more

intricate. For resonant light we find vacuum Rabi oscillations as well as the phenomenon of

collapse and revival. And for non-resonant light the dynamics is accessible on the basis of the

stationary states of the Jaynes-Cummings Hamiltonian, which are called dressed states. In the

case that the light is highly non-resonant a direct atomic transition does not occur, but an

effective dispersive interaction between a single atom a cavity field emerges. Finally, we discuss

in Section 4.6 an experimental realization for the Jaynes-Cummings model, which is provided

by a single Rydberg atom in a microwave cavity, and, thus, introduce the modern field cavity

quantum electrodynamics.

4.1 Light-Matter Interaction

At first we consider a single electron, which is bound to the atomic nucleus by a static, radial-

symmetric potential V (r) with r = |x|. In spatial representation the underlying Hamilton

operator is given by

Ĥ(0)(x) =
1

2M

(
~
i
∇
)2

+ V (r) . (4.1)

The time-independent Schrödinger equation

Ĥ(0)(x)ψ(0)
n (x) = E(0)

n ψ(0)
n (x) (4.2)

determines then for each discrete quantum number n both the energy eigenvalues E
(0)
n and the

stationary states ψ
(0)
n (x). Here we assume that the latter are both orthonormal∫

d3r ψ(0)∗
m (x)ψ(0)

n (x) = δm,n (4.3)

and complete ∑
n

ψ(0)∗
n (x)ψ(0)

n (x′) = δ(x− x′) . (4.4)

In the presence of an external vector potential A(x, t) and an external scalar potential ϕ(x, t),

the Hamilton operator (4.1) is extended via minimal coupling [21, Subsection 10.1.4] to

Ĥ(x, t) =
1

2M

[
~
i
∇ + eA(x, t)

]2

+ V (r)− eϕ(x, t) . (4.5)

Here we have used the International System of Units, which is abbreviated by SI from the

French Système international d’unités, and the charge q = −e of the electron, where e > 0

denotes the elementary charge. The corresponding electric and magnetic fields (2.10), (2.11)
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are invariant under the gauge transformation (2.14), (2.15), where Λ(x, t) denotes an arbi-

trary gauge function. In the presence of the external fields, the corresponding time-dependent

Schrödinger equation must be solved:

i~
∂ψ(x, t)

∂t
= Ĥ(x, t)ψ(x, t) . (4.6)

We now aim at simplifying the light-matter interaction. To this end we transform the wave

function according to

ψ′(x, t) = Û(x, t)ψ(x, t) ⇐⇒ ψ(x, t) = Û †(x, t)ψ′(x, t) (4.7)

with a unitary transformation

Û(x, t)Û †(x, t) = 1 . (4.8)

For the transformed wave function we then also obtain a time-dependent Schrödinger equation:

i~
∂ψ′(x, t)

∂t
= i~

∂Û(x, t)

∂t
ψ(x, t) + Û(x, t)Ĥ(x, t)ψ(x, t) = Ĥ ′(x, t)ψ′(x, t) , (4.9)

where the transformed Hamilton operator turns out to be

Ĥ ′(x, t) = Û(x, t)Ĥ(x, t)Û †(x, t) + i~
∂Û(x, t)

∂t
Û †(x, t) . (4.10)

Let us now choose the special unitary transformation

Û(x, t) = eieΛ(x,t)/~ , Û †(x, t) = e−ieΛ(x,t)/~ , (4.11)

which has due to (4.8) the properties

i~
∂Û(x, t)

∂t
Û †(x, t) = −e ∂Λ(x, t)

∂t
, (4.12)

Û(x, t)

[
~
i
∇ + eA(x, t)

]
Û †(x, t) =

~
i
∇ + eA(x, t)− e∇Λ(x, t) . (4.13)

Thus, with (4.12), (4.13) the transformed Hamiltonian operator (4.10) has the same form as the

original Hamiltonian operator (4.5), but contains instead of the original potentials the gauge

transformed potentials (2.14), (2.15):

Ĥ ′(x, t) =
1

2M

[
~
i
∇ + eA′(x, t)

]2

+ V (r)− eϕ′(x, t) . (4.14)

Without loss of generality we now choose the radiation gauge, i.e. we assume that the scalar

potential vanishes (2.24) and that the vector potential is transversal due to the Coulomb gauge

(2.16). In this radiation gauge, the original Hamilton operator (4.5) reads explicitly

Ĥ(x, t) = − ~2

2M
∆ +

e

M
A(x, t) · ~

i
∇ +

e2

2M
A2(x, t) + V (r) , (4.15)
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while the transformed Hamilton operator (4.10) is given by

Ĥ ′(x, t) =
1

2M

[
~
i
∇ + eA(x, t)− e∇Λ(x, t)

]2

+ V (r)− e ∂Λ(x, t)

∂t
. (4.16)

The light-matter interaction in the transformed Hamilton operator (4.16) can now be simplified

as follows. Outside the atom there are no sources for the electromagnetic field, i.e. the vector

potential satisfies the homogeneous wave equation in the radiation gauge (2.25), which has

fundamental solutions in form of plane waves

A(x, t) = A0 e
i(kx−ωt) + c.c. (4.17)

with the linear dispersion (2.73). In the optical range the estimate (2.254) holds, i.e. the

vector potential does not change over the extension of an atom and is, therefore, approximately

homogeneous, see Fig. 2.14. This leads to the so-called dipole approximation, where we can

approximately neglect the spatial dependence of the vector potential A(x, t) for spatial vectors

x pointing at the atomic electron:

A(x, t) ≈ A(t) . (4.18)

Furthermore, we choose as a gauge function Λ(x, t) = x · A(t), which has due to (2.11) and

(2.24) the properties

∇Λ(x, t) = A(t) ,
∂Λ(x, t)

∂t
= x · ∂A(t)

∂t
= −x · E(t) .

These considerations reduce the transformed Hamilton operator (4.16) to

Ĥ ′(x, t) = − ~2

2M
∆ + V (r) + ex · E(t) . (4.19)

In contrast to the original Hamilton operator (4.5), there is now only one term instead of two

that describes the light-matter interaction. With the definition of the electric dipole moment

of the electron

d = qx = −ex (4.20)

we finally obtain in dipole approximation:

Ĥ ′(x, t) = Ĥ(0)(x)− d · E(t) . (4.21)

The result (4.21) means that the electromagnetic field only interacts with the electric field via

a coupling to the electric dipole moment of the matter. As we have not yet specified explicitly

in this derivation of the light-matter interaction whether the electric field is to be treated

classically or quantum mechanically, this result holds in both cases.
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4.2 Interaction of Atom with Classical Field

We first consider a classical field

E(t) = E0 cos(ωt) (4.22)

with amplitude E0 and frequency ω that is suddenly switched on at time t = 0. We assume

that the atom at time t = 0 is in the initial state ψ
(0)
i (x), which fulfills the time-independent

Schrödinger equation:

Ĥ(0)(x)ψ
(0)
i (x) = E

(0)
i ψ

(0)
i (x) . (4.23)

For times t > 0 we expand the wave function ψ(x, t) with respect to all stationary states ψ
(0)
n (x)

due to their completeness (4.4):

ψ(x, t) =
∑
n

cn(t) e−iE
(0)
n t/~ ψ(0)

n (x) . (4.24)

Here, the time-dependent expansion amplitudes cn(t) satisfy the normalisation condition∑
n

|cn(t)|2 = 1 . (4.25)

Inserting this ansatz into the time-dependent Schrödinger equation

i~
∂ψ(x, t)

∂t
=
[
Ĥ(0)(x) + Ĥ(p)(t)

]
ψ(x, t) , (4.26)

where the perturbative Hamilton operator

Ĥ(p)(t) = −d · E(t) (4.27)

follows from (4.19), yields∑
n

i~
∂cn(t)

∂t
e−iE

(0)
n t/~ ψ(0)

n (x) =
∑
n

cn(t) e−iE
(0)
n t/~H(p)(t)ψ(0)

n (x) . (4.28)

Taking into account the orthonormality (4.3) of the stationary states ψ
(0)
n (x) then leads to

coupled first-order ordinary differential equations for the time-dependent expansion coefficients

i~
∂cn(t)

∂t
=
∑
m

eiω
(0)
nmtH(p)

nm(t)cm(t) (4.29)

with the matrix elements

H(p)
nm(t) =

∫
d3xψ(0)∗

n (x)Ĥ(p)(t)ψ(0)
m (x) (4.30)

and the transition frequencies

ωnm =
E

(0)
n − E(0)

m

~
. (4.31)
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As an initial condition we require that only the initial state i is occupied:

ci(0) = 1 ; cn(t) = 0 , for n 6= i . (4.32)

As time progresses, the state i becomes less occupied, while the occupation of a previously

unoccupied state f increases. The probability for a transition of the atom from state i to state

f at time t > 0 is given by

Pi→f (t) = |cf (t)|2 . (4.33)

The coupled equations (4.29) can only be solved analytically exactly in exceptional cases.

Therefore, numerical or analytical approximative solution methods are generically used. In the

case of time-dependent perturbation theory, it is assumed that the amplitude of the electric field

and, thus, the perturbative Hamilton operator Ĥ(p)(t) is small. Expanding the time-dependent

amplitudes perturbatively

cn(t) = c(0)
n (t) + c(1)

n (t) + c(2)
n (t) + . . . , (4.34)

then yields up to second order

∂c
(0)
n (t)

∂t
= 0 , (4.35)

∂c
(1)
n (t)

∂t
= − i

~
∑
m

eiωnmtH(p)
nm(t)c(0)

m (t) , (4.36)

∂c
(2)
n (t)

∂t
= − i

~
∑
m

eiωnmtH(p)
nm(t)c(1)

m (t) , (4.37)

which can be solved iteratively. In zeroth order we get

c(0)
n (t) = c(0)

n (0) = δni , (4.38)

while the first order results in

c(1)
n (t) = − i

~

∫ t

0

dt′eiωnit
′
H

(p)
ni (t′) . (4.39)

Correspondingly follows for the second order

c(2)
n (t) =

(
− i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′
∑
m

eiωnmt
′
H(p)
nm(t′)eiωmit

′′
H

(p)
mi (t

′′) . (4.40)

The total transition probability from the initial state i to the final state f is determined from

these expansion coefficients as follows:

Pi→f (t) =
∣∣∣c(0)
f (t) + c

(1)
f (t) + c

(2)
f (t) + . . .

∣∣∣2 . (4.41)

The electric dipole moment (4.20) and, thus, the perturbed Hamilton operator (4.27) have odd

parity, so that the diagonal matrix elements (4.30) vanish:

H(p)
nn (t) = 0 . (4.42)
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Therefore, the first-order correction (4.39) for the initial state i vanishes

c
(1)
i (t) = − i

~

∫ t

0

dt′H
(p)
ii (t′) = 0 (4.43)

and results in ci(t) = c
(0)
i (t) = 1 up to the first order. For the final state f , on the other hand,

we get

c
(1)
f (t) = − i

~

∫ t

0

dt′eiωfit
′
H

(p)
fi (t′) . (4.44)

With the electric field (4.22) and the perturbed Hamilton operator (4.27) follows then

c
(1)
f (t) =

i

2~
dfi · E0

∫ t

0

dt′
[
ei(ωfi+ω)t′ + ei(ωfi−ω)t′

]
, (4.45)

where the evaluation of the elementary integral yields

c
(1)
f (t) =

1

2~
dfi · E0

[
ei(ωfi+ω)t − 1

ωfi + ω
+
ei(ωfi−ω)t − 1

ωfi − ω

]
(4.46)

with the matrix element for the electric dipole moment of the electron (4.20)

dfi = −e
∫
d3xψ

(0)∗
f (x) xψ

(0)
i (x) . (4.47)

In the case ωfi > 0 the second term dominates, as it is resonant. Thus, one can neglect the

first term, as it is anti-resonant. This yields the so-called rotating wave approximation, which

is ubiquitous in quantum optics:

c
(1)
f (t) =

1

2~
dfi · E0

ei(ωfi−ω)t − 1

ωfi − ω
. (4.48)

Due to the initial condition c
(0)
f (t) = 0 we conclude that cf (t) = c

(1)
f (t) holds up to the first

order and that the transition probability (4.41) is given in lowest order according to

Pi→f (t) =
∣∣∣c(1)
f (t)

∣∣∣2 =
|dfi · E0|2

~2

sin2 (∆t/2)

∆2
. (4.49)

Here the detuning ∆ is defined by the difference between the frequency ω of the electromagnetic

field and the atomic frequency ωfi for the transition from the initial and to the final state

∆ = ω − ωfi . (4.50)

In the case of ∆ > 0 (∆ < 0) one speaks of blue (red) detuning, whereas ∆ = 0 denotes

the resonance case, see Fig. 4.1. At first we analyze the time dependence of the transition

probability Pi→f (t) in (4.49). For a non-vanishing detuning, i.e. ∆ 6= 0, its maximum occurs at

Max
t

Pi→f (t) = Pi→f

( π
∆

)
=
|dfi · E0|2

~2∆2
. (4.51)
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Figure 4.1: Definition of the detuning ∆ between the light field frequency ω and the atomic

transition frequency ωfi according to (4.50).

Figure 4.2: Time dependence of the transition probability (4.49).

In the resonance case ∆ = 0 we obtain instead that the transition probability (4.49) increases

quadratically with time t:

Pi→f (t) =
|dfi · E0|2 t2

4~2
, (4.52)

see Fig. 4.2. However, in order that this perturbative treatment remains valid, we have to

demand that Pi→f (t) must be small. In the non-resonant case ∆ 6= 0 this leads due to (4.51)

to a minimal value for the absolute value of the detuning ∆, namely

Max
t

Pi→f (t)� 1 =⇒ |dfi · E0|
~

� |∆| , (4.53)

while in the resonant case ∆ = 0 we read off from (4.52) that one is restricted to short times:

Pi→f (t)� 1 =⇒ t� 2~
|dfi · E0|

. (4.54)

Considering the transition probability (4.49) as a function of the detuning ∆, we are reminded

of a slit diffraction function, see Fig. 4.3. In particular, the transition probability Pi→f (t) has

a sharp maximum at ∆ = 0 with a height proportional to t2 and a width proportional to 1/t.

Thus, the area under the curve increases linearly with t:∫ ∞
−∞

d∆
sin2 (∆t/2)

∆2
=
t

2

∫ ∞
−∞

dx
sin2 x

x2
=
πt

2
. (4.55)
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Figure 4.3: Dependence of the transition probability (4.49) as a function of the detuning ∆.

Here we applied the substitution x(∆) = ∆t/2 and used the definite integral∫ ∞
−∞

dx
sin2 x

x2
= π , (4.56)

which is derived in Appendix E. From Fig. 4.3 and (4.55) we then conclude the following

representation of the delta function:

lim
t→∞

sin2 (∆t/2)

∆2
=
πt

2
δ(∆) . (4.57)

Thus, taking into account the definition of the detuning in (4.50), the transition probability

(4.49) converges in the long-time limit t→∞ towards a delta function:

Pi→f (t)→
πt |dfi · E0|2

2~2
δ(ω − ωfi) , t→∞ . (4.58)

This suggests to introduce in the long-time limit t→∞ a transition rate:

Wi→f = lim
t→∞

Pi→f (t)

t
=
π |dfi · E0|2

2~2
δ(ω − ωfi) . (4.59)

In practice, however, there will be several final states f , so that the respective transition rates

have to be summed up, see Fig. 4.4:

Wi→[f ] =
π

2

∑
[f ]

|dfi · E0|2

~2
δ(ω − ωfi) . (4.60)

This result is referred to in the literature as Fermi’s golden rule. In practice, however, it can

also be that the incoming light consists of different frequency components, so that the field

amplitude E0(ω) becomes frequency dependent. In this case, we obtain for the transition rate

Pi→f (t)

t
=

1

~2

∫ ∞
−∞

dω |dfi · E0(ω)|2 sin2 [(ω − ωfi)t/2]

(ω − ωfi)2t
. (4.61)

Provided that E0(ω) is varying slowly, we obtain due to (4.57) in the limit t→∞ the transition

rate

Wi→f =
π

2~2
|dfi · E0(ωfi)|2 . (4.62)
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Figure 4.4: Summing the transition rates in (4.60) over all possible final states f .

4.3 Interaction of Atom with Quantised Field

For an atom interacting with a classical light field it does not matter whether the initial or the

final state has a lower energy, i.e. the transition probabilities for an absorption or an emission of

light coincide. But for the interaction of an atom with a quantised light field it turns out that

the symmetry between absorption and emission of light is broken. In particular, an emission can

occur even when no photons are present at all, i.e. in vacuum. This means that this so-called

spontaneous emission is exclusively of quantum mechanical nature.

4.3.1 Einstein Elementary Processes

We start with considering the electric field strength (2.168) in second quantisation in vacuum,

where we have continuous wave vectors k. In a cavity with finite volume V , on the other hand,

the wave vectors k are discrete. Thus, if we go over from the vacuum to a cavity with finite

volume V , the following substitution rule applies:∫
d3k

1√
(2π)3

=⇒
∑
k

1√
V
. (4.63)

Furthermore, in the dipole approximation (4.18), the spatial dependence of the plane wave can

be neglected as the wavelength is large in comparison with the atomic dimension, see Fig. 2.14.

This reduces the quantised electric field strength (2.168) according to

Ê(t) = i
∑
λ=±1

∑
k

√
~ωk

2V ε0

{
ε(k, λ)e−iωktâk,λ − ε∗(k, λ)eiωktâ†k,λ

}
. (4.64)

In the following, we limit ourselves for the sake of simplicity to a single mode and obtain

Ê(t) = iε0

(
e−iωtâ− eiωtâ†

)
, (4.65)

where the amplitude vector is given by

ε0 =

√
~ω

2V ε0
ε . (4.66)
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Note that we have omitted in this notation both the wave vector k and the polarization λ of the

mode, which we consider. Furthermore, (4.65) represents the electric field strength operator

in the Heisenberg picture. Accordingly, the interaction Hamiltonian (4.27) in the Schrödinger

picture reads

Ĥ(p) = −id · ε0

(
â− â†

)
, (4.67)

so it has no longer an explicit time dependence. The unperturbed Hamilton operator, however,

is now composed of that of the atom Ĥ
(0)
atom as in (4.1) and that of the light field

Ĥ
(0)
field = ~ωâ†â , (4.68)

where the zero-point energy was omitted without loss of generality:

Ĥ(0) = Ĥ
(0)
atom + Ĥ

(0)
field . (4.69)

The solutions of the unperturbed eigenvalue problem

Ĥ(0) |ψ(0)〉 = E(0) |ψ(0)〉 (4.70)

consist now of product states of atom and light

|ψ(0)〉 = |ψ(0)
atom〉 |ψ

(0)
field〉 , (4.71)

whereas the energy eigenvalues are correspondingly additive:

E(0) = E
(0)
atom + E

(0)
field . (4.72)

In particular, we are interested in the following unperturbed solutions. At first we characterize

the initial state to consist of the atom being in some state a and n photons representing the

field state:

|i0〉 = |a〉 |n〉 , E
(0)
i = Ea + n~ω . (4.73)

Then we have two options for the final state, where the atom is in another state b. In case of

Eb > Ea and Eb < Ea the process of a photon absorption and emission has occurred, so that

the field state consists of n− 1 and n+ 1 photons, respectively:

|f (0)
1 〉 = |b〉 |n− 1〉 , E

(0)
f1

= Eb + (n− 1)~ω , (4.74)

|f (0)
2 〉 = |b〉 |n+ 1〉 , E

(0)
f2

= Eb + (n+ 1)~ω . (4.75)

The perturbation theory of the previous section can now be applied as follows. The solution of

the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 =

[
Ĥ(0) + Ĥ(p)

]
|ψ(t)〉 (4.76)
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a) b)

Figure 4.5: Elementary photon processes: a) Absorption of a photon for ωba > 0 with ω = ωba.

b) Emission of a photon for ωba = −|ωba| < 0 with ω = −ωba = |ωba|.

reads

|ψ(t)〉 = ci(t) |a〉 |n〉 e−i(Ea+n~ω)t/~ (4.77)

+cf1(t) |b〉 |n− 1〉 e−i[Eb+(n−1)~ω]t/~ + cf2(t) |b〉 |n+ 1〉 e−i[Eb+(n+1)~ω]t/~ ,

where the initial condition |ψ(0)〉 = |a〉 |n〉 leads in zeroth order to the coefficients

ci(0) = c
(0)
i (t) = 1 , cf1(0) = c

(0)
f1

(t) = 0 , cf2(0) = c
(0)
f2

(t) = 0 . (4.78)

In first order perturbation theory we then obtain for the transitions according to (4.44):

c
(1)
f1

(t) = − i
~

∫ t

0

dt′ e
iE

(0)
f1i
t′/~

H
(p)
f1i

(t′) , (4.79)

c
(1)
f2

(t) = − i
~

∫ t

0

dt′ e
iE

(0)
f2i
t′/~

H
(p)
f2i

(t′) . (4.80)

Here we obtain from (4.73)–(4.75) both the energy differences

E
(0)
f1i

= E
(0)
f1
− E(0)

i = [Eb + (n− 1)~ω]− (Ea + n~ω) = Eb − Ea − ~ω , (4.81)

E
(0)
f2i

= E
(0)
f2
− E(0)

i = [Eb + (n+ 1)~ω]− (Ea + n~ω) = Eb − Ea + ~ω (4.82)

and the matrix elements of (4.67)

H
(p)
f1i

(t) = 〈f (0)
1 |Ĥ(p)(t)|i〉 = 〈b| 〈n− 1| (−i)d · ε0

(
â− â†

)
|a〉 |n〉 = −idba · ε0

√
n , (4.83)

H
(p)
f2i

(t) = 〈f (0)
2 |Ĥ(p)(t)|i〉 = 〈b| 〈n+ 1| (−i)d · ε0

(
â− â†

)
|a〉 |n〉 = idba · ε0

√
n+ 1 (4.84)

with the dipole matrix element

dba = 〈b|d |a〉 . (4.85)

Thus, (4.79) and (4.80) describe the absorption and the emission of a photon respectively, see

Fig. 4.5. For large photon numbers n, the matrix elements of absorption (4.83) and emission

(4.84) are equal. This corresponds to the classical limiting case of the previous section. But

for small photon numbers n the matrix elements of absorption (4.83) and emission (4.84) are

different. In the extreme case of the vacuum, when there are no photons at all, i.e. n = 0, even

no absorption occurs but the so-called spontaneous emission is still present. Thus, in the factor√
n+ 1 of the matrix element of emission (4.84) one distinguishes between the term n, which
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describes the induced emission, and the term 1, which is due to the spontaneous emission. Note

that the induced emission plays an important role, for example, for the LASER, which is an

acronym for Light Amplification by Stimulated Emission of Radiation.

We consider now the probability amplitude for the atomic transition from |a〉 to |b〉, i.e. c
(1)
f (t) =

c
(1)
f1

(t) + c
(1)
f2

(t), and obtain from (4.79)–(4.84)

c
(1)
f (t) = − i

~
idba · ε0

[√
n+ 1

∫ t

0

dt′ ei(ωba+ω)t′ −
√
n

∫ t

0

dt′ ei(ωba−ω)t′
]

(4.86)

with the corresponding atomic transition frequency

ωba =
Eb − Ea

~
. (4.87)

An evaluation of the integrals yields:

c
(1)
f (t) = − i

~
dba · ε0

[√
n+ 1

ei(ωba+ω)t − 1

ωba + ω
−
√
n
ei(ωba−ω)t − 1

ωba − ω

]
. (4.88)

We observe that two resonances ωba± ω = 0 occur. The first term in (4.88) corresponds to the

resonance ωba + ω = 0 and occurs for the emission, whereas the second term is resonant for

ωba − ω = 0 and describes the absorption, see Fig. 4.5. Furthermore, we recognize for the case

ω ≈ ωba that the absorption dominates and the emission can be neglected, whereas, conversely,

for the case of ω ≈ −ωba the emission dominates and the absorption can be neglected.

The comparison with the classical result of the previous section for large photon numbers n

shows the following useful correspondence. The classical amplitude E0 in (4.48) corresponds

due to the rotating wave approximation and (4.88) in case of the absorption to the quantum

mechanical expression

E0,abs. = 2i
√
nε0 , (4.89)

whereas for the emission holds

E0,emis. = −2i
√
n+ 1ε0 . (4.90)

With this correspondence at hand Fermi’s golden rule can directly be transferred to the quan-

tized light field. For instance, for slowly varying amplitudes ε0(ω) we obtain for the transition

rates (4.62) of absorption and emission the ratio

Wabs.

Wemis.

=
|dba · E0,abs.|2

|dba · E0,emis.|2
=

n

n+ 1
. (4.91)

Thus we conclude that the emission rate is always larger than the absorption rate.
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4.3.2 Derivation of Spontaneous Emission Rate

We derived in (4.59) in the long-time limit t→∞ the transition rate Wi→f for one field mode

in form of Fermi’s golden rule, which contains the classical electric field strength E0. According

to (4.66) and (4.90) the amplitude of the quantized electric field in vacuum, where we have

n = 0, corresponds to the classical electric field strength for spontaneous emission:

E0,spon.emis. = −2i

√
~ω

2V ε0
ε . (4.92)

Inserting (4.92) into (4.59) and summing over the degrees of freedom k and λ of the quantised

light field, which have been omitted temporarily in order to simplify the notation, we obtain

for the spontaneous emission rate

Wspon.emis. =
∑
k

∑
λ

πωk |dfi · ε(k, λ)|2

V ~ε0
δ(ωk − ωfi) . (4.93)

In the continuum limit we take into account the substitution rule (4.63), so the sum over all

wave vectors k in (4.93) becomes the integral

Wspon.emis. =

∫
d3k

(2π)3

∑
λ

πωk |dfi · ε(k, λ)|2

~ε0
δ(ωk − ωfi) . (4.94)

Due to the linear dispersion (2.73) the three-dimensional integral can be calculated in spherical

coordinates as follows:

Wspon.emis. =
∑
λ

∫ ∞
0

dω
ω2

8π3c3

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ
πω |dfi · ε(k, λ)|2

~ε0
δ(ω − ωfi) . (4.95)

The frequency integral can be calculated exactly due to the delta function:

Wspon.emis. =
ω3
fi

8π2~ε0c3

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ
∑
λ

|dfi · ε(k, λ)|2 . (4.96)

The sum over all polarization degrees of freedom gives:∑
λ

|dfi · ε(k, λ)|2 = (dfi)k(dfi)l
∑
λ

εk(k, λ)ε∗l (k, λ) . (4.97)

As both polarization vectors ε(k, λ) and the direction of propagation k/k represent a basis in

the three-dimensional configuration space, we conclude from their completeness relation

∑
λ

|dfi · ε(k, λ)|2 = (dfi)k(dfi)l

(
δkl −

kkkl
k2

)
= d2

fi −
(dfi · k)2

k2
. (4.98)
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This result can also directly be obtained by using the explicit representation of the polarisation

vectors from (2.116):∑
λ

εk(k, λ)ε∗l (k, λ) = εk(k,+1)ε∗l (k,+1) + εk(k,−1)ε∗l (k,−1)

=
1

2

 cosϑ cosϕ+ i sinϕ

cosϑ sinϕ− i cosϕ

− sinϑ

 (cosϑ cosϕ− i sinϕ , cosϑ sinϕ+ i cosϕ , − sinϑ) + c.c

=

 1 0 0

0 1 0

0 0 0

−
 sin2 ϑ cos2 ϕ sin2 ϑ sinϕ cosϕ sinϑ cosϑ cosϕ

sin2 ϑ sinϕ cosϕ sin2 ϑ sin2 ϕ sinϑ cosϑ sinϕ

sinϑ cosϑ cosϕ sinϑ cosϑ sinϕ cos2 ϑ

 . (4.99)

Without loss of generality, we now assume that the electric dipole moment points in z-direction,

i.e.

dfi = dfiez , (4.100)

so that (4.98) reduces to∑
λ

|dfi · ε(k, λ)|2 = d2
fi

(
1− cos2 ϑ

)
= d2

fi sin
2 ϑ . (4.101)

The remaining angular integrals lead to the following expression for the rate of spontaneous

emission:

Wspon.emis. =
ω3
fid

2
fi

4π~ε0c3

∫ π

0

dϑ sin3 ϑ =
ω3
fid

2
fi

12π~ε0c3

[
− 2 cosϑ− cosϑ sin2 ϑ

]π
0

=
ω3
fid

2
fi

3π~ε0c3
. (4.102)

Thus it depends on the properties of the initial and the final atomic state via the cubic power

of the atomic frequency ωfi defined in (4.31) and the square of the electric dipole moment dfi.

4.3.3 Calculation of Spontaneous Emission Rate

At first, we estimate the order of magnitude of this spontaneous emission rate. To this end we

approximate the electric dipole moment according to dfi ∼ eaB with the Bohr radius aB, which

is introduced in (C.8), and the atomic frequency ωfi, which is estimated to be of the order

α2c/λC according to (C.16). With this and taking into account the Sommerfeld fine-structure

constant (C.11) we get for the spontaneous emission rate (4.102):

Wspon.emis. ∼
α4

λ2
C

e2a2
B

~ε0c
ωfi ∼ α3 ωfi ∼ 10−6 ωfi . (4.103)

This means that the spontaneous emission rate is quite small in comparison with the reso-

nance frequency ωfi. Only after 106 orbits of the electron around the hydrogen atom does the

spontaneous emission occur. The lifetime is therefore of the order

τ ∼ 1

Wspon.emis.

∼ 106

103 THz
=

106

103 · 1012
s = 10−9 s = 1 ns . (4.104)
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Figure 4.6: Spontaneous transition from the 2p to the 1s-state of the hydrogen atom in accor-

dance with the selection rules (4.106).

Let us now look at a concrete example for a spontaneous emission process. For this purpose

we recall the selection rules for electric dipole transitions in the hydrogen atom. They follow

from the dipole matrix elements

dfi = e

∫
d3xψ∗nf lfmf (x) xψnilimi(x) , (4.105)

where ψnlm(x) denote the wave function of the electron in the hydrogen atom in spherical

coordinates with the main quantum number n, the angular quantum number l, and the magnetic

quantum number m. In Appendix F we prove that the z-component of the dipole matrix

elements (4.105) is different from zero only provided that the selection rules

∆l = lf − li = ±1 , ∆m = mf −mi = 0 (4.106)

are fulfilled. As a concrete example for the selection rules (4.106) we determine the lifetime of

the 2p-state with m = 0 in the hydrogen atom against the decay into the 1s-state as depicted

in Fig. 4.6, where we have ∆l = −1 and ∆m = 0. Thus, the wave functions being involved in

the transition have the explicit form [40, Tab. 9.1]

ψ210(r, ϑ, ϕ) =
1

8
√
πa3

B

r

aB

e−r/2aB
√

2 cosϑ , (4.107)

ψ100(r, ϑ, ϕ) =
1√
πa3

B

e−r/aB . (4.108)

Taking into account the energy eigenvalues of the hydrogen atom (C.12), the corresponding

frequency for this transition is given by

ωfi =
E2p − E1s

~
=

Ry

~

(
−1

4
+ 1

)
=

3Ry

4~
=

3Mc2

8~
α2 , (4.109)

where we have used (C.14) in the last step.

Now we calculate the dipole matrix element dfi = ezfiez with the matrix element

zfi =

∫
d3xψ∗100(r, ϑ, ϕ) z ψ210(r, ϑ, ϕ) . (4.110)

Inserting therein the respective wave functions (4.107), (4.108) we get

zfi =

∫ ∞
0

drr2

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ
1

8
√
πa3

B

r

aB

e−r/2aB
√

2 cosϑ r cosϑ
1√
πa3

B

e−r/aB . (4.111)
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Figure 4.7: Emission and absorption processes between the states |a〉 , |b〉 determine the number

of atoms Na, Nb according to the classical rate equations (4.115), (4.116).

Evaluating both the angular and the radial integrals yields

zfi = 4
√

2

(
2

3

)5

aB . (4.112)

Inserting (4.109) and dfi = ezfiez with (4.112) into (4.102) yields the spontaneous emission

rate for this specific decay:

W2p→1s = 8

(
2

3

)8
cα4

aB

= 5 · 109 1

s
. (4.113)

This means that the lifetime of the 2p-state compared to the spontaneous decay into the 1s-state

amounts to 0.2 ns, which is compatible with the previous estimate of the order of magnitude in

(4.104).

4.3.4 Planck Radiation Formula

With the obtained knowledge we are now in a position to rederive the back-body radiation

formula of Max Planck in (3.303) from a different point of view. To this end we assume that

the atoms in the walls of the black body, see Fig. 3.10b), interact resonantly with the quantised

light field, i.e. the frequency ω of the light field coincides with the transition frequency (4.87):

ω =
Eb − Ea

~
. (4.114)

Denoting with Na, Nb the number of atoms in the states |a〉 , |b〉 and representing the absorption

and emission rates by Wabs. and Wemis., respectively, we can write down classical rate equations

according to Fig. 4.7 as follows:

dNa

dt
= −Wabs.Na +Wemis.Nb , (4.115)

dNb

dt
= Wabs.Na −Wemis.Nb . (4.116)

Thus, the total number of atoms is conserved with time, i.e. an increase of the number of atoms

in state |a〉 corresponds to a decrease of the number of atoms in state |b〉 and vice versa:

dNa

dt
= −dNb

dt
. (4.117)
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For the steady state then follows from (4.115) and (4.116):

dNa

dt
=
dNb

dt
= 0 =⇒ Na

Nb

=
Wemis.

Wabs.

. (4.118)

In thermal equilibrium, the different occupations of the states Na, Nb are given by a Boltz-

mann distribution according to Na ∼ e−Ea/kBT , Nb ∼ e−Eb/kBT , so we have with the resonance

condition (4.114)

Na

Nb

= e(Eb−Ea)/kBT = e~ω/kBT , (4.119)

On the other hand, we have obtained in (4.91) the result that the ratio of absorption and

emission rate is determined by the photon number n. Thus, combining the equations (4.91)

and (4.119) yields the Bose-Einstein distribution (3.281) with n representing the average photon

number:

n+ 1 = ne~ω/kBT =⇒ n =
1

e~ω/kBT − 1
. (4.120)

We now compare this derivation with the corresponding one of Albert Einstein from 1916. Here,

the spontaneous and induced emission as well as the absorption are considered as the elementary

processes for the interaction of light and matter, which are characterized by corresponding rate

coefficients A, B, and C. The rate equation for the occupation of |a〉 then reads

dNa

dt
= [A+BU(ω)]Nb − CU(ω)Na , (4.121)

where the energy density U(ω) in the cavity enhances both the induced emission rate and the

absorption rate. Furthermore, due to the conservation of the total number of atoms (4.117),

the rate equation for the occupation of |b〉 then follows as

dNb

dt
= − [A+BU(ω)]Nb + CU(ω)Na . (4.122)

The equilibrium is then characterized by

[A+BU(ω)]Nb = CU(ω)Na =⇒ Na

Nb

=
A+BU(ω)

CU(ω)
= e~ω/kBT , (4.123)

where we have assumed again (4.119). Thus, the energy density is determined according to

A+BU(ω) = CU(ω)e~ω/kBT =⇒ U(ω) =
A/B

e~ω/kBTC/B − 1
. (4.124)

A comparison of the energy density (4.124) with the Planck radiation formula (3.303) then

yields the following conclusions:

• The induced emission rate BU(ω) and the absorption rate CU(ω) coincide, so the Einstein

coefficients B and C are equal:

B = C . (4.125)
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• The ratio of the Einstein coefficients for spontaneous and induced emission is determined

by

A

B
=

~ω3

πc3
. (4.126)

Thus, taking into account (3.303) and (4.126), the ratio of the spontaneous and the induced

emission rates leads to

A

BU(ω)
= e~ω/kBT − 1 . (4.127)

For the temperature T = 6000 K at the surface of the sun the wavelengths 400 nm and 700 nm

yield for the ratio (4.127) the values 400 and 30, respectively. Thus, in that case the spontaneous

emission rate dominates the induced emission rate.

4.4 Rabi Model

In the perturbative treatment of the light-matter interaction one assumes that the occupation

of the atomic initial state does not change and that the probability amplitude for the transition

to another atomic state remains to be small. These assumptions are certainly justified as long

as the amplitude of the light field is not too large. On the other hand, shining in a strong

laser field with a frequency, that is resonant to an atomic transition, certainly leads to a large

population transfer. In this case, one cannot apply perturbation theory. Instead, one limits

oneself to two atomic states and treats their interaction with the light field exactly. In the case

of a classical light field, one speaks of the Rabi model, since it was introduced by Isidor Isaac

Rabi in the context of magnetic resonance.

4.4.1 Treatment of Rabi Model

We approximate an atom by a two-level system, which consists according to Fig. 4.8 of the

ground state of energy Eg and an excited state of energy Ee, so that the atomic transition

frequency is given by

ω0 =
Ee − Eg

~
. (4.128)

Provided that the atom is irradiated with a light field of the frequency ω, this leads to the

detuning

∆ = ω − ω0 . (4.129)

The underlying Hamiltonian decomposes according to

Ĥ(t) = Ĥ(0) + Ĥ(p)(t) . (4.130)



110 CHAPTER 4. EMISSION AND ABSORPTION OF LIGHT BY MATTER

Figure 4.8: Sketch of Rabi model containing the two energies Eg, Ee as well as the atomic

transition frequency (4.128), the light frequency ω, and the dentuning (4.129).

Here the Hamiltonian of the two-level system reads

Ĥ(0) = Eg |g〉 〈g|+ Ee |e〉 〈e| , (4.131)

where the states |g〉, |e〉 are supposed to be orthonormal:

〈g|g〉 = 1 = 〈e|e〉 , 〈g|e〉 = 0 = 〈e|g〉 . (4.132)

And the Hamiltonian, which describes the interaction of this two-level system with the light

field, is given in dipole approximation due to (4.21) by

Ĥ(p)(t) = V̂0 cos(ωt) , V̂0 = −d̂ · E0 . (4.133)

Accordingly, the time-dependent Schrödinger equation must be solved:

i~
∂

∂t
|ψ(t)〉 =

[
Ĥ(0) + Ĥ(p)(t)

]
|ψ(t)〉 . (4.134)

Since only two atomic levels are considered, the general ansatz for the wave function is of the

form

|ψ(t)〉 = cg(t)e
−iEgt/~ |g〉+ ce(t)e

−iEet/~ |e〉 . (4.135)

In case that the system is in the state |g〉 at time t = 0, the initial conditions read

cg(0) = 1 , ce(0) = 0 . (4.136)

Inserting the ansatz (4.135) into the time-dependent Schrödinger equation (4.134) we obtain

i~
∂cg(t)

∂t
e−iEgt/~ |g〉+ i~

∂ce(t)

∂t
e−iEet/~ |e〉

= cg(t)V̂0 cos(ωt) e−iEgt/~ |g〉+ ce(t)V̂0 cos(ωt) e−iEet/~ |e〉 . (4.137)

Multiplying with 〈g| and 〈e| projects (4.137) to the corresponding contributions of the ground

and the excited state, respectively. As a result we obtain a closed system of two first-order

differential equations, which determine the dynamics of the expansion coefficients cg(t), cg(t):

i~
∂cg(t)

∂t
= cos(ωt)

[
〈g| V̂0 |g〉 cg(t) + 〈g| V̂0 |e〉 e−i(Ee−Eg)t/~ ce(t)

]
, (4.138)

i~
∂ce(t)

∂t
= cos(ωt)

[
〈e| V̂0 |g〉 ei(Ee−Eg)t/~ cg(t) + 〈e| V̂0 |e〉 ce(t)

]
. (4.139)
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For symmetry reasons the matrix elements of the interaction with the same states disappear

〈g| V̂0 |g〉 = 0 = 〈e| V̂0 |e〉 , (4.140)

and for the non-vanishing matrix elements we introduce for brevity the abbreviations

V0eg = 〈e| V̂0 |g〉 , V0ge = 〈g| V̂0 |e〉 . (4.141)

Furthermore, we conclude from the hermiticity of the interaction (4.133), i.e. V̂0 = V̂ †0 :

V0ge = 〈V̂0e|g〉
∗

= 〈e| V̂0 |g〉∗ = V ∗0eg . (4.142)

Taking also the transition frequency (4.128) into account, the system of differential equations,

which has finally to be solved, reads:

i~
∂cg(t)

∂t
= V ∗0eg cos(ωt) e−iω0t ce(t) , (4.143)

i~
∂ce(t)

∂t
= V0eg cos(ωt) eiω0t cg(t) . (4.144)

It can be straight-forwardly transformed into

ċg(t) = − i

2~
V ∗0eg

[
ei(ω−ω0)t + e−i(ω+ω0)t

]
ce(t) , (4.145)

ċe(t) = − i

2~
V0eg

[
ei(ω+ω0)t + e−i(ω−ω0)t

]
cg(t) . (4.146)

In the vicinity of the resonance ω ≈ ω0 we recognize that there is, on the one hand, a slow

time dependence due to the term e±i(ω−ω0)t and, on the other hand, a fast time dependence

due to the term e±i(ω+ω0)t. The latter is neglected within the framework of the rotating wave

approximation, yielding:

ċg(t) = − i

2~
V ∗0eg e

i(ω−ω0)t ce(t) , (4.147)

ċe(t) = − i

2~
V0eg e

−i(ω−ω0)t cg(t) . (4.148)

Now the expansion coefficient cg(t) is eliminated, resulting in a single differential equation of

second order with constant coefficients for ce(t):

c̈e(t) + i(ω − ω0)ċe(t) +
|V0eg|2

4~2
ce(t) = 0 . (4.149)

The exponential solution ansatz ce(t) = eλt then leads to the characteristic equation

λ2 + i∆λ+
|V0eg|2

4~2
= 0 , (4.150)

where we used the detuning defined in Eq. (4.129). This quadratic equation has the following

two solutions for the characteristic exponents:

λ± =
i

2

−∆±

√
∆2 +

|V0eg|2

~2

 . (4.151)
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Here the Rabi frequency

ΩR =

√
∆2 +

|V0eg|2

~2
(4.152)

occurs in the difference of both characteristic exponents according to

λ+ − λ− = iΩR , (4.153)

so that (4.151) reduces to

λ± =
i

2
(−∆± ΩR) . (4.154)

The general solution for ce(t) follows now from a linear combination of the two fundamental

solutions

ce(t) = A+ e
λ+t + A− e

λ−t . (4.155)

From ce(t) we then obtain cg(t) from (4.148) and (4.155) according to

cg(t) =
2i~
V0eg

ei∆t ċe(t) =
2i~
V0eg

ei∆t
(
λ+A+ e

λ+t + λ−A− e
λ−t
)
. (4.156)

Implementing the initial conditions (4.136) yields from (4.155) and (4.156)

cg(0) =
2i~
V0eg

(λ+A+ + λ−A−) = 1 , (4.157)

ce(0) = A+ + A− = 0 (4.158)

They represent a linear inhomogeneous system of equations for the yet unknown expansion

coefficients A+, A−  2i~
V0eg

λ+
2i~
V0eg

λ−

1 1

( A+

A−

)
=

(
1

0

)
, (4.159)

which has due to (4.153) the solution

(
A+

A−

)
=

V0eg

2i~(λ+ − λ−)

 1 − 2i~
V0eg

λ−

−1
2i~
V0eg

λ+


(

1

0

)
=

V0eg

2~ΩR

(
−1

1

)
. (4.160)

Thus, the expansion coefficients are determined by

A+ = − V0eg

2~ΩR

, A− =
V0eg

2~ΩR

. (4.161)

Inserting (4.161) into (4.155) we yield for the amplitude ce(t)

ce(t) = i
V0eg

~ΩR

e−i∆t/2 sin

(
ΩR

2
t

)
. (4.162)
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a) b)

Figure 4.9: Probability (4.164) to find the atom in state |e〉: a) Oscillations occur with half

the Rabi frequency (4.152); b) Decreasing the detuning ∆ increases both the period and the

amplitude of the Rabi oscillations.

With this we obtain for the amplitude cg(t) according to (4.156):

cg(t) = ei∆t/2
[
cos

(
ΩR

2
t

)
− i ∆

ΩR

sin

(
ΩR

2
t

)]
. (4.163)

The probability, that the atom is in state |e〉, is then given by

Pe(t) = |ce(t)|2 =

(
|V0eg|
~ΩR

)2

sin2

(
ΩRt

2

)
(4.164)

and oscillates at half the Rabi frequency (4.152), see Fig. 4.9a). Furthermore, we can discuss the

dependence of these Rabi oscillations on the detuning ∆. To this end we get for the amplitude

of the Rabi oscillations from (4.164) by taking into account (4.152):(
|V0eg|
~ΩR

)2

=
1

1 + (~∆/ |V0eg|)2 . (4.165)

Thus, for smaller detuning both the amplitude and the period of the Rabi oscillations becomes

larger as is indicated in Fig. 4.9b).

In the resonance case, where the detuning disappears, i.e. ∆ = 0, we decompose the dipole

matrix element into absolute value and phase according to

V0eg = |V0eg| eiϕ0eg , (4.166)

and read off from (4.162) and (4.163):

cg(t) = cos

(
|V0eg|

2~
t

)
, ce(t) = ieiϕ0eg sin

(
|V0eg|

2~
t

)
. (4.167)

Thus, after the time tπ = π~/|V0eg| the atomic population is in the excited state:

cg (tπ) = 0 , ce (tπ) = ieiϕ0eg , (4.168)

which corresponds to the probabilities

Pg(tπ) = |cg(tπ)|2 = 0 , Pe(tπ) = |ce(tπ)|2 = 1 . (4.169)
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In the context of nuclear magnetic resonance (NMR) this represents a π-pulse. On the other

hand, considering the time tπ
2

= π~/2 |V0eg|, we obtain instead

cg
(
tπ

2

)
=

1√
2
, ce

(
tπ

2

)
=

i√
2
eiϕ0eg , (4.170)

which leads to the probabilities

Pg(tπ
2
) =

∣∣cg(tπ
2
)
∣∣2 =

1

2
, Pe(tπ

2
) =

∣∣ce(tπ
2
)
∣∣2 =

1

2
. (4.171)

This means that the both states |g〉 and |e〉 are equally occupied:

|ψ(tπ
2
)〉 =

1√
2

(
|g〉 − ieiϕ0eg |e〉

)
, (4.172)

and one then speaks of a π/2-pulse. Such π- and π/2-pulses are standard methods for manip-

ulating spin states not only in NMR but are also applied in many atomic and ionic systems.

The non-perturbative treatment of the Rabi model goes over into the perturbative result of

Section 4.2 in case of a weak light field, where we have

|V0eg|
~
� ∆ . (4.173)

Then we get from (4.152) approximately ΩR ≈ ∆, so that the amplitudes (4.162) and (4.163)

reduce to

cg(t) ≈ ei∆t/2
[
cos

(
∆t

2

)
− i sin

(
∆t

2

)]
= 1 , (4.174)

ce(t) ≈ i
V0eg

~∆
e−i∆t/2 sin

(
∆t

2

)
. (4.175)

Thus, the expansion coefficients (4.174) and (4.175) agree with the previous results (4.43) and

(4.48), where in the latter case the detuning (4.129) has to be taken into account. Indeed,

the coefficient (4.175) is small because |V0eg| /~ is assumed to be small in comparison with the

detuning ∆ according to (4.173).

4.4.2 Translation of Rabi Model into Spin 1/2 System

As we consider the atomic system to be a two-level system, its two states |g〉 and |e〉 can be

formally identified with a spin down and a spin up state as follows:

|g〉 =

(
0

1

)
, |e〉 =

(
1

0

)
. (4.176)

Correspondingly, projecting the Hamilton operator Ĥ(0) onto these two states, it can be repre-

sented by a 2× 2-matrix H(0). To this end we take advantage of the fact that the unit matrix

and the Pauli matrices together represent a basis in the space of complex-valued 2×2-matrices:

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (4.177)
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a) b)

Figure 4.10: Unperturbed energy levels of the Rabi model a) before and b) after the shift of

the zero-point energy according to (4.179) and (4.180).

At first we consider the unperturbed Hamiltonian of the Rabi model (4.131). The projection

onto the two states |g〉 and |e〉 leads to the following 2× 2-matrix:

H(0) =

(
H

(0)
ee H

(0)
eg

H
(0)
ge H

(0)
gg

)
=

(
〈e| Ĥ(0) |e〉 〈e| Ĥ(0) |g〉
〈g| Ĥ(0) |e〉 〈g| Ĥ(0) |g〉

)
=

(
Ee 0

0 Eg

)
. (4.178)

It can be decomposed into the basis of 2× 2-matrices (4.177) as follows

H(0) =
Ee + Eg

2

(
1 0

0 1

)
+
Ee − Eg

2

(
1 0

0 −1

)
=
Ee + Eg

2
σ0 +

~ω0

2
σ3 , (4.179)

where we used the atomic transition frequency (4.128). The first term in (4.179) corresponds

to the energy in the middle between the two energy levels, see Fig. 4.10a). In the last section

we have seen that this energy is physically irrelevant for the dynamics of the Rabi model.

Therefore, we can also shift the energy scale by this value and identify the Hamiltonian (4.179)

just with

H(0) =
~ω0

2
σ3 , (4.180)

as is sketched in Fig. 4.10b). Now we also project accordingly the interaction Hamiltonian

(4.133) to these two states |g〉 and |e〉:

H(p)(t) =

(
H

(p)
ee (t) H

(p)
eg (t)

H
(p)
ge (t) H

(p)
gg (t)

)
=

(
〈e| V̂0 |e〉 〈e| V̂0 |g〉
〈g| V̂0 |e〉 〈g| V̂0 |g〉

)
cos(ωt) . (4.181)

Taking into account the matrix elements (4.140)–(4.142) reduces Eq. (4.181) to

H(p)(t) =

(
0 V0eg

V ∗0eg 0

)
cos(ωt) . (4.182)

This 2× 2-matrix could be represented with the help of σ1 and σ2 matrices due to (4.177). But

it turns out to be advantageous to introduce instead the raising and the lowering Pauli matrices

σ+ =
1

2
(σ1 + iσ2) =

(
0 1

0 0

)
, (4.183)

σ− =
1

2
(σ1 − iσ2) =

(
0 0

1 0

)
, (4.184)
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which have the properties

σ+

(
1

0

)
=

(
0

0

)
, σ+

(
0

1

)
=

(
1

0

)
, (4.185)

σ−

(
1

0

)
=

(
0

1

)
, σ−

(
0

1

)
=

(
0

0

)
. (4.186)

With this the interaction (4.182) is described as follows:

H(p)(t) =
(
V0eg σ+ + V ∗0eg σ−

) 1

2

(
eiωt + e−iωt

)
. (4.187)

Now we consider the underlying time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 (4.188)

with the Hamiltonian

H(t) = H(0) +H(p)(t) =

 ~ω0

2

V0eg

2
(eiωt + e−iωt)

V ∗0eg
2

(eiωt + e−iωt) −~ω0

2

 . (4.189)

In a first step we simplify this problem by transforming it into a system rotating with some

frequency ω. To this end we introduce a general time-dependent unitary transformation:

|ψ̃(t)〉 = S(t) |ψ(t)〉 , |ψ(t)〉 = S†(t) |ψ̃(t)〉 , S†(t) = S−1(t) , (4.190)

so the transformed time-dependent Schrödinger equation then reads

i~
∂

∂t
|ψ̃(t)〉 = H̃(t) |ψ̃(t)〉 (4.191)

with the transformed Hamiltonian

H̃(t) = S(t)H(t)S†(t) + i~
∂S(t)

∂t
S†(t) . (4.192)

Let us specialise to the following time-dependent unitary transformation

S(t) = eiσ3ωt/2 =

(
eiωt/2 0

0 e−iωt/2

)
, S†(t) =

(
e−iωt/2 0

0 eiωt/2

)
, (4.193)

which has the properties

i~
∂S(t)

∂t
=

 −~ω
2
eiωt/2 0

0
~ω
2
e−iωt/2

 , i~
∂S(t)

∂t
S†(t) =

 −~ω
2

0

0
~ω
2

 (4.194)

as well as

S(t)H(t)S†(t) =

 ~ω0

2

V0eg

2
(1 + e2iωt)

V ∗0eg
2

(1 + e−2iωt) −~ω0

2

 . (4.195)
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Thus we obtain for the transformed Hamiltonian (4.192):

H̃(t) =

 ~
2

(ω0 − ω)
V0eg

2
(1 + e2iωt)

V ∗0eg
2

(1 + e−2iωt) −~
2

(ω0 − ω)

 . (4.196)

Within the framework of the rotating wave approximation one neglects the rapidly oscillating

terms and obtains with the detuning (4.129) the approximate time-independent Hamiltonian:

H̃(t) = −~∆

2
σ3 +

1

2

(
V0eg σ+ + V ∗0eg σ−

)
. (4.197)

Decomposing the dipole matrix element into absolute value and phase according to (4.166), a

side calculation leads to

V0eg σ+ + V ∗0eg σ− = |V0eg|
[

cos(ϕ0eg)σ1 − sin(ϕ0eg)σ2

]
, (4.198)

so the transformed Hamiltonian (4.197) results to

H̃(t) =
|V0eg|

2
cos(ϕ0eg)σ1 −

|V0eg|
2

sin(ϕ0eg)σ2 −
~∆

2
σ3 . (4.199)

Taking into account the explicit form of the Pauli matrices (4.177) we finally get

H̃(t) = ω · ~
2
σ (4.200)

with the angular frequency vector

ω =


|V0eg|
~

cos(ϕ0eg)

−|V0eg|
~

sin(ϕ0eg)

−∆

 . (4.201)

The transformed Hamiltonian (4.200) formally corresponds to the Zeeman interaction of the

magnetic moment of a spin 1/2-particle with a magnetic field, which is proportional to the

angular frequency vector (4.201).

4.4.3 Relation to Optical Bloch Equations

We now describe the state of the two-level atom or the effective spin 1/2-particle by a density

matrix ρ, which is also represented by a 2× 2-matrix. Here we exploit again the fact that the

unity matrix σ0 and the three Pauli-matrices σi in (4.177) form a basis in the space of complex

valued 2× 2-matrices by considering the decomposition of ρ in terms of the Bloch vector s:

ρ =
1

2
(σ0 + sσ) . (4.202)
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In component notation this decomposition reads

ρ =
1

2

(
1 + s3 s1 − is2

s1 + is2 1− s3

)
. (4.203)

As the normalization property

Tr ρ = 1 (4.204)

is fulfilled, ρ from (4.202) describes, indeed, a density matrix. Furthermore, the decomposition

(4.202) suggests that we assign to each Bloch vector s a density matrix ρ and, vice versa, for

each density matrix ρ a corresponding Bloch vector s. In order to explore the latter case we

calculate the expectation value of the Pauli matrices with respect to the density matrix.

〈σ〉 = Tr (σρ) . (4.205)

Although this can be evaluated by using the explicit representation of the 2 × 2 matrices in

(4.177), we will use instead a more elegant approach, which takes both the commutator and the

anticommutator relations of the Pauli matrices into account. Namely, based on their explicit

representation (4.177), it can be shown that they represent a Clifford-Algebra

[σi, σj]+ = σiσj + σjσi = 2δijσ0 (4.206)

and at the same time also a Lie algebra

[σi, σj]− = σiσj − σjσi = 2iεijkσk . (4.207)

Here εklm denotes the three-dimensional Levi-Cività tensor, which has the value ε123 = 1 and

is anti-symmetric with respect to two of its three indices:

εklm = −εlkm = −εmlk = −εkml . (4.208)

Adding both relations (4.206) and (4.207) one obtains the useful result that the product of two

Pauli matrices can be reduced to Pauli matrices according to the prescription

σiσj = δijσ0 + iεijkσk . (4.209)

Thus, we evaluate the expectation value of the Pauli matrices (4.205) with the density matrix

(4.202) by taking into account (4.209) and obtain at first

〈σi〉 = Tr (σiρ) =
1

2
Tr (σiσ0 + sjσiσj) =

1

2
Tr
[
σi + (δijσ0 + iεijkσk) sj

]
. (4.210)

Due to the trace properties

Tr (σ0) = 2 , Tr (σi) = 0 (4.211)

following straight-forwardly from (4.177), this reduces to the result

s = 〈σ〉 . (4.212)
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This means that the Bloch vector s can be interpreted as the expectation value of the vector

of Pauli matrices σ for a given density matrix ρ.

Now we investigate how the property, that the density matrix ρ describes a pure state, affects

the Bloch vector s. To this end we consider the square of the density matrix (4.202)

ρ2 =
1

4
(σ0 + 2sσ + sisjσiσj) (4.213)

and simplify it by taking into account (4.209):

ρ2 =
1

4
[σ0 + 2sσ + sisj (δijσ0 + iεijkσk)] =

1

4

[
σ0

(
1 + s2

)
+ 2sσ

]
. (4.214)

Evaluating the trace of (4.214) with the help of (4.211) then yields

Tr (ρ2) =
1 + s2

2
. (4.215)

In case that a pure state is present, i.e. the density matrix ρ fulfills the property (3.159), this

corresponds to a Bloch vector s with the absolute value

|s| = 1 . (4.216)

The Bloch vector s is thus located on the surface of sphere with unit radius, which is called

the Bloch sphere. As a first example let us consider the density matrix (4.203) describing the

ground state

ρ = |g〉 〈g| =

(
0

1

)
(0, 1) =

(
0 0

0 1

)
=

1

2

(
1 + s3 s1 − is2

s1 + is2 1− s3

)
, (4.217)

which corresponds to the Bloch vector

sg =

 0

0

−1

 . (4.218)

In the second example we scrutinize the excited state, which reads in terms of the density

matrix (4.203)

ρ = |e〉 〈e| =

(
1

0

)
(1, 0) =

(
1 0

0 0

)
=

1

2

(
1 + s3 s1 − is2

s1 + is2 1− s3

)
, (4.219)

so its Bloch vector is given by

se =

 0

0

1

 . (4.220)

Thus the pure state of an atom being in the ground (excited) state is represented on the Bloch

sphere by its south (north) pole, see Fig. 4.11. Consequently for a mixed state, which is defined
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Figure 4.11: Ground and excited state of the two-level system correspond due to (4.218) and

(4.220) to the south and the north pole on the Bloch sphere (4.216), respectively.

by a purity with Tr (ρ2) < 1, then follows |s| < 1, i.e. the Bloch vector s lies within the Bloch

sphere. For instance, the origin of the Bloch sphere

s = 0 ⇐⇒ ρ =
1

2
σ0 (4.221)

represents a maximally mixed state, since then the purity Tr (ρ2) = Tr (σ0/4) = 1/2 is minimal.

We now examine the temporal evolution of the Bloch vector, which is induced by the Hamil-

tonian (4.200). To this end one can optionally use either the Schrödinger or the Heisenberg

picture, in which either the states or the operators are time dependent, while the expectation

values coincide. For instance, the expectation value for the Pauli matrices in both pictures read

s(t) = Tr (ρ(t)σ) = Tr (ρσ(t)) . (4.222)

In the Heisenberg picture the dynamics of the expectation value is determined by the Heisenberg

equation for the vector of Pauli matrices

i~
∂

∂t
σ(t) =

[
σ(t), H̃(t)

]
−
. (4.223)

Due to the equality of the expectation values in both pictures (4.222) we then conclude for the

Schödinger picture that the dynamics of the expectation value follows from the evolution of the

density matrix ρ(t), which is governed by the von Neumann equation

i~
∂

∂t
ρ(t) =

[
H̃(t), ρ(t)

]
−
. (4.224)

Note that the right-hand sides of (4.223) and (4.224) differ by a minus sign. In the following

we derive the equation of motion for the Bloch vector s(t) within the Schrödinger picture. For

the von Neumann equation (4.224) of the density matrix (4.202) we obtain for the Hamiltonian

(4.200):

i~
∂

∂t
ρ(t) =

[
~
2
ωiσi,

1

2

{
σ0 + sj(t)σj

}]
−

=
~
4
ωisj(t) [σi, σj]− . (4.225)

Taking into account the Lie algebra of the Pauli matrices (4.207) then leads with (4.202) to

i~
∂

∂t
ρ(t) =

~
4
ωisj(t) 2iεijkσk =

i~
2
εijkωisj(t)σk =

i~
2
ṡk(t)σk . (4.226)
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With this we have derived the optical Bloch equations:

ds(t)

dt
= ω × s(t) . (4.227)

They state that the Bloch vector s(t) precesses around the angular frequency vector ω defined

in (4.201) with a precession frequency, which is given by its absolute value

|ω| =

√
|V0eg|2

~2
+ ∆2 = ΩR (4.228)

and turns out to coincide with the Rabi frequency (4.152). Due to the precession (4.227), the

length of the Bloch vector s(t) is preserved during the dynamics:

d|s(t)|2

dt
= 2s(t) · ds(t)

dt
= 2s(t) · [ω × s(t)] = 0 . (4.229)

This means that a pure state at the beginning t = 0, which obeys |s(0)| = 1, remains a pure

state for all times t > 0, i.e. |s(t)| = 1 holds.

4.4.4 Solution of Optical Bloch Equations

In component notation the optical Bloch equations (4.227) turn out to represent a linear system

of first-order differential equations

ds(t)

dt
= M s(t) . (4.230)

Its solution is based on determining the eigenvalues of the matrix M , which follow from the

characteristic equation:

det (M − λI) = 0 . (4.231)

On the one hand, we note that the matrix

M =


0 ∆ −|V0eg|

~
sin(ϕ0eg)

−∆ 0 −|V0eg|
~

cos(ϕ0eg)

|V0eg|
~

sin(ϕ0eg)
|V0eg|
~

cos(ϕ0eg) 0

 . (4.232)

is anti-symmetric, i.e. it holds MT = −M . Due to the latter property we conclude for D = 3

dimensions

det (M − λI) = det (M − λI)T = det
(
MT − λI

)
= det (−M − λI) = −det (M + λI) , (4.233)

so we deduce from the characteristic equation (4.231)

det (M + λI) = 0 . (4.234)
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Due to (4.231) and (4.234) we read off that with λ also −λ is an eigenvalue of the matrix M .

On the other hand, the characteristic polynomial det (M − λI) = 0 consists of real coefficients,

so the eigenvalues are either real or conjugate complex to each other. However, real eigenvalues

are not possible as then there would always be a solution which exponentionally increases with

time and, thus, does not respect |s(t)| = 1. Therefore, since the characteristic equation (4.231)

is a third-order polynomial, we finally obtain that we have two complex conjugate eigenvalues

and one vanishing eigenvalue:

λ1 = iΩ , λ2 = −iΩ , λ3 = 0 . (4.235)

In fact, the characteristic equation (4.231) reads explicitly

λ

(
λ2 + ∆2 +

|V0eg|2

~2

)
= 0 , (4.236)

which has, indeed, a solution of the form (4.235)

λ1 = iΩR , λ2 = −iΩR , λ3 = 0 (4.237)

with the Rabi frequency (4.152).

At first we determine the eigenvector s3 to the eigenvalue λ3, which leads to the homogeneous

linear system of equations
0 ∆ −|V0eg|

~
sin(ϕ0eg)

−∆ 0 −|V0eg|
~

cos(ϕ0eg)

|V0eg|
~

sin(ϕ0eg)
|V0eg|
~

cos(ϕ0eg) 0


 s31

s32

s33

 =

 0

0

0

 . (4.238)

Since the three equations are linear dependent, we can restrict ourselves to the first two equa-

tions without loss of generality:

∆s32 −
|V0eg|
~

sin(ϕ0eg)s33 = 0

−∆s31 −
|V0eg|
~

cos(ϕ0eg)s33 = 0

 =⇒ s3 = N3


|V0eg|
~

cos(ϕ0eg)

−|V0eg|
~

sin(ϕ0eg)

−∆

 . (4.239)

Demanding the normalization of the eigenvector yields with (4.152) and (4.201)

|s3| = N3 ΩR = 1 =⇒ N3 =
1

ΩR

=⇒ s3 =
ω

ΩR

. (4.240)

Thus, the angular frequency vector ω points in the direction of the eigenvector s3 of the eigen-

value λ3 = 0. Since we have λ3 = 0, the eigenvector s3 does not change in time during the
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Figure 4.12: Illustration of the stationary states (4.241) of the optical Bloch equations (4.227)

and the rotation angle (4.243).

precession of the Bloch vector s, there are two stationary states on the Bloch sphere

s
(1)
3 = − ω

ΩR

=


−|V0eg|

~ΩR

cos(ϕ0eg)

|V0eg|
~ΩR

sin(ϕ0eg)

∆

ΩR

 , s
(2)
3 =

ω

ΩR

=


|V0eg|
~ΩR

cos(ϕ0eg)

−|V0eg|
~ΩR

sin(ϕ0eg)

− ∆

ΩR

 , (4.241)

which are depicted in Fig. 4.12. In the limit |V0eg| → 0 these two points on the Bloch sphere

reduce with (4.152) to

s
(1)
3 → se , s

(2)
3 → sg . (4.242)

The angle ϑ between the direction of se and s
(1)
3 is determined by taking into account (4.152):

se · s(1)
3 = cosϑ =

∆

ΩR

=⇒ tanϑ =

√
1− cos2 ϑ

cosϑ
=
|V0eg|
~∆

. (4.243)

Now we calculate the state vectors corresponding to these stationary Bloch vectors. For a pure

state, the following applies in general:

ρ = |ψ〉 〈ψ| = (cg |g〉+ ce |e〉)
(
c∗g 〈g|+ c∗e 〈e|

)
=

(
cec
∗
e c∗gce

cgc
∗
e cgc

∗
g

)

=
1

2

(
1 + s3 s1 − is2

s1 + is2 1− s3

)
. (4.244)

Provided that the Bloch-vector s is given, then follows from the diagonal elements of (4.244)

|ce|2 =
1

2
(1 + s3) , |cg|2 =

1

2
(1− s3) , (4.245)

so the normalization holds

|ce|2 + |cg|2 = 1 (4.246)

and we can conclude

ce =

√
1 + s3

2
eiϕe , cg =

√
1− s3

2
eiϕg . (4.247)
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From the off-diagonal elements in (4.244) and from (4.247) we then obtain by taking into

account (4.216):

cgc
∗
e =

√
s2

1 + s2
2

2
ei(ϕg−ϕe) =

s1 + is2

2
=

√
s2

1 + s2
2

2
eiϕ0 , (4.248)

which finally reduces to

ϕ0 = arctan

(
s2

s1

)
= ϕg − ϕe . (4.249)

For the first steady state (4.241) we read off from (4.245)

∣∣c(1)
e

∣∣ =

√
1

2

(
1 +

∆

ΩR

)
,

∣∣c(1)
g

∣∣ =

√
1

2

(
1− ∆

ΩR

)
(4.250)

and we get from (4.249)

ϕ(1)
g − ϕ(1)

e = −ϕ0eg + π =⇒ ϕ(1)
g = −ϕ0eg + π , ϕ(1)

e = 0 , (4.251)

so the pure state results in

|ψ(1)〉 = c(1)
e |e〉+ c(1)

g |g〉 =

√
1

2

(
1 +

∆

ΩR

)
|e〉 −

√
1

2

(
1− ∆

ΩR

)
e−iϕ0eg |g〉 . (4.252)

Correspondingly, the second steady state (4.241) yields with (4.245) and (4.249)

∣∣c(2)
e

∣∣ =

√
1

2

(
1− ∆

ΩR

)
,

∣∣c(2)
g

∣∣ =

√
1

2

(
1 +

∆

ΩR

)
(4.253)

ϕ(2)
g − ϕ(2)

e = −ϕ0eg =⇒ ϕ(2)
g = 0 , ϕ(2)

e = ϕ0eg , (4.254)

which leads to

|ψ(2)〉 = c(2)
e |e〉+ c(2)

g |g〉 =

√
1

2

(
1− ∆

ΩR

)
eiϕ0eg |e〉+

√
1

2

(
1 +

∆

ΩR

)
|g〉 . (4.255)

Thus, in the limit |V0eg| → 0 we read from (4.252) and (4.253) in agreement with (4.242):

|ψ(1)〉 → |e〉 , |ψ(2)〉 → |g〉 . (4.256)

Furthermore, (4.250) together with the normalization (4.246) suggests to introduce as an ab-

breviation the mixing angle θ via

cos θ =

√
1

2

(
1 +

∆

ΩR

)
, sin θ =

√
1

2

(
1− ∆

ΩR

)
, (4.257)

which satisfies the trigonometric Pythagoras sin2 θ + cos2 θ = 1, so we obtain

tan(2θ) =
sin(2θ)

cos(2θ)
=

2 sin θ cos θ

cos2 θ − sin2 θ
=
|V0eg|
~∆

. (4.258)
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Thus, comparing (4.243) and (4.258) we yield θ = ϑ/2, i.e. a rotation in coordinate space with

the angle ϑ corresponds in spin space to a rotation around the angle θ = ϑ/2. This observation

is characteristic for a spin 1/2-system. For instance, performing a rotation in coordinate space

yields for the Dirac field that the corresponding spinor is rotated with just half the angle [21,

Section 9.3].

In addition, we read off from (4.252) and (4.255) that the stationary states |e〉 , |g〉 for |V0eg| →
0 can be mapped into the stationary states |ψ(1)〉 , |ψ(2)〉 for V0eg 6= 0 by applying a linear

transformation U , which contains the mixing angle θ.(
|ψ(1)〉
|ψ(2)〉

)
= U

(
|e〉
|g〉

)
, U =

(
cos θ sin θ eiϕ0eg

− sin θ e−iϕ0eg cos θ

)
. (4.259)

It turns out that this linear transformation is unitary:

U †U =

(
cos θ − sin θ eiϕ0eg

sin θ e−iϕ0eg cos θ

)(
cos θ sin θ eiϕ0eg

− sin θ e−iϕ0eg cos θ

)
=

(
1 0

0 1

)
. (4.260)

Now we determine the eigenvector s1 to λ1 = iΩR:
−iΩR ∆ −|V0eg|

~
sin(ϕ0eg)

−∆ −iΩR −|V0eg|
~

cos(ϕ0eg)

|V0eg|
~

sin(ϕ0eg)
|V0eg|
~

cos(ϕ0eg) −iΩR


 s11

s12

s13

 =

 0

0

0

 . (4.261)

From the first equation follows immediately

s11 = −i ∆

ΩR

s12 + i
|V0eg|
~ΩR

sin(ϕ0eg)s13 , (4.262)

therefore we get from the second equation

−∆

[
−i ∆

ΩR

s12 + i
|V0eg|
~ΩR

sin(ϕ0eg)s13

]
− iΩRs12 −

|V0eg|
~

cos(ϕ0eg)s13 = 0 , (4.263)

which reduces to

s12 = i
~ΩR

|V0eg|

[
cos(ϕ0eg) + i

∆

ΩR

sin(ϕ0eg)

]
s13 . (4.264)

Choosing the third component according to

s13 = N1
|V0eg|
~

(4.265)

then fixes immediately the other components:

s12 = N1 [iΩR cos(ϕ0eg)−∆ sin(ϕ0eg)] , s11 = N1 [∆ cos(ϕ0eg) + iΩR sin(ϕ0eg)] . (4.266)
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Thus the eigenvector s1 to the eigenvalue λ1 = iΩR is given by

s1 = N1

 ∆ cos(ϕ0eg) + iΩR sin(ϕ0eg)

−∆ sin(ϕ0eg) + iΩR cos(ϕ0eg)

|V0eg| /~

 , (4.267)

where the normalization constant is fixed by

s∗1 · s1 = 1 =⇒ N1 =
1√
2ΩR

. (4.268)

The complex conjugate then yields the eigenvector s2 corresponding to the eigenvalue λ2 =

−iΩR:

s2 = s∗1 =
1√
2ΩR

 ∆ cos(ϕ0eg)− iΩR sin(ϕ0eg)

−∆ sin(ϕ0eg)− iΩR cos(ϕ0eg)

|V0eg| /~

 . (4.269)

In fact, the three eigenvectors s1, s2, s3 are orthogonal to each other:

s∗1 · s3 = 0 , s∗2 · s3 = 0 , s∗1 · s2 = 0 . (4.270)

The general solution for the dynamics of the Bloch vector is then a superposition of all three

fundamental solutions:

s(t) = A1s1e
λ1t + A2s2e

λ2t + A3s3e
λ3t . (4.271)

Inserting the concrete form of both the eigenvalues and the eigenvectors then yields

s(t) =
A1√
2ΩR

 ∆ cos(ϕ0eg) + iΩR sin(ϕ0eg)

−∆ sin(ϕ0eg) + iΩR cos(ϕ0eg)

|V0eg| /~

 eiΩRt (4.272)

+
A2√
2ΩR

 ∆ cos(ϕ0eg)− iΩR sin(ϕ0eg)

−∆ sin(ϕ0eg)− iΩR cos(ϕ0eg)

|V0eg| /~

 e−iΩRt +
A3

ΩR


|V0eg|
~

cos(ϕ0eg)

−|V0eg|
~

sin(ϕ0eg)

−∆

 .

As the Bloch vector is reel, i.e. s∗(t) = s(t), we conclude that

A2 = A∗1 (4.273)

must hold. The initial condition to be in the ground state

s(0) =

 0

0

−1

 (4.274)
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implies additionally

A2 = A1 . (4.275)

Combining (4.272)–(4.275) we get for the unknown coefficients( √
2∆ |V0eg| /~√

2 |V0eg| /~ −∆

)(
A1

A3

)
=

(
0

−ΩR

)
, (4.276)

which leads to the following solution:

(
A1

A3

)
= − 1√

2Ω2
R

 −∆ −|V0eg|
~

−
√

2
|V0eg|
~

√
2∆

( 0

−ΩR

)
=

 −
|V0eg|√
2~ΩR

∆

ΩR

 . (4.277)

Thus, inserting (4.273) together with (4.277) into (4.272) yields for the dynamics of the indi-

vidual components Bloch vector the result

s1(t) =
∆ |V0eg|
~Ω2

R

cos(ϕ0eg) [1− cos(ΩRt)] +
|V0eg|
~ΩR

sin(ϕ0eg) sin(ΩRt) , (4.278)

s2(t) = −∆ |V0eg|
~Ω2

R

sin(ϕ0eg) [1− cos(ΩRt)] +
|V0eg|
~ΩR

cos(ϕ0eg) sin(ΩRt) , (4.279)

s3(t) = −∆2

Ω2
R

− |V0eg|2

(~ΩR)2
cos(ΩRt) . (4.280)

In order to check this finding we compare it with the corresponding dynamics found for the

Rabi model in subsection 4.4.1. To this end we have to consider how the Rabi model was

mapped onto the spin 1/2-model via the following steps:

• At first we have to take into account that the energy was shifted by going over from

(4.179) to (4.180). To this we go back to (4.135) and rewrite Eg = (Ee + Eg)/2− ~ω0/2

as well as Ee = (Ee + Eg)/2 + ~ω0/2, yielding

|ψ(t)〉 = e−i(Ee+Eg)t/2~
[
cg(t)e

−iω0t/2 |g〉+ ce(t)e
iω0t/2 |e〉

]
. (4.281)

• Afterwards the unitary transformation (4.190) and (4.193) is performed, which leads with

the detuning (4.129) to

|ψ̃(t)〉 = e−i(Ee+Eg)t/2~
[
c̃g(t) |g〉+ c̃e(t) |e〉

]
, (4.282)

where the respective transformed coefficients read

c̃g(t) = cg(t)e
i∆t/2 |g〉 , c̃e(t) = ce(t)e

−i∆t/2 |e〉 . (4.283)
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• Inserting the solution of the Rabi model (4.162) and (4.163) in (4.283) then yields for the

transformed coefficients

c̃e(t) = −i |V0eg|
~ΩR

eiϕ0eg sin

(
ΩRt

2

)
, (4.284)

c̃g(t) = cos

(
ΩRt

2

)
− i ∆

ΩR

sin

(
ΩRt

2

)
. (4.285)

• The density matrix corresponding to the pure state (4.281) turns out to not depend on

the physically irrelevant energy scale Eg = (Ee + Eg)/2:

ρ̃(t) = |ψ̃(t)〉 〈ψ̃(t)| =

(
|c̃e(t)|2 c̃e(t)c̃

∗
g(t)

c̃∗e(t)c̃g(t) |c̃g(t)|2

)
. (4.286)

On the other hand the density matrix must also be of the generic form (4.203):

ρ̃(t) =
1

2

(
1 + s3(t) s1(t)− is2(t)

s1(t) + is2(t) 1− s3(t)

)
. (4.287)

Combining (4.284)–(4.287) a straight-forward algebraic calculation then shows with taking into

account the Rabi frequency (4.152) that the components of the Bloch vector s(t) coincide,

indeed, with the Bloch vector (4.278)–(4.280).

4.5 Jaynes-Cummings Model

We now treat the quantum electrodynamic version of the Rabi model, i.e. we study a two-level

system, which is coupled to a quantised electromagnetic field. For this purpose we assume for

the sake of simplicity that we can restrict ourselves to a single mode of the electromagnetic

field. This seems to be an unrealistic model, since a free atom interacts with all field modes,

as we saw in the treatment of spontaneous emission. On the other hand, it is possible to

construct environments for an atom through cavities in such a way that the density of states

of the electromagnetic field deviates significantly from the one of free space. Thus, microwaves

or optical cavities are able to select only single modes or multiple modes with large frequency

separations. In such cases, it is therefore quite appropriate to consider the interaction of a

two-level system with a single light mode.

4.5.1 Derivation of Model Hamiltonian

The starting point of the description is thus a Hamilton operator, which consists of three parts:

Ĥ = Ĥ
(0)
field + Ĥ

(0)
atom + Ĥ(p) . (4.288)
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a) b)

Figure 4.13: Unperturbed atomic energy levels a) before and b) after the shift of the zero-point

energy by the ground-state energy Eg according to (4.293).

In the Hamiltonian of the electromagnetic field we neglect the vacuum energy, so it is given by

Ĥ
(0)
field = ~ωâ†â , (4.289)

and the Hamiltonian of the two-level system reads

Ĥ
(0)
atom = Eg |g〉 〈g|+ Ee |e〉 〈e| . (4.290)

Formally, the two atomic states |g〉 and |e〉 can be identified with a spin down and a spin up

state according to (4.176). Thus, the Hamiltonian of the two-level system can be represented

by a 2× 2-matrix:

Ĥ
(0)
atom =

(
Ee 0

0 Eg

)
, (4.291)

which is equivalent to

Ĥ
(0)
atom = Eg

(
1 0

0 1

)
+ (Ee − Eg)

(
1 0

0 0

)
. (4.292)

Shifting the energy zero point by the ground-state energy Eg, as depicted in Fig. 4.13, then

leads to

Ĥ
(0)′
atom = Ĥ

(0)
atom − Eg

(
1 0

0 1

)
= ~ω0

(
1 0

0 0

)
, (4.293)

where we have introduced the atomic transition frequency (4.128). We now exploit the fact

that the unit matrix and the Pauli-matrices (4.177) form a basis in the space of complex-valued

2× 2-matrices: To this end we consider the raising and lowering Pauli matrices (4.183) which

have the properties (4.185). With this we obtain

σ+σ− =

(
0 1

0 0

)(
0 0

1 0

)
=

(
1 0

0 0

)
, (4.294)

so the Hamiltonian of the two-level system (4.293) reduces to

Ĥ
(0)
atom = ~ω0σ+σ− (4.295)
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From (4.66) and (4.67) we know that the interaction of the two-level system with an electro-

magnetic mode is given in the Schrödinger picture by

Ĥ(p) = −i
√

~ω
2V ε0

d · e
(
â− â†

)
, (4.296)

so the projection of the electric dipole moment d in the direction of the polarisation vector e

occurs. Now we translate this interaction operator into the spin language and project it onto

both the ground state |g〉 and the excited state |e〉:(
H

(p)
ee H

(p)
eg

H
(p)
ge H

(p)
gg

)
=

(
〈e| Ĥ(p) |e〉 〈e| Ĥ(p) |g〉
〈g| Ĥ(p) |e〉 〈g| Ĥ(p) |g〉

)
= −i

√
~ω

2V ε0

(
0 deg

d∗eg 0

)(
â− â†

)
,

where we used the dipole matrix element

deg = 〈e|d · e |g〉 (4.297)

as an abbreviation. Thus, the raising and lowering Pauli matrices (4.183) occur also in (4.297):

Ĥ(p) = −i
√

~ω
2V ε0

(
degσ+ + d∗egσ−

) (
â− â†

)
. (4.298)

Multiplying out the two brackets yields in total four interaction terms:

Ĥ(p) = −i
√

~ω
2V ε0

(
degσ+â− degσ+â

† + d∗egσ−â− d∗egσ−â†
)
. (4.299)

Now we switch from the Schrödinger to the Heisenberg picture and discuss the resulting time

dependence of the respective operators. To this end we consider the Heisenberg equations for

the dynamics without interaction:

i~
∂â

∂t
=

[
â, Ĥ

(0)
field

]
−

= ~ω
[
â, â†â

]
− = ~ωâ , (4.300)

i~
∂σ+

∂t
=

[
σ+, Ĥ

(0)
atom

]
−

= ~ω0 [σ+, σ+σ−]− = −~ω0σ+ . (4.301)

From (4.300) we conclude for the dynamics of the field operators

â(t) = â(0)eiωt , â†(t) = â†(0)e−iωt , (4.302)

and, correspondingly, we read off from (4.301) for the dynamics of the spin matrices

σ+(t) = σ+(0)e−iω0t , σ−(t) = σ−(0)eiω0t . (4.303)

This gives qualitatively the following time dependencies for the four interaction terms of (4.299)

in the Heisenberg picture:

Ĥ(p)(t) ∼ e−iω0teiωt − e−iω0te−iωt + eiω0teiωt − eiω0te−iωt . (4.304)
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a) b)

Figure 4.14: Illustration of the elementary interaction processes (4.307) between atomic two-

level system and cavity mode in the Jaynes-Cummings model: a) Absorption of photon and

excitation of two-level system as well as b) relaxation of two-level system and emission of

photon.

In the context of the rotating wave approximation, both the second and the third term can be

neglected because they oscillate rapidly, yielding approximately

Ĥ(p) = −i
√

~ω
2V ε0

(
degσ+â− d∗egσ−â†

)
(4.305)

With this we are able to introduce a complex quantity g, which characterises the strength of

the light-matter interaction and has the physical dimension of a frequency:

~g = −i
√

~ω
2V ε0

deg , ~g∗ = i

√
~ω

2V ε0
d∗eg . (4.306)

Thus, the interaction operator (4.305) is then given by

Ĥ(p) = ~gσ+â+ ~g∗σ−â† . (4.307)

Here the first term means that the absorption of a photon yields a transition of the atom from

the ground to the excited state, whereas correspondingly the second term describes an atomic

transition from the excited to the ground state giving rise to the emission of a photon, see

Fig. 4.14. As a result we obtain the model suggested by Edwin Jaynes und Fred Cummings in

1963, which is described by the Hamilton operator [41, 42]

ĤJC = ~ωâ†â+ ~ω0σ+σ− + ~gσ+â+ ~g∗σ−â† . (4.308)

In the following we investigate the properties of this model analytically. It should be noted

that the Jaynes-Cummings model can also be solved exactly without the rotating wave approx-

imation used here [43, 44].

4.5.2 Eigenvalue Problem of Model Hamiltonian

First of all, let us characterise the underlying Hilbert space. It is spanned by the basis states

{|g〉 |N〉 , |e〉 |N〉} , N = 0, 1, . . . . (4.309)
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This means that the two-level system is either in the ground or in the excited state and that

a certain number of photons N is stored in the electromagnetic mode. These basis states are

already eigenstates of the non-interacting Jaynes-Cummings Hamiltonian:(
~ωâ†â+ ~ω0σ+σ−

)
|g〉 |N〉 = ~ωN |g〉 |N〉 , (4.310)(

~ωâ†â+ ~ω0σ+σ−
)
|e〉 |N〉 = (~ωN + ~ω0) |e〉 |N〉 . (4.311)

This observation raises the question how the basis states (4.309) are affected by the interaction

operator (4.307). The observation

~gσ+â |g〉 |N〉 = ~g
√
N |e〉 |N − 1〉 , ~g∗σ−â† |e〉 |N − 1〉 = ~g∗

√
N |g〉 |N〉 (4.312)

suggests that the two-dimensional subspace, which is spanned by |g〉 |N〉 and |e〉 |N − 1〉, could

possibly be an eigenspace of the Jaynes-Cummings Hamilton operator (4.308). In order to

explore this further let us consider the operator

N̂ = â†â+ |e〉 〈e| = â†â+ σ+σ− , (4.313)

which measures the number of polaritons, i.e. the number of excitations at which the two-level

system and the light field are coupled together. The operator (4.313) has the property to be

already diagonal with respect to the basis states |g〉 |N〉 and |e〉 |N − 1〉 of each two-dimensional

subspace:

N̂ |g〉 |N〉 = N |g〉 |N〉 , N̂ |e〉 |N − 1〉 = N |e〉 |N − 1〉 . (4.314)

Furthermore, we can explicitly show that the polariton number operator (4.313) commutes with

the Jaynes-Cummings Hamiltonian (4.308):[
N̂ , ĤJC

]
−

=
[
â†â+ σ+σ−,����~ωâ†â + �����~ω0σ+σ− + ~gσ+â+ ~g∗σ−â†

]
−

= ~g
([
â†â, â

]
− σ+ + [σ+σ−, σ+]− â

)
+ ~g∗

([
â†â, â†

]
− σ− + [σ+σ−, σ−]− â

†
)

= ~g (−âσ+ + σ+â) + ~g∗
(
â†σ− − â†σ−

)
= 0 . (4.315)

This means that N̂ and ĤJC have a common set of eigenstates. They can be characterised by

the quantum number N of the polariton number operator N̂ . In the special case N = 0 the

following applies:

ĤJC |g, 0〉 = 0 . (4.316)

On the other hand in case of N = 1, 2, 3, . . . there is a two-dimensional subspace that is

spanned by the states |g,N〉 and |e,N − 1〉. Therefore, the Jaynes-Cummings Hamiltonian

is diagonalised in this two-dimensional subspace. Let us consider the matrix elements of the

Jaynes-Cummings Hamiltonian (4.308) in the two-dimensional subspace

H
(N)
JC =

(
〈e,N − 1| ĤJC |e,N − 1〉 〈e,N − 1| ĤJC |g,N〉
〈g,N | ĤJC |e,N − 1〉 〈g,N | ĤJC |g,N〉

)
, (4.317)
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Figure 4.15: Polariton branches (4.323) of the Jaynes-Cummings model as a function of the

detuning ∆.

which reduce to

H
(N)
JC =

(
~ω(N − 1) + ~ω0 ~g

√
N

~g∗
√
N ~ωN

)
. (4.318)

For the eigenvalues of the 2× 2-matrix

Det
(
H

(N)
JC − E

)
=

∣∣∣∣∣ ~ω(N − 1) + ~ω0 − E ~g
√
N

~g∗
√
N ~ωN − E

∣∣∣∣∣ = 0 (4.319)

we get with the detuning (4.129) the quadratic equation

E2 − (2~ωN − ~∆)E + ~ωN (~ωN − ~∆)− ~2 |g|2N = 0 . (4.320)

Its solution yields

EN± = ~ωN − ~∆

2
± ~

2
RN(∆) , (4.321)

where we have introduced the generalized Rabi frequency

RN(∆) =

√
∆2 + 4 |g|2N . (4.322)

Thus, there exist two energy eigenvalues for each polariton number N , namely the upper

polariton branch EN+ and the lower polariton branch EN−. In view of a suitable graphical

representation we rewrite (4.321) as follows:

EN± − ~ωN
~ |g|

= − ∆

2 |g|
±

√(
∆

2 |g|

)2

+N . (4.323)

In Fig. 4.15 we depict that the polariton energies (4.323) as a function of the detuning ∆

represent hyperbolas that asymptotically approach the red lines. We observe that no energetic

degeneracy occurs and that we have a non-linear dependence on the polariton number N due to

generalised Rabi frequency (4.322). Therefore, the Jaynes-Cummings model has a much more

complicated dynamics than the Rabi model, as we will now reveal step by step.
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4.5.3 Vacuum Rabi Oscillations

We first consider the special case of resonance ω = ω0, where the detuning vanishes, i.e. we have

∆ = 0. The Jaynes-Cumming-Hamiltonian (4.308) then reduces with the polariton operator

(4.313) to:

ĤJC = ~ωN̂ + ~gσ+â+ ~g∗σ−â† . (4.324)

In the following we determine the solution of the corresponding time-dependent Schrödinger

equation

i~
∂

∂t
|ψ(t)〉 = ĤJC |ψ(t)〉 (4.325)

for the initial state

|ψ(0)〉 = |i〉 = |e,N〉 ; N = 0, 1, 2, . . . . (4.326)

Due to the Jaynes-Cummings Hamiltonian (4.324), this initial state |i〉 is only coupled to the

final state

|f〉 = |g,N + 1〉 . (4.327)

Therefore, we perform the solution ansatz

|ψ(t)〉 = ci(t) |i〉+ cf (t) |f〉 , (4.328)

so that the initial condition (4.327) translates into

ci(0) = 1 , cf (0) = 0 . (4.329)

Inserting the solution ansatz (4.328) into the time-dependent Schrödinger equation (4.325), we

get at first

i~ċi(t) |i〉+ i~ċf (t) |f〉 = ĤJC

[
ci(t) |i〉+ cf (t) |f〉

]
. (4.330)

Projecting (4.330) to the initial state |i〉 then leads to

i~ċi(t) = ci(t) 〈i| ĤJC |i〉+ cf (t) 〈i| ĤJC |f〉 , (4.331)

which reduces to

i~ċi(t) = ~ω (N + 1) ci(t) + ~g
√
N + 1 cf (t) . (4.332)

Correspondingly the projection of (4.330) to the final state |f〉 results to

i~ċf (t) = ci(t) 〈f | ĤJC |i〉+ cf (t) 〈f | ĤJC |f〉 , (4.333)
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yielding

i~ċf (t) = ~g∗
√
N + 1 ci(t) + ~ω (N + 1) cf (t) . (4.334)

Due to the assumed resonance ω = ω0 both differential equations (4.332) and (4.334) are

simplified by transforming into a co-rotating coordinate system:

ci(t) = c̃i(t)e
−iω(N+1)t , cf (t) = c̃f (t)e

−iω(N+1)t . (4.335)

The transformed coefficients then satisfy the following two differential equations:

˙̃ci(t) = −ig
√
N + 1 c̃f (t) , (4.336)

˙̃cf (t) = −ig∗
√
N + 1 c̃i(t) . (4.337)

Eliminating c̃f (t) leads to a second-order differential equation for c̃i(t), which corresponds to a

harmonic oscillator:

¨̃ci(t) = −ig
√
N + 1 ˙̃cf (t) = − |g|2 (N + 1) c̃i(t) . (4.338)

The general solution of (4.338) reads

c̃i(t) = A cos
(
|g|
√
N + 1t

)
+B sin

(
|g|
√
N + 1t

)
, (4.339)

so we obtain for c̃f (t) the result

c̃f (t) =
i ˙̃ci(t)

g
√
N + 1

=
i |g|
g

[
−A sin

(
|g|
√
N + 1t

)
+B cos

(
|g|
√
N + 1t

)]
. (4.340)

Incorporating the initial condition (4.329) leads to

c̃i(0) = A = 1

c̃f (0) = i

√
g∗

g
B = 0

 =⇒


c̃i(t) = cos

(
|g|
√
N + 1t

)
c̃f (t) = −i

√
g∗

g
sin
(
|g|
√
N + 1t

) . (4.341)

With this the probability of being in the initial or final state results in

Pi(t) = |ci(t)|2 = |c̃i(t)|2 = cos2
(
|g|
√
N + 1t

)
=

1

2

[
1 + cos

(
2 |g|
√
N + 1t

)]
, (4.342)

Pf (t) = |cf (t)|2 = |c̃f (t)|2 = sin2
(
|g|
√
N + 1t

)
=

1

2

[
1− sin

(
2 |g|
√
N + 1t

)]
. (4.343)

This means that the probabilities (4.342) and (4.343) oscillate in the same way as in the Rabi

model according to (4.164), see Fig. 4.16. But in the Jaynes-Cummings case the quantum

electrodynamic Rabi frequency reads

ΩR(N) = 2 |g|
√
N + 1 , (4.344)

which depends nonlinearily on the photon number N . This means that Rabi oscillations even

occur in the vacuum, which is characterised by having no photon at all, i.e. N = 0. In contrast
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1

0

Figure 4.16: Probabilities to be in the excited state (4.342) or in the ground state (4.343)

oscillate with the quantum electrodynamic Rabi frequency (4.344).

to that oscillations in the Rabi model only exist according to (4.164) provided that the electric

field and, thus, the matrix dipole moment is different from zero. The vacuum Rabi oscillations

in the Jaynes-Cummings model have therefore no classical counterpart. Physically, they can

be explained by the fact that the atom spontaneously emits a photon, see Fig. 4.14b) and then

reabsorbs it again, see Fig. 4.14a), which is a reversible process. Such effects can be observed

in atoms in a cavity, where the lifetime of a photon is long enough.

4.5.4 Collapse and Revival

Actually, it is astonishing that a non-classical Fock state as an initial condition of the Jaynes-

Cummings dynamics leads to an oscillation that corresponds to that of the classical Rabi model.

In contrast to that one would rather expect that a coherent state as an initial condition would

lead to a classical Rabi oscillation of the Jaynes-Cummings model. In the following we will

see that this intuition fails and that a coherent state as an initial condition leads instead to a

surprisingly complex Jaynes-Cummings dynamics.

To this end we solve again the time-dependent Schrödinger equation (4.325) for the Jaynes-

Cummings Hamiltonian without detuning (4.324). The most general solution is described by

the following ansatz:

|ψ(t)〉 =
∞∑
n=0

[
cgn(t) |g〉+ cen(t) |e〉

]
|n〉 . (4.345)

Inserting this ansatz into the time-dependent Schrödinger equation (4.325) with the Jaynes-

Cummings Hamiltonian (4.308) leads to:

i~
∞∑
n=0

[
ċgn(t) |g〉+ ċen(t) |e〉

]
|n〉 = ~ω

∞∑
n=0

[
ncgn(t) |g〉+ (n+ 1) cen(t) |e〉

]
|n〉

+~g
∞∑
n=0

√
ncgn(t) |e〉 |n− 1〉+ ~g∗

∞∑
n=0

√
n+ 1cen(t) |g〉 |n+ 1〉 . (4.346)

Here we perform in the last two terms the resummations n′ = n−1 and n′ = n+1, respectively,

so that they turn out to be of the same form as the rest of the terms. This makes it possible
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to project (4.346) onto the states |g〉 |n〉 and |e〉 |n〉:

i~ċgn(t) = ~ωncgn(t) + ~g∗
√
ncen−1(t) , (4.347)

i~ċen(t) = ~ω (n+ 1) cen(t) + ~g
√
n+ 1cgn+1(t) . (4.348)

As expected from the general structure of the Jaynes-Cummings Hamiltonian, we obtain for

cgn(t) and cen−1(t) a closed system of differential equations:

ċgn(t) = −iωncgn(t)− ig∗
√
ncen−1(t) , (4.349)

ċen−1(t) = −iωncen−1(t)− ig
√
ncgn(t) . (4.350)

Since the detuning is assumed to disappear, also this system of differential equations simplifies

considerably when we transform into a corresponding co-rotating system according to

cgn(t) = c̃gn(t)e−iωnt , cen−1(t) = c̃en−1(t)e−iωnt . (4.351)

With this (4.349) and (4.350) are converted into

˙̃cgn(t) = −ig∗
√
nc̃en−1(t) , (4.352)

˙̃cen−1(t) = −ig
√
nc̃gn(t) . (4.353)

Eliminating c̃en−1(t) we obtain a second-order differential equation for c̃gn(t):

¨̃cgn(t) = −ig∗
√
n ˙̃cen−1(t) = − |g|2 nc̃gn(t) . (4.354)

This represents the differential equation of a harmonic oscillator, which has the general solution:

c̃gn(t) = An cos
(
|g|
√
nt
)

+Bn sin
(
|g|
√
nt
)
. (4.355)

The corresponding general solution for c̃en−1(t) then reads

c̃en−1(t) =
i

g∗
√
n

˙̃cgn(t) = i

√
g

g∗
[
−An sin

(
|g|
√
nt
)

+Bn cos
(
|g|
√
nt
)]
. (4.356)

Let us consider as the initial state |ψ(0)〉 the most general possible pure state, which consists

of the atomic state

|ψatom〉 = cg |g〉+ ce |e〉 (4.357)

and the field state

|ψfield〉 =
∞∑
n=0

cn |n〉 (4.358)

via the factorization

|ψ(0)〉 = |ψatom〉 |ψfield〉 . (4.359)
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This has the following consequences for the initial values of the coefficients cgn(t) and cen(t):

cgn(0) = c̃gn(0) = An = cgcn , (4.360)

cen(0) = c̃en(0) = i

√
g

g∗
Bn+1 = cecn , (4.361)

where we conclude from (4.361)

Bn = −i
√
g∗

g
cecn−1 . (4.362)

With the coefficients An and Bn determined according to (4.360) and (4.362), the solution of

the initial value problem follows from (4.355) and (4.356):

|ψ(t)〉 =
∞∑
n=0

{
e−iω(n+1)t

[
cecn cos

(
|g|
√
n+ 1t

)
− i
√

g

g∗
cgcn+1 sin

(
|g|
√
n+ 1t

)]
|e〉

+e−iωnt
[
cgcn cos

(
|g|
√
nt
)
− i
√
g∗

g
cecn−1 sin

(
|g|
√
nt
)]
|g〉
}
|n〉 . (4.363)

Thus, we read off from (4.363) that an initial pure product state of light and matter (4.359)

becomes a mixed state of light and matter due to the Jaynes-Cummings dynamics.

In the following we restrict ourselves to the special case ce = 1, cg = 0 and obtain

|ψ(t)〉 = |ψe(t)〉 |e〉+ |ψg(t)〉 |g〉 (4.364)

with the atomic wave functions

|ψe(t)〉 =
∞∑
n=0

e−iω(n+1)tcn cos
(
|g|
√
n+ 1t

)
|n〉 , (4.365)

|ψg(t)〉 = −i
√
g∗

g

∞∑
n=0

e−iω(n+1)tcn sin
(
|g|
√
n+ 1t

)
|n+ 1〉 . (4.366)

As a crosscheck, we note that the subsequent specialisation cn = δn,N leads, indeed, to the

vacuum Rabi oscillations (4.335) and (4.341) discussed in the previous section. But without

this further specialisation we obtain a quite complicated dynamics. For the probabilities of

being in the excited state and in the ground state, respectively, we get

Pe(t) = 〈ψe(t)|ψe(t)〉 =
∞∑
n=0

|cn|2 cos2
(√

n+ 1 |g| t
)
, (4.367)

Pg(t) = 〈ψg(t)|ψg(t)〉 =
∞∑
n=0

|cn|2 sin2
(√

n+ 1 |g| t
)
, (4.368)

so that the atomic occupation inversion results in

W (t) = Pe(t)− Pg(t) =
∞∑
n=0

|cn|2 cos
(

2
√
n+ 1 |g| t

)
. (4.369)
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Figure 4.17: Collapse and revival dynamics of the atomic occupation inversion (4.371) sketched

for an average photon number 〈n̂〉α = 5. Collapse time tc and revival time tr are determined

below in (4.386) and in (4.391), respectively.

As a concrete example, we now consider as an initial state the most classical of all quantum

states of light, namely a coherent state |α〉, which is Poissonian distributed with respect to the

Fock states according to (3.190), see Fig. 3.7:

cn =
αn√
n!
e−|α|

2/2 , Pn = |cn|2 =
|α|2n

n!
e−|α|

2

. (4.370)

In fact, we have checked in (3.198) that the Poisson distribution (4.370) is normalised. Further-

more, the average photon number led in (3.199) to the result 〈n̂〉α = |α|2, so that the Poisson

distribution (4.370) can also be rewritten according to (3.202). With this we obtain for the

atomic occupation inversion (4.369)

W (t) = e−〈n̂〉α
∞∑
n=0

〈n̂〉nα
n!

cos
(

2
√
n+ 1 |g| t

)
. (4.371)

We read off that the fully quantised dynamics represents a superposition of Rabi oscillations

with the quantum electrodynamic Rabi frequencies (4.344) and, thus, differs strongly from a

classical Rabi oscillation as is illustrated in Fig. 4.17:

• At the beginning, the Rabi oscillations seem to be damped, which is called a collapse.

This was already noticed early on in the analysis of the Jaynes-Cummings model.

• Only a few years later, after the computer programs ran longer, it was discovered that

after a certain rest period the Rabi oscillations begin again, which represents a revival.

• At even later times, one finds a sequence of collapses and revivals, with the revivals

becoming less pronounced as time progresses.

Let us at first roughly estimate the collapse time. To this end we note that the dominant

contribution in the series comes from that summand n, which coincides with the average photon

number 〈n̂〉α. The corresponding quantum electrodynamic Rabi frequency (4.344) is:

ΩR(〈n̂〉α) = 2 |g|
√
〈n̂〉α + 1 ≈ 2 |g|

√
〈n̂〉α . (4.372)
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The physical origin for the collapse is a dephasing due to a superposition of Rabi oscillations,

which occur in the interval [〈n̂〉α −∆n, 〈n̂〉α + ∆n] with the frequency uncertainty

∆ΩR = ΩR (〈n̂〉α + ∆n)− ΩR (〈n̂〉α −∆n) . (4.373)

In case of a large average photon number, i.e. 〈n̂〉α � 1, we conclude from (4.372)

ΩR (〈n̂〉α ±∆n) = 2 |g|
√
〈n̂〉α

√
1 +

1±∆n

〈n̂〉α
≈ 2 |g|

√
〈n̂〉α

(
1 +

1±∆n

2 〈n̂〉α

)
, (4.374)

so that the frequency uncertainty (4.373) amounts to

∆ΩR = 2 |g| ∆n√
〈n̂〉α

. (4.375)

As a coherent state has the property ∆n =
√
〈n̂〉α according to (3.201), the frequency uncer-

tainty (4.375) reduces to

∆ΩR = 2 |g| . (4.376)

The collapse time can then be crudely estimated from the uncertainty relation between time

and frequency:

tc ·∆ΩR ≈ 1 =⇒ tc =
1

2 |g|
. (4.377)

Thus, the collapse time in case of 〈n̂〉α � 1 turns out to be independent of the mean photon

number 〈n̂〉α and is only given by the light-matter interaction strength g.

Now we aim at determining the collapse time more precisely. Here we are guided by the idea

that all summands n contribute in the immediate vicinity of 〈n̂〉α, so that n − 〈n̂〉α can be

regarded as a small quantity. This allows us to approximate the quantum electrodynamic Rabi

frequencies (4.344) involved as follows:

ΩR(n) = 2 |g|
√
n+ 1 = 2 |g|

√
〈n̂〉α + 1 + (n− 〈n̂〉α) = 2 |g|

√
〈n̂〉α + 1

√
1 +

n− 〈n̂〉α
〈n̂〉α + 1

≈ 2 |g|
√
〈n̂〉α + 1

[
1 +

n− 〈n̂〉α
2 (〈n̂〉α + 1)

]
= 2 |g|

√
〈n̂〉α + 1 + |g| n− 〈n̂〉α√

〈n̂〉α + 1
. (4.378)

In this approximation, the atomic occupation inversion (4.371) is given by

W (t) = e−〈n̂〉α
∞∑
n=0

〈n̂〉nα
2n!

[
exp

(
i |g| tn√
〈n̂〉α + 1

+ 2i |g|
√
〈n̂〉α + 1t− i |g| 〈n̂〉α t√

〈n̂〉α + 1

)
+ h.c.

]
. (4.379)

Now the series can be evaluated explicitly

∞∑
n=0

1

n!

[
〈n̂〉α exp

(
± i |g| t√
〈n̂〉α + 1

)]n
= exp

[
〈n̂〉α exp

(
± i |g| t√
〈n̂〉α + 1

)]
. (4.380)
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Inserting (4.380) into the atomic occupation inversion (4.379) we obtain

W (t) =
1

2

{
exp

[
i

(
2 |g|

√
〈n̂〉α + 1− |g| 〈n̂〉α√

〈n̂〉α + 1

)
t+ 〈n̂〉α

(
e

i|g|t√
〈n̂〉α+1 − 1

)]
+ h.c.

}
.(4.381)

With the help of the Euler formula

e
i
|g|t√
〈n̂〉α+1 = cos

(
|g| t√
〈n̂〉α + 1

)
+ i sin

(
|g| t√
〈n̂〉α + 1

)
(4.382)

this leads directly to the final result

W (t) = cos

[(
2 |g|

√
〈n̂〉α + 1− |g| 〈n̂〉α√

〈n̂〉α + 1

)
t+ 〈n̂〉α sin

(
|g| t√
〈n̂〉α + 1

)]

× exp

{
−〈n̂〉α

[
1− cos

(
|g| t√
〈n̂〉α + 1

)]}
. (4.383)

Now we analyze (4.383) in view of the collapse, which occurs for small times t. Therefore, we

assume that the inequality

|g| t√
〈n̂〉α + 1

� 1 (4.384)

is fulfilled, so that the atomic occupation inversion (4.383) reduces to

W (t) ≈ cos

(
2 |g|

√
〈n̂〉α + 1 t

)
exp

[
− 〈n̂〉α |g|

2 t2

2 (〈n̂〉α + 1)

]
. (4.385)

Here, the first factor describes, indeed, a classical Rabi oscillation with the quantum electrody-

namic Rabi frequency (4.372), which comes from the mean photon number 〈n̂〉α. The second

factor, however, represents a Gaussian envelope from which the collapse time can be read off:

tc =
1

|g|

√
2 (〈n̂〉α + 1)

〈n̂〉α
. (4.386)

At first we note that the obtained collapse time (4.386) does, indeed, satisfy the approximation

of small times demanded in (4.384). Namely it holds

|g| tc√
〈n̂〉α + 1

=

√
2

〈n̂〉α
� 1 (4.387)

provided that the mean photon number 〈n̂〉α is large enough, i.e. 〈n̂〉α � 1 is fulfilled. Fur-

thermore, we conclude in this limit 〈n̂〉α � 1 that the collapse time (4.386) is approximately

independent of 〈n̂〉α:

tc ≈
√

2

|g|
. (4.388)
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This result agrees with that of the above rough estimate (4.377) except for the numerical factor.

Let us now roughly estimate the revival time. To this end we recall that the atomic occupation

inversion (4.371) is a superposition of Rabi oscillations with the quantum electrodynamic Rabi

frequencies (4.344). In case that two neighbouring terms have the phase (2k + 1) π or 2kπ with

k ∈ N, then the largest possible destructive or constructive interference occurs. Thus, a revival

occurs provided that [
ΩR (〈n̂〉α + 1)− ΩR (〈n̂〉α)

]
tr = 2kπ (4.389)

is fulfilled, since the summand with n = 〈n̂〉α makes the dominant contribution. Using (4.374)

with ∆n = 1 or ∆n = 0 we deduce from (4.389)

|g| tr√
〈n̂〉α

= 2kπ =⇒ tr =

√
〈n̂〉α
|g|

2kπ . (4.390)

In the case of 〈n̂〉α = 5, this leads to the revival time tr = 2π
√

5/ |g| ≈ 14/ |g|, see Fig. 4.17.

Subsequently, we also calculate the revival time more precisely. To this end we go back to the

previous result (4.383) and directly apply the approximation of a large mean photon number,

i.e. 〈n̂〉α � 1. The first factor in (4.383) describes then the dominant fast oscillating Rabi

oscillation with the frequency (4.372). The second factor, however, represents the envelope,

which leads for small times to the result (4.386) for the collapse time. For large times, however,

the envelope is periodic and the maximum amplitude occurs at

|g| tr√
〈n̂〉α + 1

= 2kπ =⇒ tr =

√
〈n̂〉α + 1

|g|
2kπ . (4.391)

In case of 〈n̂〉α � 1 this is consistent with the above rough estimate (4.390). Furthermore,

provided one knows that the photon statistics leading to Jaynes-Cumming collapse and revival

dynamics stems from a coherent state, measuring collapse and revival time (4.386) and (4.391)

allows to reconstruct both the mean photon number according to

〈n̂〉α = 2

(
tc
tr

)2

(4.392)

and the light-matter interaction strength via

|g| =
√

2t2c + t2r
t2r

. (4.393)

In this context we mention that Ref. [45] analyzes the collapse-revival dynamics (4.371) of the

atomic occupation inversion in the Jaynes-Cummings model in more detail on the basis of the

Poisson sum formula (2.217) introduced in Subsection 2.17.3. On the one hand it becomes

possible to determine the collapse and the revivals for a general photon distribution by approx-

imately evaluating the involved integrals in case of a slowly varying photon distribution. This

approach is illustrated by dealing with the examples of both a coherent and a squeezed photon

distribution. On the other hand this also allows to reconstruct the underlying photon statistics

of the quantized field by measuring the atomic collapse of a single revival.
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4.5.5 Dressed States

There are many methods available for determining the dynamics of the Jaynes-Cummings

model. So far we have directly solved the underlying Schrödinger equation for some initial

wave function of both the two-level atom and the electromagnetic mode. By doing so, we have

restricted ourselves to a vanishing detuning in order to reduce the complexity of the calculation.

Now, however, we work out another important approach to unravel the dynamics of the Jaynes-

Cummings, which is based on the stationary states of its Hamiltonian. For reasons, which

become clear shortly, these eigenstates are called dressed states. And for this dressed states

approach we do not demand a vanishing detuning but we consider the more general case of a

finite detuning and go back to the Jaynes-Cummings Hamiltonian (4.308). In Subsection 4.5.2

we have seen that the underlying Hilbert space is spanned by the basis states (4.309) and that

it decomposes into the ground state |g, 0〉 and an infinite set of two-dimensional subspaces

{|g,N〉 , |e,N − 1〉} , N = 1, 2, . . . . (4.394)

Each one of these two-dimensional subspaces is spanned by the states

|ψ1N〉 = |e,N − 1〉 , |ψ2N〉 = |g,N〉 , (4.395)

which are orthonormal

〈ψiN |ψjN〉 = δij . (4.396)

Projecting the Jaynes-Cummings Hamiltonian (4.308) into such a two-dimensional subspace

leads according to (4.318) to a 2× 2-matrix:(
H

(N)
JC,ij

)
=
(
〈ψiN | ĤJC |ψjN〉

)
=

(
~ωN − ~∆ ~g

√
N

~g∗
√
N ~ωN

)
. (4.397)

In Subsection 4.5.2 we have determined its energy eigenvalues (4.321), which depend via the

generalized Rabi frequencies (4.322) on the detuning (4.129). But now we determine the cor-

responding eigenstates: (
H

(N)
JC,ij − δijEN±

)( cN,±1

cN,±2

)
=

(
0

0

)
. (4.398)

Thus, we have to solve the following set of linear homogeneous equations: −~
2

∆∓ ~
2
RN(∆) ~g

√
N

~g∗
√
N

~
2

∆∓ ~
2
RN(∆)

( cN,±1

cN,±2

)
=

(
0

0

)
. (4.399)

As both equations are linear dependent, we can restrict ourselves to one of them without loss

of generality. For the upper polariton branch, which corresponds to the case ”+”, we take the

first one from (4.399)

−~
2

[
∆ +RN(∆)

]
cN,+1 + ~g

√
NcN,+2 = 0 =⇒

c
N,+
1 = 2g

√
NcN,+

cN,+2 =
[
RN(∆) + ∆

]
cN,+

. (4.400)
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The normalisation condition yields:∣∣∣cN,+1

∣∣∣2 +
∣∣∣cN,+2

∣∣∣2 = 1 =⇒ cN,+ =
eiϕ

N,+√
2RN(∆) [RN(∆) + ∆]

. (4.401)

With this the eigenstate for the upper polariton branch finally reads with the generalized Rabi

frequency (4.322) and g = |g| eiϕg

cN,+1 =
2g
√
Neiϕ

N,+√
2RN(∆) [RN(∆) + ∆]

=

√
RN(∆)−∆

2RN(∆)
ei(ϕ

N,++ϕg) , (4.402)

cN,+2 =

√
RN(∆) + ∆

2RN(∆)
eiϕ

N,+

. (4.403)

For the lower polariton branch, which is characterized by the case ”-”, however, we take the

second equation from (4.399)

~g∗
√
NcN,−1 +

~
2

[∆ +RN(∆)] cN,−2 = 0 =⇒

c
N,−
1 = [RN(∆) + ∆] cN,−

cN,−2 = −2g∗
√
NcN,−

. (4.404)

The subsequent normalisation yields the normalisation constant∣∣∣cN,−1

∣∣∣2 +
∣∣∣cN,−2

∣∣∣2 = 1 =⇒ cN,− =
eiϕ

N,−√
2RN(∆) [RN(∆) + ∆]

. (4.405)

Thus, the eigenstate for the lower polariton branch reads

cN,−1 =

√
RN(∆) + ∆

2RN(∆)
eiϕ

N,−
, (4.406)

cN,−2 =
−2g∗

√
Neiϕ

N,−√
2RN(∆) [RN(∆) + ∆]

= −

√
RN(∆)−∆

2RN(∆)
ei(ϕ

N,−−ϕg) . (4.407)

Indeed, both eigenstates are orthogonal

cN,+∗1 cN,−1 + cN,+∗2 cN,−2 = 0 . (4.408)

Thus, the coefficients cN,±i define a linear transformation with the matrix

U(∆, g) =


√
RN(∆)−∆

2RN(∆)
ei(ϕg+ϕN,+)

√
RN(∆) + ∆

2RN(∆)
eiϕ

N,+

√
RN(∆) + ∆

2RN(∆)
eiϕ

N,− −

√
RN(∆)−∆

2RN(∆)
ei(−ϕg+ϕN,−)

 , (4.409)

which maps the bare states |ψiN〉 defined in (4.395) to the dressed states |N,±〉:(
|N,+〉
|N,−〉

)
= U(∆, g)

(
|ψ1N〉
|ψ2N〉

)
. (4.410)
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a) b)

Figure 4.18: The relative position of the bare energy levels corresponding to the bare states

defined in (4.395) depends on the sign of the detuning: a) ∆ < 0 and b) ∆ > 0.

Now we still have to fix the phases ϕN,± from the normalisation constants (4.401) and (4.405).

To this end we note that the relative position of the bare energy levels depends on the sign

of the detuning ∆ as is sketched in Fig. 4.18. Furthermore, we specialize the transformation

matrix (4.409) for vanishing coupling, i.e. g = 0, so that the generalized Rabi frequencies (4.322)

reduce to RN(∆) = |∆|:

U(∆, g = 0) =


√
|∆| −∆

2 |∆|
ei(ϕg+ϕN,+)

√
|∆|+ ∆

2 |∆|
eiϕ

N,+

√
|∆|+ ∆

2 |∆|
eiϕ

N,− −

√
|∆| −∆

2 |∆|
ei(ϕg−ϕ

N,−)

 . (4.411)

In the case ∆ < 0, i.e. ∆ = −|∆|, the matrix U(∆, g = 0) coincides with the identity matrix

provided that the phase ϕN,± are fixed according to

ϕN,+ = −ϕg , ϕN,− = ϕg + π (4.412)

With this the transformation matrix (4.409) turns out to the manifestly unitary form

U(∆, g) =

(
cos
(
φN
2

)
sin
(
φN
2

)
e−iϕg

− sin
(
φN
2

)
eiϕg cos

(
φN
2

) )
(4.413)

due to the identification

cos

(
φN
2

)
=

√
RN(∆)−∆

2RN(∆)
, sin

(
φN
2

)
=

√
RN(∆) + ∆

2RN(∆)
. (4.414)

Indeed, the trigonometric Pythagoras is fulfilled

cos2

(
φN
2

)
+ sin2

(
φN
2

)
= 1 . (4.415)

Furthermore, the angle φN is determined via

tan(φN) =
sin(φN)

cos(φN)
=

2 sin
(
φN
2

)
cos
(
φN
2

)
cos2

(
φN
2

)
− sin

(
φN
2

) =
2 |g|N
−∆

=⇒ φN = arctan

(
2 |g|N
−∆

)
. (4.416)

Thus, the dressed states, which are also called the Jaynes-Cummings doublet, coincide for

vanishing coupling g = 0 with the bare states. Conversely, the bare states at g = 0 split into
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Figure 4.19: The interaction between light and matter changes the bare states |ψiN〉 at g = 0

into the dressed states |N,±〉 at g 6= 0.

the dressed states at g 6= 0, see Fig. 4.19. This is a kind of Stark shift, which is often called

the AC or dynamic Stark shift.

Note that in the limit of an exact resonance, where the detuning ∆ vanishes, the bare states

(4.395) are degenerate, but the splitting of the dressed states remains due to (4.321) and

amounts to RN(∆ = 0) = 2|g|N . In this limit ∆ = 0 the angle (4.416) is given by φN = π/2

and the unitary matrix (4.413) turns out to be independent of the absolute value of the coupling

|g|:

U(∆ = 0, g) =
1√
2

(
1 e−iϕg

−eiϕg 1

)
. (4.417)

The concept of the dressed states turns out to be quite useful for determining the dynamics of

the Jaynes-Cummings model even for non-vanishing detuning, i.e. ∆ 6= 0. In order to explore

this notion in detail, we assume the initial condition that the two-level atom is in the excited

state and allow any configuration of the electromagnetic field mode. Taking into account the

bare states (4.395) we thus have

|ψ(0)〉 = |e〉
∞∑
N=0

cN |N〉 =
∞∑

N ′=1

cN ′−1 |e,N ′ − 1〉 =
∞∑
N=1

cN−1 |ψ1N〉 . (4.418)

Inverting relation (4.410) between the bare and the dressed states yields due to the unitarity

of the matrix U(∆, g) (
|ψ1N〉
|ψ2N〉

)
= U †(∆, g)

(
|N,+〉
|N,−〉

)
, (4.419)

so we get with (4.413) in particular

|ψ1N〉 = cos

(
φN
2

)
|N,+〉 − sin

(
φN
2

)
e−iϕg |N,−〉 (4.420)

and the initial condition (4.418) reads finally

|ψ(0)〉 =
∞∑
N=1

cN−1

[
cos

(
φN
2

)
|N,+〉 − sin

(
φN
2

)
e−iϕg |N,−〉

]
. (4.421)
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The time evolution of the state is determined by applying the Jaynes-Cummings time evolution

operator to this initial state:

|ψ(t)〉 = e−iĤJCt/~ |ψ(0)〉 . (4.422)

Here we can use the fact that the dressed states |N,±〉 are by construction eigenstates of the

Jaynes-Cummings Hamiltonian:

e−iĤJCt/~ |N,±〉 = e−iEN,±t/~ |N,±〉 . (4.423)

Thus, combining (4.421)–(4.423) the time-dependent state reads

|ψ(t)〉 =
∞∑
N=1

cN−1

[
cos

(
φN
2

)
e−iEN,+t/~ |N,+〉 − sin

(
φN
2

)
e−iϕg e−iEN,−t/~ |N,−〉

]
. (4.424)

Now we insert therein the relation between the bare and the dressed states, which follows from

(4.410) and (4.413)

|N,+〉 = cos

(
φN
2

)
|ψ1N〉+ sin

(
φN
2

)
e−iϕg |ψ2N〉 , (4.425)

|N,−〉 = − sin

(
φN
2

)
eiϕg |ψ1N〉+ cos

(
φN
2

)
|ψ2N〉 , (4.426)

and obtain with this

|ψ(t)〉 =
∞∑
N=1

cN−1

{
cos

(
φN
2

)
e−iEN,+t/~

[
cos

(
φN
2

)
|ψ1N〉+ sin

(
φN
2

)
e−iϕg |ψ2N〉

]

− sin

(
φN
2

)
e−iϕge−iEN,−t/~

[
− sin

(
φN
2

)
eiϕg |ψ1N〉+ cos

(
φN
2

)
|ψ2N〉

]}
. (4.427)

Taking into account the energy eigenvalues (4.321) then gives

|ψ(t)〉 =
∞∑
N=1

cN−1e
−i(ωN+∆/2)t

{[
cos2

(
φN
2

)
e−iRN (∆)t/2 + sin2

(
φN
2

)
eiRN (∆)t/2

]
|ψ1N〉

+ sin

(
φN
2

)
cos

(
φN
2

)
e−iϕg

[
e−iRN (∆)t/2 − eiRN (∆)t/2

]
|ψ2N〉

}
. (4.428)

Applying the Euler formula leads to

|ψ(t)〉 =
∞∑
N=1

cN−1e
−i(ωN+∆/2)t

{[(
cos2

(
φN
2

)
+ sin2

(
φN
2

))
cos

(
RN(∆)

2
t

)

−i
(

cos2

(
φN
2

)
− sin2

(
φN
2

))
sin

(
RN(∆)

2
t

)]
|ψ1N〉

−2i sin

(
φN
2

)
cos

(
φN
2

)
e−iϕg sin

(
RN(∆)

2
t

)
|ψ2N〉

}
. (4.429)
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Figure 4.20: Vacuum Rabi oscillation with generalized Rabi frequency (4.322) for vanishing

and non-vanishing detuning ∆.

Using the generalized Rabi frequencies (4.322) and the definition (4.416) of the angle φN trigono-

metric identities yield in case of ∆ < 0:

cos2

(
φN
2

)
− sin2

(
φN
2

)
= cos(φN) =

1√
1 + tan2(φN)

=
1√

1 + 4|g|2N
∆2

=
−∆

RN(∆)
, (4.430)

2 sin

(
φN
2

)
cos

(
φN
2

)
= sin(φN) =

tan(φN)√
1 + tan2(φN)

=
2 |g|
√
N

RN(∆)
, (4.431)

which implies:

|ψ(t)〉 =
∞∑
N=0

cNe
−i[ω(N+1)+∆/2]t

{[
cos

(
RN+1(∆)

2
t

)
+ i

∆

RN+1(∆)
sin

(
RN+1(∆)

2
t

)]
|e,N〉

−i2g
∗√N + 1

RN+1(∆)
sin

(
RN+1(∆)

2
t

)
|g,N + 1〉

}
. (4.432)

This result is of the generic form (4.364) with

|ψe(t)〉 =
∞∑
N=0

cNe
−i[ω(N+1)+∆/2]t

[
cos

(
RN+1(∆)t

2

)
+ i

∆

RN+1(∆)
sin

(
RN+1(∆)t

2

)]
|N〉 ,

|ψg(t)〉 =
∞∑
N=0

cNe
−i[ω(N+1)+∆/2]t −i2g∗

√
N + 1

RN+1(∆)
sin

(
RN+1(∆)t

2

)
|N + 1〉 . (4.433)

Thus, the atomic population inversion W (t) = 〈ψe(t)|ψe(t)〉 − 〈ψg(t)|ψg(t)〉 yields with the

generalized Rabi frequency (4.322)

W (t) =
∞∑
N=0

|cN |2
∆2 + 4 |g|2 (N + 1) cos

(√
∆2 + 4 |g|2 (N + 1)t

)
∆2 + 4 |g|2 (N + 1)

. (4.434)

For vanishing detuning ∆ = 0 we observe that Eq. (4.434) recovers the previous result (4.371).

Furthermore, in the limit of large detuning, i.e. ∆ → ∞, we obtain for the atomic population

inversion (4.434) the result W (t) → 1, i.e. the system remains in the excited atomic state

irrespective of the photonic distribution. Finally, we mention the interesting special case to
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consider an initial Fock state, which corresponds to restricting (4.434) to one term and leads

to a vacuum Rabi oscillation with the generalized Rabi frequency Rn+1(∆) defined in (4.322),

see Fig. 4.20. We recognize that for increasing detuning ∆ the vacuum Rabi oscillation occurs

with a larger frequency and a smaller amplitude.

4.5.6 Density-Matrix Approach

So far we have always assumed that, initially, the field and the atom are in a pure state. In

general, however, one or both subsystems may initially be in a mixed state. Then, it becomes

mandatory to determine the dynamics of the Jaynes-Cummings system from the point of view

of the density matrix. To this end we start with the underlying Hamiltonian at resonance

ω = ω0, i.e. ∆ = 0, given in (4.324) and decompose it according to

ĤJC = Ĥ
(0)
JC + Ĥ

(p)
JC , (4.435)

into the unperturbed term

Ĥ
(0)
JC = ~ω

(
â†â+ σ+σ−

)
(4.436)

and the perturbation

Ĥ
(p)
JC = ~gσ+â+ ~g∗σ−â† . (4.437)

In the following we use this decomposition (4.435)–(4.437) of the resonant Jaynes-Cummings

Hamiltonian and calculate the corresponding dynamics of the density matrix perturbatively.

But instead of truncating the perturbation series at any finite order we will show that it is

possible to sum it up to infinite order and, thus, to obtain the Jaynes-Cummings dynamics

exactly.

At first we deduce the evolution equation for the density matrix

ρ̂(t) = |ψ(t)〉 〈ψ(t)| (4.438)

of a pure state. Combining the Schrödinger equation and its adjoint

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 , −i~ ∂

∂t
〈ψ(t)| = 〈ψ(t)| Ĥ (4.439)

we straight-forwardly obtain

i~
∂

∂t
ρ̂(t) =

[
Ĥ, ρ̂(t)

]
−
. (4.440)

This von-Neumann equation describes the evolution of the density matrix also when not a

pure but a mixed state is considered. As the Schrödinger equation and its adjoint (4.439) are

formally solved with the time evolution operator

|ψ(t)〉 = e−iĤt/~ |ψ(0)〉 (4.441)
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and its adjoint

〈ψ(t)| = 〈ψ(0)| eiĤt/~ , (4.442)

the evolution of the density matrix ρ̂(t) = |ψ(t)〉 〈ψ(t)| of a pure state reads

ρ̂(t) = e−iĤt/~ρ̂(0)eiĤt/~ (4.443)

with the initial condition ρ̂(0) = |ψ(0)〉 〈ψ(0)|. A differentiation with respect to time shows

that (4.443) solves, indeed, the von-Neumann equation (4.440) also for a mixed state.

In the second step we work out how to proceed in perturbation theory within the Dirac inter-

action picture. The starting point is that the Hamiltonian decomposes like in (4.435) according

to

Ĥ = Ĥ(0) + Ĥ(p) . (4.444)

Schrödinger and Heisenberg picture are then defined by a time-dependent state vector |ψ(t)〉
and a time-independent state vector |ψ(0)〉, respectively, which are related via (4.441). This

implies a corresponding relation for their respective operators, where conversely the operator

in the Schrödinger picture ÔS is time-independent and its counterpart ÔH(t) in the Heisenberg

picture gets time dependent. To this end we use the fact that the expectation values in both

pictures coincide

〈ψ(t)| ÔS |ψ(t)〉 = 〈ψ(0)| eiĤt/~ÔSe
−iĤt/~ |ψ(0)〉 = 〈ψ(0)| ÔH(t) |ψ(0)〉 , (4.445)

so the operators transform via

ÔH(t) = eiĤt/~ ÔS e
−iĤt/~ . (4.446)

Now we introduce the Dirac interaction picture by transforming the operators not with the full

Hamiltonian Ĥ but only with the unperturbed one Ĥ(0):

ÔD(t) = eiĤ
(0)t/~ ÔS e

−iĤ(0)t/~ . (4.447)

As also the expectation values in the Schrödinger and the Dirac interaction have to coincide

〈ψD(t)| ÔD(t) |ψD(t)〉 = 〈ψD(t)| eiĤ(0)t/~ ÔS e
−iĤ(0)t/~ |ψD(t)〉 = 〈ψ(t)| ÔS |ψ(t)〉 , (4.448)

this leads to the following transformation of the state vector:

|ψ(t)〉 = e−iĤ
(0)t/~ |ψD(t)〉 , |ψD(t)〉 = eiĤ

(0)t/~ |ψ(t)〉 . (4.449)

Thus the evolution equation for the state vector in the interaction picture reads

i~
∂

∂t
|ψD(t)〉 = eiĤ

(0)t/~ Ĥ(p) |ψ(t)〉 = Ĥ
(p)
D (t) |ψD(t)〉 . (4.450)
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From (4.449) and (4.450) we conclude that the perturbed Hamiltonian in the Dirac interaction

picture is defined like in (4.447)

Ĥ
(p)
D (t) = eiĤ

(0)t/~ Ĥ(p) e−iĤ
(0)t/~ (4.451)

and, therefore, carries in general an explicit time dependence. Solving formally (4.450) yields

the time evolution of the state vector in the Dirac interaction picture

|ψD(t)〉 = ÛD(t) |ψD(0)〉 (4.452)

with the time evolution operator ÛD(t) and the initial state is given by the corresponding one

in the Schrödinge picture due to (4.448):

|ψD(0)〉 = |ψ(0)〉 . (4.453)

In order that (4.452) solves (4.450), the time evolution operator ÛD(t) must fulfill the initial

value problem

i~
∂

∂t
ÛD(t) = Ĥ

(p)
D (t)ÛD(t) , ÛD(0) = 1 . (4.454)

The dynamics of the density matrix in the Dirac interaction picture is given for a pure state

due to (4.452) by

ρ̂D(t) = |ψD(t)〉 〈ψD(t)| = ÛD(t) |ψ(0)〉 〈ψ(0)| Û †D(t) = ÛD(t)ρ̂(0)Û †D(t) . (4.455)

But (4.455) turns out to hold also for a mixed state.

Thirdly, we specialise these general relations to the resonant Jaynes-Cummings model (4.435)–

(4.437). To this end we start with determining the time dependence of the respective operators

in the Dirac interaction picture:

• The time evolution of the photon annihilation operator in the Dirac interaction picture

follows from (4.436) and (4.447):

âD(t) = eiĤ
(0)
JC t/~ â e−iĤ

(0)
JC t/~ = eiωâ

†âtâe−iωâ
†ât . (4.456)

In order to simplify (4.456) we determine the corresponding equation of motion:

i~
∂

∂t
âD(t) = ~ωeiωâ†ât

[
â, â†â

]
− e
−iωâ†ât = ~ωeiωâ†âtâe−iωâ†ât = ~ωâD(t) . (4.457)

Thus, integrating (4.457) yields

âD(t) = e−iωtâ =⇒ â†D(t) = eiωtâ† , (4.458)

so that âD(t) and â†D(t) turn out to fulfill the bosonic equal-time commutation relations:[
âD(t), âD(t)

]
−

=
[
â†D(t), â†D(t)

]
−

= 0 ,
[
âD(t), â†D(t)

]
−

= 1 . (4.459)

This means that also in the Dirac interaction picture âD(t) and â†D(t) represent an anni-

hilation and creation operator for a photon, respectively.
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• In the same way we obtain also the dynamics of the raising operator of the Pauli matrix

in the Dirac interaction picture from (4.436) and (4.447):

σ+D(t) = eiĤ
(0)
JC t/~ σ+ e

−iĤ(0)
JC t/~ = eiωσ+σ−tσ+e

−iωσ+σ−t . (4.460)

Again we simplify by differentiating (4.460) with respect to time, yielding due to (4.301):

i~
∂

∂t
σ+D(t) = ~ωeiωσ+σ−t [σ+, σ+σ−]− e

−iωσ+σ−t = −~ωeiωσ+σ−tσ+e
−iωσ+σ−t = −~ωσ+D(t) . (4.461)

Thus, integrating (4.461) we conclude

σ+D(t) = eiωtσ+ =⇒ σ−D(t) = e−iωtσ− . (4.462)

With this we can now calculate the perturbed Hamiltonian (4.437) in the interaction picture

(4.451) as follows:

Ĥ
(p)
DJC(t) = eiĤ

(0)
JC t/~

(
~gσ+â+ ~g∗σ−â†

)
e−iĤ

(0)
JC t/~ = ~gσ+D(t)âD(t) + ~g∗σ−D(t)â†D(t) . (4.463)

Inserting (4.458) and (4.462) in (4.463) leads to

Ĥ
(p)
DJC(t) = ~geiωtσ+e

−iωtâ+ ~g∗e−iωtσ−eiωtâ† = ~gσ+â+ ~g∗σ−â† = Ĥ
(p)
JC . (4.464)

Thus, due to the assumed resonance, the perturbed Hamiltonian in the Dirac interaction picture

turns out to be time independent. As a consequence, the initial value problem (4.454) for the

time evolution operator in the Dirac interaction picture reduces to

i~
∂

∂t
ÛD(t) = Ĥ

(p)
JC ÛD(t) , ÛD(0) = 1 , (4.465)

which is solved by

ÛD(t) = e−iĤ
(p)
JC t/~ = e−i(gσ+â+g∗σ−â†)t . (4.466)

Thus it remains to evaluate an exponential function

ÛD(t) = e−iÔt (4.467)

involving the operator

Ô = gσ+â+ g∗â† =

(
0 gâ

g∗â† 0

)
. (4.468)

via its Taylor series. To this end we decompose the latter into even and odd powers of the

operator Ô according to

ÛD(t) = σ0 +
∞∑
n=1

(−it)2n

(2n)!
Ô2n +

∞∑
n=0

(−it)2n+1

(2n+ 1)!
Ô2n+1 . (4.469)
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The first powers of the operator (4.468) yield

Ô2 = |g|2
(
ââ† 0

0 â†â

)
, (4.470)

Ô3 = Ô2Ô = |g|2
(

0 gââ†â

g∗â†ââ† 0

)
, (4.471)

Ô4 = Ô2Ô2 = |g|4
( (

ââ†
)2

0

0
(
â†â
)2

)
. (4.472)

From (4.470) and (4.472) we read off via complete induction that the even powers of Ô result

in

Ô2n = |g|2n
( (

ââ†
)n

0

0
(
â†â
)n
)
, (4.473)

whereas the odd powers follow from (4.468) and (4.471)

Ô2n+1 = |g|2n
(

0 gâ
(
â†â
)n

g∗â†
(
ââ†
)n

0

)
. (4.474)

Inserting (4.473) and (4.474) in (4.469) we get in total

ÛD(t) =


1 +

∞∑
n=1

(−1)n
(
|g| t
√
ââ†
)2n

(2n)!
−itgâ

∞∑
n=0

(−1)n
(
|g| t
√
â†â
)2n

(2n+ 1)!

−itg∗â†
∞∑
n=0

(−1)n
(
|g| t
√
ââ†
)2n

(2n+ 1)!
1 +

∞∑
n=1

(−1)n
(
|g| t
√
â†â
)2n

(2n)!

 , (4.475)

so we recover the Taylor series of trigonometric functions:

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
,

sinx

x
=
∞∑
n=0

(−1)nx2n

(2n+ 1)!
. (4.476)

Thus, the resulting time evolution operator in the interaction picture is of the form

ÛD(t) =

(
ĉ(t) ŝ′(t)

ŝ(t) ĉ′(t)

)
(4.477)

with the respective operator-valued entries

ĉ(t) = cos
(
|g| t
√
ââ†
)
, ĉ′(t) = cos

(
|g| t
√
â†â
)
, (4.478)

ŝ(t) = −i
√
g∗

g
â†

sin
(
|g| t
√
ââ†
)

√
ââ†

, ŝ′(t) = −i
√

g

g∗
â

sin
(
|g| t
√
â†â
)

√
â†â

. (4.479)

The adjoint of the time evolution operator in the Dirac interaction picture (4.477) then reads

Û †D(t) =

(
ĉ(t) −ŝ′(t)
−ŝ(t) ĉ′(t)

)
. (4.480)
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The time evolution of the density matrix in the interaction picture (4.455) results due to

(4.477)–(4.480) in

ρ̂D(t) =

(
ĉ(t) ŝ′(t)

ŝ(t) ĉ′(t)

)
ρ̂(0)

(
ĉ(t) −ŝ′(t)
−ŝ(t) ĉ′(t)

)
(4.481)

irrespective of the particular choice of the initial density matrix ρ̂(0). Let us assume that the

initial density matrix factorizes according to

ρ̂(0) = ρ̂A ⊗ ρ̂F (4.482)

and that both the atomic and the field part represent a mixed state. In case of the two-level

system the states

|ψA〉 = ce |e〉+ cg |g〉 , 〈ψA| = 〈e| c∗e + 〈g| c∗g (4.483)

lead to the density matrix

ρ̂A = |ψA〉 〈ψA| = cec
∗
e |e〉 〈e|+ cgc

∗
e |g〉 〈e|+ cec

∗
g |e〉 〈g|+ cgc

∗
g |g〉 〈g| . (4.484)

In the spin 1/2-notation for the two-level system this amounts to

|e〉 〈e| =

(
1

0

)
(1, 0) =

(
1 0

0 0

)
, |g〉 〈g| =

(
0

1

)
(0, 1) =

(
0 0

0 1

)
(4.485)

|g〉 〈e| =

(
0

1

)
(1, 0) =

(
0 0

1 0

)
, |e〉 〈g| =

(
1

0

)
(0, 1) =

(
0 1

0 0

)
(4.486)

resulting in the 2× 2 matrix

ρ̂A =

(
cec
∗
e cec

∗
g

cgc
∗
e cgc

∗
g

)
. (4.487)

Correspondingly we characterize the field by the states

|ψF〉 =
∞∑
n=0

cn |n〉 , 〈ψF| =
∞∑
n=0

c∗n 〈n| , (4.488)

so that its density matrix results in

ρ̂F = |ψF〉 〈ψF| =
∞∑

n1=0

∞∑
n2=0

cn1c
∗
n2
|n1〉 〈n2| . (4.489)

Inserting (4.482), (4.484), and (4.489) into (4.481) has now the following consequence:

ρ̂D(t) =

(
ĉ(t) ŝ′(t)

ŝ(t) ĉ′(t)

)
ρ̂F

(
cec
∗
e cec

∗
g

cgc
∗
e cgc

∗
g

)(
ĉ(t) −ŝ′(t)
−ŝ(t) ĉ′(t)

)

=

(
ĉ(t) ŝ′(t)

ŝ(t) ĉ′(t)

)
ρ̂F

(
cec
∗
e ĉ(t)− cec∗gŝ(t) −cec∗eŝ′(t) + cec

∗
g ĉ
′(t)

cgc
∗
e ĉ(t)− cgc∗gŝ(t) −cgc∗eŝ′(t) + cgc

∗
g ĉ
′(t)

)
. (4.490)
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A trace over all Fock states of the field yields the atomic reduced density matrix:

ρ̂DA(t) = TrF

[
ρ̂D(t)

]
=
∞∑
n=0

〈n| ρ̂D(t) |n〉 =

(
ρDA
ee (t) ρDA

eg (t)

ρDA
ge (t) ρDA

gg (t)

)
(4.491)

with the respective components

ρDA
ij (t) = 〈i| ρ̂DA(t) |j〉 ; i = g, e . (4.492)

Due to the normalisation of the reduced density matrix we conclude

TrA

[
ρ̂DA(t)

]
= ρDA

ee (t) + ρDA
gg (t) = 1 =⇒ ρDA

gg (t) = 1− ρDA
ee (t) . (4.493)

Thus, the atomic population inversion results from

W (t) = ρDA
ee (t)− ρDA

gg (t) = 2ρDA
ee (t)− 1 . (4.494)

In order to determine W (t), we only have to calculate ρDA
ee (t), which follows due to (4.490) from

ρ̂D
ee(t) = cec

∗
e ĉ(t)ρ̂F ĉ(t)− cec∗g ĉ(t)ρ̂F ŝ(t) + cgc

∗
eŝ
′(t)ρ̂F ĉ(t)− cgc∗gŝ′(t)ρ̂F ŝ(t) (4.495)

via tracing out the Fock states of the field. At first we consider the case ce = 1, cg = 0, which

yields

ρDA
ee (t) = TrF

[
ρ̂D
ee(t)

]
=
∞∑
n=0

〈n| ĉ(t)ρ̂Fĉ(t) |n〉 . (4.496)

Taking into account (4.489) we get

ρDA
ee (t) =

∞∑
n=0

∞∑
n1=0

∞∑
n2=0

cn1c
∗
n2
〈n| ĉ(t) |n1〉 〈n2| ĉ(t) |n〉 , (4.497)

where the matrix elements follow from (4.478)

〈n| ĉ(t) |n1〉 = δn,n1 cos
(
|g| t
√
n1 + 1

)
, (4.498)

finally leading to

W (t) = 2
∞∑
n=0

|cn|2 cos2
(
|g| t
√
n+ 1

)
− 1 =

∞∑
n=0

|cn|2
[
2 cos2

(
|g| t
√
n+ 1

)
− 1
]
. (4.499)

This reproduces the previous result (4.371), which reveals vacuum Rabi oscillations as well as

the collapse and revival dynamics as discussed in Subsections 4.5.3 and 4.5.4, respectively. In

the second case ce = 0, cg = 1 we get instead

ρDA
ee (t) = TrF

[
ρ̂D
ee(t)

]
= −

∞∑
n=0

〈n| ŝ′(t)ρ̂Fŝ(t) |n〉 , (4.500)
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so using (4.489) we obtain

ρDA
ee (t) = −

∞∑
n=0

∞∑
n1=0

∞∑
n2=0

〈n| ŝ′(t) |n1〉 〈n2| ŝ(t) |n〉 cn1c
∗
n2
. (4.501)

Due to the matrix elements following from (4.479)

〈n| ŝ′(t) |n1〉 = −i
√

g

g∗
δn,n1−1 sin (|g| t

√
n1 ) , (4.502)

〈n2| ŝ(t) |n〉 = −i
√
g∗

g
δn2,n+1 sin

(
|g| t
√
n+ 1

)
(4.503)

this leads to

ρDA
ee (t) =

∞∑
n=0

cn+1c
∗
n+1 sin2

(
|g| t
√
n+ 1

)
=
∞∑
n=0

|cn|2 sin2
(
|g| t
√
n
)
. (4.504)

The resulting atomic population inversion

W (t) =
∞∑
n=0

|cn|2
[
2 sin2

(
|g| t
√
n
)
− 1
]

= −
∞∑
n=0

|cn|2 cos
(
2 |g| t

√
n
)

(4.505)

does not reveal a vacuum Rabi oscillation. Thus, a necessary condition for a vacuum Rabi

oscillation is ce 6= 0. This conclusion is supported by the physical explanation of the vacuum

Rabi oscillation at the end of Subsection 4.5.3. Nameley, this intriguing quantum phenomenon

can only occur once the atom is able to spontaneously emit a photon, which implies ce 6= 0.

4.5.7 Large Detuning: Dispersive Interaction

So far we have discussed the Jaynes-Cummings model for a vanishing or a small detuning

(4.129). Now we deal with such a large detuning that a direct atomic transition does not

occur as is discussed below Eq. (4.434). Instead we find here that, nevertheless, an effective

dispersive interaction between a single atom and a cavity field does occur, i.e. the bare states

remain to be energy eigenstates but are shifted energetically. In order to obtain this result we

use again perturbative methods, but in case of a large detuning we do not manage to sum up

the perturbative series to infinite order, so we have to truncate it at a finite order.

Thus we consider in the following the full Jaynes-Cummings Hamiltonian (4.308), which also

decomposes according to (4.435). But here the unperturbed part reads

Ĥ
(0)
JC = ~ωâ†â+ ~ω0σ+σ− (4.506)

and the perturbed part is again given by (4.437). In the previous subsection we have deter-

mined the time-dependent photon operators and Pauli matrices in the Dirac interaction picture.

Whereas the result (4.458) for the photon annihilation and creation operators remains to be
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valid also here, we have to change the time dependence for the raising and lowering Pauli ma-

trices in (4.462) by subsituting ω by ω0 due to (4.506). Using this the perturbed part of the

Jaynes-Cummings Hamiltonian (4.437) reads in the Dirac interaction picture

Ĥ
(p)
JC (t) = ~gσ+D(t)âD(t) + ~g∗σ−D(t)â†D(t) = ~ge−i∆tσ+â+ ~g∗ei∆tσ−â† . (4.507)

Thus, a non-vanishing detuning implies an explicit time dependence of Ĥ
(p)
DJC(t). In that case

the time evolution operator in the Dirac interaction picture solving the initial value problem

(4.454) reads [21, Section 10.6]

ÛD(t) = T̂

{
exp

[
− i
~

∫ t

0

dt′Ĥ
(p)
DJC(t′)

]}
, (4.508)

where the symbol T̂ denotes the time-ordering operator. Given two time-dependent bosonic

operators Â(t) and B̂(t′), their time-ordered product reads

T̂
[
Â(t) B̂(t′)

]
= Θ(t− t′) Â(t) B̂(t′) + Θ(t′ − t) B̂(t′) Â(t) , (4.509)

where we have used the Heaviside function

Θ(t) =

{
1 ; t > 0

0 ; t < 0
. (4.510)

A Taylor expansion of the exponential function in (4.508) yields up to second order the following

perturbative expansion:

ÛD(t) = 1 +
−i
~

∫ t

0

dt′Ĥ
(p)
DJC(t′) +

1

2

(
−i
~

)2 ∫ t

0

dt′
∫ t

0

dt′′ T̂
[
Ĥ

(p)
DJC(t′)Ĥ

(p)
DJC(t′′)

]
+ . . . .(4.511)

Due to the definition of the time-ordering operator (4.509) the time evolution operator (4.511)

reduces to

ÛD(t) = 1− i

~

∫ t

0

dt′Ĥ
(p)
DJC(t′) (4.512)

− 1

2~2

{∫ t

0

dt′
∫ t′

0

dt′′
[
Ĥ

(p)
DJC(t′)Ĥ

(p)
DJC(t′′)

]
+

∫ t

0

dt′
∫ t

t′
dt′′
[
Ĥ

(p)
DJC(t′′)Ĥ

(p)
DJC(t′)

]}
+ . . . .

The last term can be rewritten as follows:∫ t

0

dt′
∫ t

t′
dt′′Ĥ

(p)
DJC(t′′)Ĥ

(p)
DJC(t′) =

∫ t

0

dt′′
∫ t′′

0

dt′Ĥ
(p)
DJC(t′′)Ĥ

(p)
DJC(t′) . (4.513)

Here we use the fact that the upper triangle in Fig. 4.21 can be integrated in two ways. Either

we first integrate over t′′ and then over t′ or, conversely, first over t′ and then over t′′. Exchanging

both integration variables at the right-hand side of (4.513) we conclude that the two integrals

in the second line of (4.512) turn out to coincide, yielding

ÛD(t) = 1− i

~

∫ t

0

dt′Ĥ
(p)
DJC(t′)

[
1− i

~

∫ t′

0

dt′′Ĥ
(p)
DJC(t′′)

]
+ . . . . (4.514)
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Figure 4.21: The upper triangle can be integrated in two ways, where the red solid (dashed)

line corresponds to the integration on the left- (right-)hand side of Eq. (4.513).

The inner time integral in (4.514) can now be performed explicitly by taking into account

(4.507), yielding∫ t′

0

dt′′Ĥ
(p)
DJC(t′′) = ~g

e−i∆t
′ − 1

−i∆
σ+â+ ~g∗

ei∆t
′ − 1

i∆
σ−â

† . (4.515)

Inserting (4.515) into (4.514) the time evolution operator has the following intermediate form:

ÛD(t) = 1 +

∫ t

0

dt′

{
−ige−i∆t′σ+â− ig∗ei∆t

′
σ−â

† +
i |g|2

∆

[(
1− e−i∆t′

)
σ−σ+â

†â (4.516)

−
(

1− ei∆t′
)
σ+σ−ââ

†
]
− ig2

∆

(
e−2i∆t′ − e−i∆t′

)
σ2

+â
2 +

ig∗2

∆

(
e2i∆t′ − ei∆t′

)
σ2
−â
†2
}

+ . . . .

In the limit of a large detuning ∆ we argue that the exponential functions e±i∆t
′

and e±2i∆t′ in

the first and second perturbative order are oscillating so fast that their time integrals vanish

approximately: ∫ t

0

dt′ e±i∆t
′ ≈ 0 ,

∫ t

0

dt′ e±2i∆t′ ≈ 0 . (4.517)

Thus, we see that the rotating wave approximation is not only applicable for a fast oscillating

external classical electric field but can also be applied for a time-independent quantum system,

once a transformation in a co-rotating reference frame leads to fast oscillating terms. With the

rotating wave approximation (4.517) the time evolution operator (4.516) reads

ÛD(t) ≈ 1− it |g|
2

∆

(
σ+σ−ââ

† − σ−σ+â
†â
)

+ . . . . (4.518)

For large detuning ∆ the dynamics in the interaction picture described by (4.518) can even fur-

ther be approximated by identifying it with the time evolution operator of a time-independent

Hamiltonian

ÛD(t) ≈ e−iĤeff t/~ , (4.519)

where we have introduced

Ĥeff = ~
|g|2

∆

(
σ+σ−ââ

† − σ−σ+â
†â
)
. (4.520)
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a)

b)

Figure 4.22: Shift of bare energy levels for large detuning according to (4.521): a) in the

presence and b) in the absence of photons in the cavity.

Due to the commutation relation of the photonic operators (3.11) the effective Hamiltonian

(4.520) can be rewritten as

Ĥeff = ~χ
(
σ+σ− + σ3â

†â
)
, (4.521)

where we have introduced the abbreviation

χ =
|g|2

∆
(4.522)

and have used the following identity among the Pauli matrices (4.177), (4.183), and (4.184)

σ3 = σ+σ− − σ−σ+ =

(
1 0

0 −1

)
. (4.523)

Thus, the energy levels |e〉 and |g〉 are so far out of resonance with the quantized electric field

that there are no direct transitions between them. Therefore, the bare states are not coupled

to dressed states and they turn out to be also eigenstates of the effective Hamiltonian (4.521):

Ĥeff |e, n〉 = ~χ(n+ 1)|e, n〉 , (4.524)

Ĥeff |g, n〉 = −~χn|g, n〉 . (4.525)

Only a dispersive interaction occurs in the sense that the bare energy levels are just shifted as

described by (4.524), (4.525) and illustrated in Fig. 4.22a). Note that term ~χσ+σ− in (4.521)

induces an energy shift of the bare excited atomic state, which is even present in the absence

of photons in the cavity, see Fig. 4.22b). As it depends quadratically on the light-matter

interaction strength g due to (4.522), it represents a kind of cavity-induced atomic Kerr effect



160 CHAPTER 4. EMISSION AND ABSORPTION OF LIGHT BY MATTER

raising or lowering the energy of the bare excited atomic state depending on the sign of the

detuning ∆.

Now we investigate exemplarily, which consequences the effective Hamiltonian (4.521) has upon

the dynamics of particular states. Let us consider first the case, where the light field is initially

in a Fock state, so that applying (4.524) and (4.525) yields

e−iĤeff t/~ |g, n〉 = eiχnt |g, n〉 , (4.526)

e−iĤeff t/~ |e, n〉 = e−iχ(n+1)t |e, n〉 . (4.527)

Evidently nothing interesting happens, irrespective of having the two-level atom in the ground

or in the excited state, only unmeasurable phase factors emerge. But this changes drastically

in the case, where the light field is initially in a coherent state. In the case that the atom is in

the ground state the effective Hamiltonian (4.521) yields

e−iĤeff t |g, α〉 = |g〉 eiχâ†ât |α〉 . (4.528)

In order to evaluate this further, we have to remember that a coherent state consists according

to (3.187) and (3.190) of a Poisson distribution of Fock states:

|α〉 =
∞∑
n=0

αn√
n!
e−|α|

2/2 |n〉 . (4.529)

Combining (4.528) and (4.529) we get

eiχâ
†ât |α〉 =

∞∑
n=0

(αeiχt)
n

√
n!

e−|αeiχt|
2
/2 |n〉 = |αeiχt〉 , (4.530)

so that we obtain finally

e−iĤeff t/~ |g, α〉 = |g, αeiχt〉 . (4.531)

Correspondingly we have in the case that the atom is in the excited state

e−iĤeff t/~ |e, α〉 = e−iχσ+σ−t |e〉 e−iχâ†ât |α〉 = e−iχt |e, αe−iχt〉 . (4.532)

We notice that the coherent-state amplitude is rotated in phase space by an angle χt, but that

the rotation direction depends on the state of the two-level atom. This can be best illustrated

by the Husimi function (3.160), which is given for a coherent state by the isotropic Gauß

function (3.182). Thus, provided that the two-level atom is in the ground state (excited state),

the coherent state amplitude rotates in the mathematical positive (negative) sense in phase

space. Let us suppose now that the initially prepared state factorizes into an atomic state and

a coherent state according to

|ψ(0)〉 = |ψA〉 |α〉 , (4.533)
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a) b)

Figure 4.23: Phase space representation of a photonic reduced density matrix revealing entan-

glement between light and matter: Two coherent states according to a) (4.539) at time t and

b) (4.542) at time t0 = π/2χ.

where the former is in a superposition of the ground and the excited state:

|ψA〉 = cg |g〉+ ce |e〉 . (4.534)

Then we obtain the following dynamics

|ψ(t)〉 = e−iĤeff t/~ |ψ(0)〉 = cg |g, αeiχt〉+ cee
−iχt |e, αe−iχt〉 , (4.535)

which reveals in general entanglement between the atom and the field. In order to determine

the corresponding Husimi function, we have to calculate first the density matrix (4.438) and

then to trace out the atomic degrees of freedom. The resulting photonic reduced density matrix

ρ̂F(t) = TrA [ρ̂(t)] = 〈g| ρ̂(t) |g〉+ 〈e| ρ̂(t) |e〉 (4.536)

corresponding to (4.535) then reads:

ρ̂F(t) = |cg|2 |αeiχt〉 〈αeiχt|+ |ce|2 |αe−iχt〉 〈αe−iχt| . (4.537)

From this we read off the corresponding Husimi function

Qρ̂F(t)(α0) =
1

π
〈α0| ρ̂F(t) |α0〉 =

1

π

[
|cg|2

∣∣〈α0|αeiχt〉
∣∣2 + |ce|2

∣∣〈α0|αe−iχt〉
∣∣2] , (4.538)

which simplifies due to the scalar product between two coherent states given in (3.169) according

to

Qρ̂F(t)(α0) =
1

π

[
|cg|2 e−|α0−αeiχt|2 + |ce|2 e−|α0−αe−iχt|2

]
. (4.539)

Let us illustrate the result (4.539) in phase space. Whereas initially the Husimi function

represents a Gauß function located at α due to

Qρ̂F(0)(α0) =
1

π
e−|α0−α|2 , (4.540)

for times t > 0 it splits into two Gauß functions centered around αe±iχt, see Fig. 4.23a). Thereby

the centers of all Gauß functions lie on a circle of radius α, which is given by the initial mean
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Figure 4.24: The though experiment of Schrödinger consists of a cat, a flask of poison, and a

radioactive source, which are all placed in a sealed box. If an internal monitor as, for instance,

a Geiger counter detects radioactivity in form of the decay of a single atom, the flask is broken,

releasing the poison, which kills the cat.

photon number due to (3.199). But the Gauß function for the ground and the excited state is

rotated with the angle χt and −χt, respectively. Note that initial atomic amplitudes cg and ce

determine the time-independent weights |cg|2 and |ce|2 for the corresponding Gauß functions.

The most extreme situation occurs at time t0 = π/2χ due to

e±iχt0 = e±iπ/2 = ±i , (4.541)

so we get

Qρ̂F(t0)(α0) =
1

π

[
|cg|2 e−|α0−iα|2 + |ce|2 e−|α0+iα|2

]
. (4.542)

Thus, in this phase space picture we have two coherent states, which are maximally separated

by 180◦, see Fig. 4.23b). Provided that |α| � 1 holds, i.e. the mean photon number is large

enough according to (3.199), there is essentially no overlap between both coherent states and

they are said to be macroscopically distinguishable. Therefore, this entangled state of light and

matter represents an example for a Schrödinger cat being in an entanglement between life and

death and a non-decayed or decayed radioactive microscopic atom:

|ψ(t)〉 = cg |atom not decayed〉 |cat alive〉+ ce |atom decayed〉 |cat dead〉 . (4.543)

Note that Schrödinger’s cat is a thought experiment in quantum mechanics, which was devised

by Erwin Schödinger in 1935 in order to illustrate the paradox of quantum superposition. Due

to the Copenhagen interpretation of quantum mechanics the thought experiment implies that

a hypothetical cat may be considered simultaneously both alive and dead as a result of its fate

being linked to a random atomic event that may or may not occur, see Fig. 4.24. When one

looks in the box, one sees that the cat is either alive or dead, but one never observes the cat to

be both alive and dead. This poses the question of when exactly quantum superposition ends

and reality resolves into one possibility or the other.
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4.6 Cavity Quantum Electrodynamics

Now we discuss a particular experimental realization of quantum optical phenomena, which are

due to the interaction of an effective two-level atom with a quantized electrodynamic field mode

in a cavity. Thus, we deal with an experiment in the realm of cavity quantum electrodynamics

(cavity QED) [46]. Although strictly speaking this experiment is not optical as it works with

microwaves, it realizes nevertheless the Jaynes-Cummings model. To this end we focus on

a single Rydberg atom in a microwave cavity, where photons live long enough. In order to

quantify the latter statement one uses in quantum optics the quality factor or Q factor, which

is a dimensionless parameter describing how underdamped a resonator is. It is defined as the

ratio of the resonator frequency ω and the bandwidth ∆ω, i.e. we have Q = ω/∆ω. A resonator

with a high quality factor Q has low damping, thus the photon lifetime is larger.

4.6.1 Rydberg Atoms

A Rydberg atom is an alkali atom, where the single valence electron is excited to a state of

very high principal quantum number n. An example is provided by a rubidium atom with the

valence electron being in an excited state n of the order of 50 or higher. The electronic binding

energy of a Rydberg atom is given by

Enl = − Ry

(n− δl)2
(4.544)

with the Rydberg energy (C.13)–(C.15) and the angular momentum quantum number l =

0, 1, . . . , n− 1. Here the quantum defect δl describes the deviation of the binding energy from

a purely hydrogenic situation and depends on the angular momentum quantum number l. For

small l it turns out that δl is of the order of unity, but for larger l the quantum defect δl is quite

small. In order to describe a Rydberg atom, whose binding energy resembles most closely that

of a hydrogen atom, one has to choose the largest possible angular quantum number l = n− 1

with the magnetic quantum number m = −(n − 1), . . . , n − 1. Note that states with the

maximal magnetic quantum number |m| = n− 1 are known as circular Rydberg states as they

describe in the classical limit an electron in a circular orbit. Cavity QED relies on using such

circular Rydberg states. There are various properties of circular Rydberg states, which make

them suitable candidates for cavity QED experiments:

(1) They represent a close approximation of a two-level system. The one-electron dipole

transition of a circular Rydberg state is restricted to involve another circular Rydberg

state. The reason is that the dipole moment selection rules ∆l = ±1, ∆m = 0,±1 favour

the transition from n, l = n − 1, |m| = n − 1 to n − 1, l = n − 2, |m| = n − 2, see also

Appendix F.

(2) The dipole moments of the allowed transitions are large, so the coupling of circular Ry-

dberg states to a single-mode cavity field can be quite large. Indeed, the dipole moment
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between two circular Rydberg atom states n and n′ = n− 1 scales like

d = 〈n| d̂ |n− 1〉 ∼ ean , (4.545)

where the classical radius of the Rydberg atom scales an like (C.7) with the Bohr radius

aB:

(3) Circular Rydberg states have a quite large lifetime. To this end we remind that the rate

of spontaneous emission, whose reciprocal value defines the lifetime, is given according to

(4.102) by

Γ =
d2ω3

0

3πε0~c3
. (4.546)

Here ω0 denotes the frequency of the radiation emitted in a transition. As the quantum

defect δl is negligibly small for a circular Rydberg state, we obtain from (4.544) for

n− n′ = 1:

ω0 =
Enl − En′l′

~
≈ Ry

~

[
1

(n− 1)2
− 1

n2

]
≈ Ry

~

[
1

n2

(
1 +

2

n

)
− 1

n2

]
=

2Ry

~
1

n3
. (4.547)

Thus, inserting (4.545), (4.547), and (C.7) into the rate of spontaneous emission (4.546),

it scales like

Γ ∼
(
n2
)2 (

n−3
)3

Γ0 = n−5Γ0 (4.548)

with the rate Γ0 ≈ 109 1/s following from (4.104). This means that the spontaneous

lifetime of about τ0 = 1/Γ0 = 10−9 s is scaled for a circular Rydberg state of n = 50 to

the value τ = 1/Γ = n5τ0 ≈ 0.1 s. Note that for n = 50 the transition frequency amounts

to ν0 = ω0/2π ∼ 36 GHz, which corresponds to the wavelength λ0 = c/ν0 ∼ 8 mm and,

thus, represents microwave radiation. This wavelength sets the scale for the distance of

the two mirrors in the cavity to support a standing microwave field.

(4) Atomic state detection is possible due to selective ionization by applied electric fields. In

a Rydberg atom the valence electron is typically far away from the hydrogenic cave due

to (C.7). As a consequence its binding energy is relatively small, so the valence electron

can easily be ionized by an external applied field. As the Coulomb law implies due to

(C.7)

E =
e

4πε0a2
n

=
E0

n4
, E0 =

e

4πε0a2
B

, (4.549)

the ionization rate I(n) goes like n−4. Then the ionization rates of two adjacent circular

Rydberg states n− n′ = 1 differ by

I(n− 1)− I(n) ∼ 1

(n− 1)4
− 1

n4
≈ 1

n4

(
1 +

4

n

)
− 1

n4
=

4

n
. (4.550)
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Figure 4.25: Experimental atomic state detection via field ionization: The red arrow indicates

the flight direction of Rydberg atoms, which are ionized by an electric field gradient. In this way

the detectors A and B detect circular Rydberg atoms with n = 50 and n = 49 corresponding

to the excited state |e〉 and the ground state |g〉, respectively.

On the one hand this is a quite small difference for n = 50 compared with low-lying states

of about n = 5. On the other hand it is still large enough for state-selective measurements

to be performed by field ionization via the experimental set-up shown in Fig. 4.25. The

atoms encounter first detector A, which has a smaller electric field to detect the atom

with principal quantum number n corresponding to the excited state, and then detector

B with a larger electric field to be sensitive for the principal quantum number n − 1

representing the ground state. Obviously, the detection of the field-ionized electron in

one of the detectors constitutes the selective atomic-state detection.

4.6.2 Experimental Realization of Jaynes-Cummings Model

The experimental realization of the Jaynes-Cummings model was pioneered by Gerd Rempe at

the Max-Planck Institute for Quantum Optics in Munich [48] and by Serge Haroche at the Ecole

Normale Superieur in Paris [49] together with their respective research groups. A typical set

up for a cavity QED experiment is shown in Fig. 4.26. The electric field stems from a source S

of classical microwaves, a so-called klystron, is then transported via a waveguide W, and finally

yields a coherent state in a cavity C. The latter consists of two curved mirrors separated by

about 30 mm and has a high Q factor of about 108 in order to allow for a long enough lifetime

for the photons of the cavity field. The Rydberg atoms stem from an oven O and are then

prepared in the apparatus P in the excited state, velocity selected, and then directed into the

cavity C. The selective ionization detectors A and B, see also Fig. 4.25, yield the statistics for

the atomic population inversion as a function of the interaction time, which itself is controlled

by the initial velocity selection.

Due to the temperature of the cavity walls of about 1 K there are on average about 0.7 microwave

photons in the cavity. If one sends ground state atoms through the cavity, they absorb photons

and, thus, reduce the average microwave photons to roughly 0.1. This represents an effective

cooling mechanism.

The storage time for circular Rydberg atoms in a microwave cavity is determined by their veloc-
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Figure 4.26: Experimental set-up for realizing the Jaynes-Cummings model consists of mi-

crowave source S, waveguide W, cavity C, oven O, state preparation P and detectors A, B.

ity and amounts to about 1 ms. This is shorter than the atomic decay time due to spontaneous

emission, which amounts to about 0.1 s as we have estimated below (4.548). But it is larger

than the atom-field interaction time, which is about few µs for the speed of atoms injected in

the cavity.

Let us briefly mention some results of the experiment in the Haroche group from Fig. 2 of

Ref. [49], where the dynamics of the transfer rate from the excited to the ground state shows

clearly several oscillations. A more detailed analysis of the data reveals that the signal exhibits

discrete Fourier components at frequencies proportional to the square root of successive integers.

This provides direct evidence of field quantization in the cavity. For coherent fields of increasing

mean photon number, a collapse followed by a revival is evident. This represents the collapse

and revival dynamics of the Jaynes-Cummings model, which was discussed in Subsection 4.5.4.

Note that the collapse and revival dynamics of the Jaynes-Cummings model is realisable exper-

imentally with different platforms [9]. For instance, apart from a cavity QED set-up also the

centre-of-mass motion of trapped ions [50] can be used. Furthermore, a collapse and revival

dynamics of different physical origin was also observed for matter waves by dealing with a

Bose-Einstein condensate confined by a three-dimensional optical lattice, where each potential

well can be prepared in a coherent superposition of different atom number states, with constant

relative phases between neighbouring lattice sites [51].



Chapter 5

Quantum Mechanical Equations of

Light Field and Atoms

In the previous part of the lecture, we treated only the light field in second quantization, in

order to have access to describe an ensemble of photons. In contrast to that for the matter we

only considered one atom and approximated it to a two-level system, which could still be dealt

with in first quantization. But in order to be able to describe a laser, which consists of many

laser-active atoms, we have to switch gears and consider an ensemble of atoms, which needs

then also to be described within the realm of second quantization. Thus, we deal here with

a bosonic second quantization for the light field and, due to the description of the electrons

in the atoms, with a fermionic quantization for the matter. With this framework we derive

the corresponding equations of motion of the photon and the electron operators for a closed

system, so that both losses and pumping are not taken into account. To this end we consider the

second quantized operators of light field and matter in the Heisenberg picture. In particular,

we treat the interaction between light and matter within the dipole approximation and apply,

subsequently, the two-level approximation for the atoms and the rotating wave approximation.

The resulting model Hamiltonian turns out to be a sum of Jaynes-Cummings Hamiltonians

with respect to different field mode and atomic degrees of freedom.

5.1 Quantization of Light Field

In Chapter 2 we worked out in detail the quantization of the electromagnetic field. In order

to simplify the description we have chosen the radiation gauge. This means that the scalar

potential vanishes, i.e. ϕ(x, t) = 0, and that the vector potential fulfills the Coulomb gauge,

i.e. div A(x, t) = 0. Although the radiation gauge is not manifestly Lorentz invariant, it has the

advantage that the remaining two degrees of freedom of the Maxwell field are the transversal

ones. The second quantization of the Maxwell field in vacuum determines the operators of both

the vector potential and the electric field according to (2.136) and (2.168), respectively. Going
167
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over from the vacuum to a cavity with finite volume V , the substitution rule (4.63) applies and

yields in the Heisenberg picture for the field operator

Â(x, t) =
∑
λ=±1

∑
k

√
~

2V ε0ωk

{
ε(k, λ)eikxb̂k,λ(t) + ε∗(k, λ)e−ikxb̂†k,λ(t)

}
(5.1)

and correspondingly for the operator of the electric field

Ê(x, t) = i
∑
λ=±1

∑
k

√
~ωk

2V ε0

{
ε(k, λ)eikxb̂k,λ(t)− ε∗(k, λ)e−ikxb̂†k,λ(t)

}
. (5.2)

Here we have assumed for simplicity that the cavity of volume V has a box shape so that its

mode functions are just given by plane waves. In view of the laser, however, we need instead

a more generic notation, which is valid in principle for any cavity shape. To this end we use

from now on instead of plane waves general cavity basis functions uλ(x) for the transversal

electrodynamic degrees of freedom. Here we have summarized all quantum numbers into the

vector λ and we assume the following orthonormality relations to hold:∫
d3xu∗λ(x)uλ′(x) = δλ,λ′ . (5.3)

Indeed, the cavity with box shape is included in this more generic notation by identifying the

vector of quantum numbers with both the wave vector and the helicity, i.e. λ = {k, λ}, as well

as the basis functions with the plane waves according to

uλ(x) =
1√
V
ε(k, λ)eikx , (5.4)

which fulfills (5.3). Thus, the decompositions (5.1) and (5.2) for the vector potential and the

electric field operator, respectively, go over into

Â(x, t) =
∑
λ

√
~

2ε0ωλ

{
uλ(x)b̂λ(t) + u∗λ(x)b̂†λ(t)

}
, (5.5)

Ê(x, t) = i
∑
λ

√
~ωλ

2ε0

{
uλ(x)b̂λ(t)− u∗λ(x)b̂†λ(t)

}
, (5.6)

where ωλ denotes the resulting dispersion of the electromagnetic field in the cavity. The op-

erators b̂λ(t) , b̂†λ(t) represent annihilation and creation operators for photons in the quantum

state λ and obey the bosonic equal-time commutation relations[
b̂λ(t) , b̂λ′(t)

]
−

=
[
b̂†λ(t) , b̂†λ′(t)

]
−

= 0 ,
[
b̂λ(t) , b̂†λ′(t)

]
−

= δλ,λ′ . (5.7)

Determining with the more general decompositions (5.5) and (5.6) the second-quantized Hamil-

ton operator of the electromagnetic field according to similar steps as in Section 2.12 finally

yields

Ĥfield =
∑
λ

~ωλb̂
†
λ(t)b̂λ(t) . (5.8)
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5.2 Quantization of Electron Field

Within the second quantization also the first quantized electronic wave functions ψ(x, t),

ψ∗(x, t) become operators ψ̂(x, t), ψ̂†(x, t), which obey the fermionic equal-time anti-commutation

relations[
ψ̂(x, t) , ψ̂(x′, t)

]
+

=
[
ψ̂†(x, t) , ψ̂†(x′, t)

]
+

= 0 ,
[
ψ̂(x, t) , ψ̂†(x′, t)

]
+

= δ(x− x′) . (5.9)

For instance, the second equal-time anti-commutation relation in (5.9) includes the Pauli prin-

ciple that two fermions can not be at the same space point:

ψ̂† 2(x, t) = 0 . (5.10)

Provided that the interaction between the electrons can be neglected, this second-quantized

Hamiltonian is given by

Ĥel =

∫
d3x ψ̂†(x, t)

{
− ~2

2M
∆ + V (x)

}
ψ̂(x, t) . (5.11)

Note that we applied here the sandwich principle for performing the transition from first to

second quantization. Namely, in case of an observable the second-quantized operator follows

from the corresponding first-quantized operator by multiplying it with ψ̂†(x, t) from the left as

well as ψ̂(x, t) from the right and then performing the spatial integral. Let us choose as an

appropriate basis the eigenfunctions of the first-quantized Hamiltonian{
− ~2

2M
∆ + V (x)

}
ψn(x) = Enψn(x) , (5.12)

which fulfill the orthonormality relation∫
d3xψ∗n(x)ψn′(x) = δn,n′ (5.13)

and the completeness relation ∑
n

ψ∗n(x)ψn(x′) = δ(x− x′) . (5.14)

Then the electronic field operators can be expanded in the Heisenberg picture into this basis

ψ̂(x, t) =
∑
n

ψn(x)ân(t) ⇐⇒ ân(t) =

∫
d3xψ∗n(x)ψ̂(x, t) , (5.15)

ψ̂†(x, t) =
∑
n

ψ∗n(x)â†n(t) ⇐⇒ â†n(t) =

∫
d3xψn(x)ψ̂†(x, t) . (5.16)

Using (5.15) and (5.16) we deduce from the fermionic equal-time anti-commutation relations

(5.9) that also the expansion operators ân(t), â†n(t) fulfill fermionic equal-time anti-commutation

relations:

[ân(t) , ân′(t)]+ =
[
â†n(t) , â†n′(t)

]
+

= 0 ,
[
ân(t) , â†n′(t)

]
+

= δn,n′ . (5.17)
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Figure 5.1: Schematic illustration of identical atoms indexed with µ at different positions xµ

and their quantum numbers i.

Thus, we conclude that the expansion operators ân(t), â†n(t) represent operators annihilating or

creating an electron in state n. For instance, the second equal-time anti-commutation relation

in (5.17) corresponds to the Pauli principle that two fermions can not occupy one and the same

quantum state:

â† 2
n = 0 . (5.18)

Furthermore, we obtain from (5.12), (5.13) and (5.15), (5.16) that the second-quantized elec-

tronic Hamiltonian (5.11) goes over into

Ĥel =
∑
n

Enâ
†
n(t)ân(t) . (5.19)

With this description we may refer not only to electrons of one atom but also to electrons

of other atoms. In the following we will assume that we have N identical atoms at positions

xµ1 xµ2 , . . . . Thus, we decompose the quantum numbers n into the quantum numbers i within

each atom and the position index µ: n = {i, µ}, see Fig. 5.1. Provided that the atoms are far

enough away from each other it is justified to assume that the electronic wave functions of the

different atoms do not overlap. This means that the electrons belonging to different atoms are

considered to be distinguishable. Thus the orthonormality relation (5.13) reads now∫
d3xψ∗i,µ(x)ψi′,µ′(x) = δi,i′δµ,µ′ (5.20)

and the completeness relation (5.14) goes over into∑
i

∑
µ

ψ∗i,µ(x)ψi,µ(x′) = δ(x− x′) . (5.21)

Correspondingly, the decomposition of the electron field operators has the form

ψ̂(x, t) =
∑
i

∑
µ

ψi,µ(x)âi,µ(t) , ψ̂†(x, t) =
∑
i

∑
µ

ψ∗i,µ(x)â†i,µ(t) (5.22)

with the equal-time anti-commutator relations[
âi,µ(t) , âi′,µ′(t)

]
+

=
[
â†i,µ(t) , â†i′,µ′(t)

]
+

= 0 ,
[
âi,µ(t) , â†i′,µ′(t)

]
+

= δi,i′ δµ,µ′ . (5.23)
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Furthermore, the second-quantized electronic Hamiltonian (5.19) reduces to

Ĥel =
∑
i

∑
µ

Ei â
†
i,µ(t) âi,µ(t) , (5.24)

where the energies Ei do not depend on the atom index µ, as we assume to have identical

atoms,

5.3 Interaction Between Radiation and Electron Field

In Section 4.1 the interaction of light and matter was described such that the atom was dealt

with in first quantization. In dipole approximation this led to

Ĥint = −d · Ê(x, t) (5.25)

with the electric dipole moment of the electron (4.20). Thus, applying the sandwich principle

to the first-quantized interaction Hamiltonian corresponding (5.25) yields its second-quantized

counterpart:

Ĥint = −
∫
d3x ψ̂†(x, t) d · Ê(x, t)ψ̂(x, t) . (5.26)

Inserting the respective expansions (5.6), (5.22) for all second quantized field operators yields

Ĥint = −i
∑
λ

∑
i,i′

∑
µ,µ′

√
~ωλ

2ε0
â†i,µ(t)

{
Ii,µ,λ,i′,µ′ b̂λ(t)− Ji,µ,λ,i′,µ′ b̂†λ(t)

}
âi′,µ′(t) , (5.27)

where we have introduced the two matrix elements

Ii,µ,λ,i′,µ′ =

∫
d3xψ∗i,µ(x)d · uλ(x)ψi′,µ′(x) , (5.28)

Ji,µ,λ,i′,µ′ =

∫
d3xψ∗i,µ(x) d · u∗λ(x)ψi′,µ′(x) . (5.29)

The first matrix element (5.28) vanishes for different atoms as the corresponding electronic

wave functions are assumed to not overlap:

Ii,µ,λ,i′,µ′ = δµ,µ′

∫
d3xψ∗i,µ(x)uλ(x) · dψi′,µ(x) . (5.30)

As the electronic wave function ψi′,µ(x) is localized around the nucleus at space point xµ, we

can apply the dipole approximation discussed in Subsection 2.18.6. This means that we can

approximate the slowly varying cavity mode function uλ(x) in the integral (5.30) by uλ(xµ)

and put it in front of the integral, yielding

Ii,µ,λ,i′,µ′ = δµ,µ′ uλ(xµ) · di,i′ . (5.31)
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Here the dipole matrix elements

di,i′ =

∫
d3xψ∗i,µ(x) dψi′,µ(x) (5.32)

no longer depend on the atom index µ as we assume to have identical atoms. Taking (5.31)

into account the second matrix element (5.29) follows from the first matrix element (5.28) and

we get

Ji,µ,λ,i′,µ′ =

{∫
d3xψ∗i′,µ′(x) d · uλ(x)ψi,µ(x)

}∗
= I∗i′,µ′,λ,i,µ = δµ,µ′u

∗
λ(xµ)d∗i′,i . (5.33)

Due to the hermiticity of the dipole matrix elements (5.32) we have

d∗i′,i = di,i′ , (5.34)

so (5.33) reduces to

Ji,µ,λ,i′,µ′δµ,µ′ u
∗
λ(xµ)di,i′ . (5.35)

Inserting the results (5.31) and (5.35) for both matrix elements in the interaction Hamiltonian

(5.27) leads finally to

Ĥint =
∑
λ

∑
i

∑
i′

∑
µ

(−i)
√

~ωλ

2ε0
di,i′

{
uλ(xµ) b̂λ(t)− u∗λ(xµ) b̂†λ(t)

}
â†i,µ(t) âi′,µ(t) . (5.36)

5.4 Equations of Motion in Heisenberg Picture

The previous considerations finally yield the following Hamiltonian for the second-quantized

description of light and matter:

Ĥ = Ĥfield + Ĥel + Ĥint . (5.37)

The dynamics of any operator Ô(t) in the Heisenberg picture follows from its Heisenberg equa-

tion

∂

∂t
Ô(t) =

i

~

[
Ĥ, Ô(t)

]
−
. (5.38)

Let us start with determining the Heisenberg equation for the photonic creation operator:

∂

∂t
b̂†λ(t) =

i

~

[
Ĥ, b̂†λ(t)

]
−

=
i

~

[
Ĥfield + Ĥint, b̂

†
λ(t)

]
−
. (5.39)

Inserting (5.8) and (5.36) into (5.39) we have to evaluate

∂

∂t
b̂†λ(t) =

i

~
∑
λ′

~ωλ′

[
b̂†λ′(t)b̂λ′(t), b̂

†
λ(t)

]
−

+
i

~
∑
λ′

∑
i

∑
i′

∑
µ

(5.40)

×(−i)
√

~ωλ′

2ε0
di,i′

[
uλ′(xµ) b̂λ′(t)− u∗λ′(xµ) b̂†λ′(t), b̂

†
λ(t)

]
−
â†i,µ(t) âi′,µ(t) .



5.4. EQUATIONS OF MOTION IN HEISENBERG PICTURE 173

Applying the ABC-rule for commutators (2.61) and the bosonic equal-time commutation rela-

tions (5.7) the Heisenberg equation (5.40) reduces to

∂

∂t
b̂†λ(t) = iωλb̂

†
λ(t) +

√
ωλ

2~ε0

∑
i

∑
i′

∑
µ

di,i′ · uλ(xµ) â†i,µ(t) âi′ ,µ(t) . (5.41)

In order to obtain a closed set of equations, we have now also to determine the dynamics of the

bilinear operators â†i,µ(t) âi′ ,µ(t). Their corresponding Heisenberg equations read

∂

∂t
â†i,µ(t) âi′ ,µ(t) =

i

~

[
Ĥ, â†i,µ(t) âi′ ,µ(t)

]
−

=
i

~

[
Ĥel + Ĥint, â

†
i,µ(t) âi′ ,µ(t)

]
−
. (5.42)

Thus we have to evaluate:

∂

∂t
â†iµ(t) âi′µ(t) =

i

~
∑
j

∑
µ′

Ej

[
â†jµ′(t) âjµ′(t), â

†
iµ(t) âi′µ(t)

]
−

+
i

~
∑
λ

∑
j

∑
j′

∑
µ′

(5.43)

×(−i)
√

~ωλ

2ε0
dj,j′

{
uλ(xµ′) b̂λ(t)− u∗λ(xµ′) b̂

†
λ(t)

}[
â†jµ′(t) âj′µ′(t), â

†
iµ(t) âi′µ(t)

]
−
.

Note that the first commutator in (5.43) is a special case of the second commutator. In order

to evaluate the second commutator, we apply first the ABC rule for commutators (2.61)[
â†jµ′ âj′µ′ , â

†
iµâi′µ

]
−

= â†jµ′
[
âj′µ′ , â

†
iµâi′µ

]
−

+
[
â†jµ′ , â

†
iµâi′µ

]
−
âj′µ′ . (5.44)

Then we use the ABC rule for anti-commutators[
ÂB̂, Ĉ

]
−

= Â
[
B̂, Ĉ

]
+
−
[
Â, Ĉ

]
+
B̂ , (5.45)

so that we finally obtain with the fermionic equal-time anti-commutator relations (5.23)[
â†jµ′ âj′µ′ , â

†
iµâi′µ

]
−

= δµµ′
(
δij′ â

†
jµâi′µ − δi′jâ

†
iµâj′µ

)
. (5.46)

Inserting (5.46) in the Heisenberg equation (5.43) yields

∂

∂t
â†iµ(t)âi′µ(t) =

i

~
∑
j

Ej

[
δijâ

†
jµ(t)âi′µ(t)− δi′jâ†iµ(t)âjµ(t)

]
(5.47)

+
i

~
∑
λ

(−i)
√

~ωλ

2ε0

[
uλ(xµ)b̂λ(t)− u∗λ(xµ)b̂†λ(t)

]∑
jj′

djj′

[
δjj′ â

†
jµ(t)âjµ(t)− δj′jâ†jµ(t)âj′µ(t)

]
.

Introducing the atomic transition frequencies

Ωii′ =
Ei − Ei′

~
(5.48)

the Heisenberg equation (5.47) finally reads

∂

∂t
â†jµ(t)âj′µ(t) = iΩii′ â

†
iµ(t)âi′µ(t) (5.49)

+
∑
λ

√
ωλ

2~ε0

[
uλ(xµ)b̂λ(t)− u∗λ(x)b̂†λ(t)

]∑
j

[
djiâ

†
jµ(t)âi′µ(t)− di′jâ

†
iµ(t)âjµ(t)

]
.
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5.5 Two-Level Approximation

Now we approximate each atom by a two-level system. This means that the indices i, i’, j can

only assume the values 1 and 2. Furthermore, due to parity, we assume that the dipole matrix

elements (5.32) simplify, i.e. the diagonal ones vanish

d11 = d22 = 0 (5.50)

and the non-diagonal ones fulfill due to the hermiticity (5.34)

d21 = d∗12 . (5.51)

With this the Heisenberg equation for the photonic creation operator (5.41) reduces to

∂

∂t
b̂†λ(t) = iωλb̂

†
λ(t) +

√
ωλ

2~ε0

∑
µ

uλ(xµ)
[
d12â

†
1µ(t)â2µ(t) + d21â

†
2µ(t)â1µ(t)

]
. (5.52)

In order to obtain a physical interpretation, let us calculate the second-quantized polarization

operator

P̂(t) =

∫
d3x ψ̂†(x, t) d ψ̂(x, t) , (5.53)

where again the sandwich principle was used. Inserting the expansions for the electronic field

operators (5.22) yields

P̂(t) =
∑
i

∑
µ

∑
i′

∑
µ′

â†iµ(t)âi′µ′(t)

∫
d3xψ∗iµ(x) d ψi′µ′(x) , (5.54)

which straight-forwardly reduces with the help of dipole matrix elements (5.32) to

P̂(t) =
∑
i

∑
µ

∑
i′

dii′ â
†
iµ(t)âi′µ(t) . (5.55)

Thus, modeling the atom by a two-level system, the second-quantized polarization operator

decomposes according to

P̂(t) =
∑
µ

P̂µ(t) , (5.56)

where the respective atomic contributions are given by

P̂µ(t) = d12â
†
1µ(t)â2µ(t) + d21â

†
2µ(t)â1µ(t) . (5.57)

From (5.52) and (5.57) we read off that the dynamics of the photonic creation operator b̂†λ(t)

is driven by the atomic polarization operator P̂µ(t) according to

∂

∂t
b̂†λ(t) = iωλb̂

†
λ(t) +

√
ωλ

2~ε0

∑
µ

uλ(xµ)P̂µ(t) . (5.58)
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Let us now consider separately the dynamics of both operator contributions defining the atomic

polarization operator (5.57) by specializing (5.49) correspondingly:

∂

∂t
â†1µ(t)â2µ(t) = iΩ12â

†
1µ(t)â2µ(t) +

∑
λ

√
ωλ

2~ε0

[
uλ(xµ)b̂λ(t)− u∗λ(xµ)b̂†λ(t)

]
d21d̂µ(t) , (5.59)

∂

∂t
â†2µ(t)â†1µ(t) = iΩ21â

†
2µ(t)â†1µ(t) +

∑
λ

√
ωλ

2~ε0

[
uλ(xµ)b̂λ(t)− u∗λ(xµ)b̂†λ(t)

]
d12d̂µ(t) . (5.60)

Here we have introduced as a further abbreviation the atomic inversion operator

d̂µ(t) = â†2µ(t)â2µ(t)− â†1µ(t)â1µ(t) . (5.61)

Also the dynamics of both operator contributions in (5.61) follows from specializing (5.49).

Taking into account the atomic polarization (5.57) yields

∂

∂t
â†2µ(t)â2µ(t) =

∑
λ

√
ωλ

2~ε0

[
uλ(xµ)b̂λ(t)− u∗λ(xµ)b̂†λ(t)

]
×
[
d12â

†
1µ(t)â2µ(t)− d21â

†
2µ(t)â1µ(t)

]
, (5.62)

∂

∂t
â†1µ(t)â1µ(t) = −

∑
λ

√
ωλ

2~ε0

[
uλ(xµ)b̂λ(t)− u∗λ(xµ)b̂†λ(t)

]
×
[
d21â

†
2µ(t)â1µ(t)− d12â

†
1µ(t)â2µ(t)

]
. (5.63)

From (5.62) and (5.63) we deduce for the dynamics of the atomic inversion operator (5.61)

∂

∂t
d̂µ(t) = 2

∑
λ

√
ωλ

2~ε0

[
uλ(xµ)b̂λ(t)− u∗λ(xµ)b̂†λ(t)

] [
d12â

†
1µ(t)â2µ(t)− d21â

†
2µ(t)â1µ(t)

]
. (5.64)

Thus we have obtained a closed set of equations for the operators of the light field and the

atoms in the Heisenberg picture.

5.6 Rotating Wave Approximation

Let us now investigate more carefully the dynamics of the involved operators. To this end we

focus upon the case, where the interaction between light and matter vanishes, which formally

corresponds to a vanishing electric dipole moment matrix element, i.e. d12 = 0. The dynamics

of the photon operators (5.58) is then determined according to

b̂†λ(t) ∼ eiωλt , b̂λ(t) ∼ e−iωλt , (5.65)

both contributions of the atomic polarization operator (5.57) evolve in (5.62) and (5.63) via

â†1µ(t)â2µ(t) ∼ e−iΩt , â†2µ(t)â1µ(t) ∼ eiΩt (5.66)
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with the atomic transition frequency being defined in case of E2 > E1 as

Ω =
E2 − E1

~
, (5.67)

and for the atomic inversion operator (5.61) we get from (5.62) and (5.63)

â†1µ(t)â1µ(t) ∼ 1 , â†2µ(t)â2µ(t) ∼ 1 , d̂µ(t) ∼ 1 . (5.68)

Thus, in the equation (5.52) for b̂†λ(t) the term â†2µâ1µ(t) but not the term â†1µâ2µ(t) has ap-

proximately the same time dependence as b̂†λ(t). Within the rotating wave approximation we

can therefore neglect the term â†1µâ2µ(t) and obtain from (5.41):

∂

∂t
b̂†λ(t) = iωλb̂

†
λ(t) +

√
ωλ

2~ε0

∑
λ

uλ(xµ)d21â
†
2µ(t)â1µ(t) . (5.69)

Here we can define a coupling constant, which characterizes the strength of the dipole interaction

between the λth resonator mode and the µ th atom:

gλ,µ = −i
√

ωλ

2~ε0
uλ(xµ) · d21 . (5.70)

Furthermore we introduce the atomic polarisation amplitude operator

α̂µ(t) = â†1µ(t)â2µ(t) . (5.71)

With this the dynamics of the photonic creation operator (5.69) reads concisely

∂

∂t
b̂†λ(t) = iωλb̂

†
λ(t) + i

∑
µ

gλ,µα̂
†
µ(t) (5.72)

and, correspondingly, we get for the photonic annihilation operator

∂

∂t
b̂λ(t) = −iωλb̂λ(t)− i

∑
µ

g∗λ,µα̂µ(t) . (5.73)

Similarly, in the equation (5.59) for the atomic polarisation amplitude operator (5.71) the term

b̂λ(t) but not the term b̂†λ(t) has approximately the same time dependence as α̂µ(t). Within

the rotating wave approximation we can thus neglect the term b̂†λ(t) and obtain from (5.59) by

taking into account (5.70)

∂

∂t
α̂µ(t) = −iΩα̂µ(t) + i

∑
λ

gλ,µb̂λ(t)d̂µ(t) . (5.74)

Correspondingly the evolution of the adjoint atomic polarisation amplitude operator α̂†µ(t)

follows from

∂

∂t
α̂†µ(t) = iΩα̂µ(t)− i

∑
λ

g∗λ,µb̂
†
λ(t)d̂µ(t) . (5.75)
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Figure 5.2: Closed system of differential equations for the operators of light and matter in the

Heisenberg picture. Color coding: (5.72) in blue, (5.73) in red, (5.74) in black, (5.75) in green,

and (5.76) in grey.

Finally, the equation (5.64) for the atomic inversion operator (5.61) consists of four terms,

where only b̂λ(t)α̂†µ(t) and b̂†λ(t)α̂µ(t) have approximately the same time dependence as d̂µ(t).

Thus, together with (5.70), we end up with

∂

∂t
d̂µ(t) = 2i

∑
λ

[
g∗λ,µb̂

†
λ(t)α̂µ(t)− gλ,µα̂†µ(t)b̂λ(t)

]
. (5.76)

We conclude that the rotating wave approximation led us to the last five equations, which

represent a closed system of nonlinear differential equations determining the operators of both

the light field and the atoms. Such a self-consistent interdependence between the relevant

degrees of freedom as illustrated in Fig. 5.2 is exemplary for a circular causality, which is

omnipresent in physics, natural sciences, and even beyond [52, Chapter 11]. In contrast to that

one can characterize the working principle of mathematics with a linear causality as generically

lemmas and theorems are directly proven on the basis of certain definitions and assumptions.

At this point the question arises whether those five equations constitute Heisenberg equations,

which follow straight-forwardly from a corresponding Hamiltonian. To this end we have to

express the original Hamiltonian of light and matter (5.37) in terms of the operators b̂λ(t), b̂
†
λ(t),

α̂µ(t), α̂†µ(t), d̂µ(t) and apply the atomic two-level as well as the rotating wave approximation.

Whereas the field Hamiltonian (5.8) has already the correct form, the electronic Hamiltonian

(5.24) depends on the occupation number operators â†1µ(t)â1µ(t) and â†2µ(t)â2µ(t):

Hel =
∑
µ

[
E1â

†
1µ(t)â1µ(t) + E2â

†
2µ(t)â2µ(t)

]
. (5.77)

Provided that each atomic two-level system µ describes just one electron, we conclude that the

occupation number operators â†1µ(t)â1µ(t) and â†2µ(t)â2µ(t) fulfill the two equations (5.61) and

â†2µ(t)â2µ(t) + â†1µ(t)â1µ(t) = 1 . (5.78)

Thus, both occupation number operators can be expressed in terms of the respective atomic

inversion operator (5.61) according to

â†1µ(t)â1µ(t) =
1

2

[
1− d̂µ(t)

]
, â†2µ(t)â2µ(t) =

1

2

[
1 + d̂µ(t)

]
. (5.79)
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With this the electronic Hamiltonian (5.77) reads due to (5.79)

Ĥel =
∑
µ

[
E1 + E2

2
+

~Ω

2
d̂µ(t)

]
, (5.80)

where the constant can be dropped in view of calculating the Heisenberg equations. Corre-

spondingly, the atomic two-level approximation together with (5.50) and (5.51) reduces the

interaction Hamiltonian (5.36) to

Ĥint =
∑
λ

∑
µ

(−i)
√

~ωλ

2ε0

[
uλ(xµ)b̂λ(t)− u∗λ(xµ)b̂†λ(t)

] [
d12α̂µ(t) + d21α̂

†
µ(t)
]
. (5.81)

Thus, the subsequent rotation-wave approximation eliminates the two non-resonant terms

b̂λ(t)α̂µ(t) and b̂†µ(t)α̂†µ(t):

Ĥint =
∑
λ

∑
µ

(−i)
√

~ωλ

2ε0

[
uλ(xµ) · d21b̂λ(t)α̂†µ(t)− u∗λ(xµ) · d12b̂

†
λ(t)α̂µ(t)

]
. (5.82)

Introducing the coupling constant (5.70) between the λth electromagnetic mode and the µth

atom finally leads to

Ĥint =
∑
λ

∑
µ

[
~gλµb̂λ(t)α̂†µ(t) + ~g∗λµb̂

†
λ(t)α̂µ(t)

]
. (5.83)

Taking into account (5.8), (5.80), and (5.83) the resulting Hamiltonian of light and matter

(5.37) reads

Ĥ =
∑
λ

~ωλb̂
†
λ(t)b̂λ(t) +

∑
µ

~Ω

2
d̂µ(t) +

∑
λ

∑
µ

[
~gλµb̂λ(t)α̂†µ(t) + ~g∗λµb̂

†
λ(t)α̂µ(t)

]
. (5.84)

Indeed, it turns out that the Heisenberg equations corresponding (5.84) lead to the closed

set of differential equations (5.72)–(5.76). But to this end one has to take into account the

respective equal-time commutation relations between the atomic operators α̂µ(t), α̂†µ(t), d̂µ(t),

which follow from the fermionic anti-commutation relations (5.17) and the definitions (5.61)

and (5.71): [
α̂µ(t), α̂µ′(t)

]
−

= 0 ,
[
α̂†µ(t), α̂†µ′(t)

]
−

= 0 ,
[
α̂†µ(t), α̂µ′(t)

]
−

= δµµ′ d̂µ(t) , (5.85)[
α̂†µ(t), d̂µ′(t)

]
−

= −2δµµ′α̂
†
µ(t) ,

[
α̂µ(t), d̂µ′(t)

]
−

= 2δµµ′α̂µ(t) ,
[
d̂µ(t), d̂µ′(t)

]
−

= 0 . (5.86)

5.7 Analogy with Jaynes-Cummings Interpretation

In case that each two-level atom just contains one electron, we conclude from applying the

anti-commutation relation (5.23)

â†iµâjµâ
†
kµâlµ = â†iµ

[
δik − â†kµâjµ

]
âlµ = δikâ

†
iµâlµ , (5.87)
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as the successive application of two creation or two annihilation operators at one atom µ has to

vanish. Thus, for each two-level atom µ we have then the following additional anti-commutation

relations between the atomic operators α̂µ, α̂†µ, d̂µ defined in (5.61) and (5.71):

α̂2
µ = â†1µâ2µâ

†
1µâ2µ = δ12â

†
1µâ2µ = 0 =⇒

[
α̂µ, α̂µ

]
+

= 0 , (5.88)

α̂† 2
µ = â†2µâ1µâ

†
2µâ1µ = δ12â

†
2µâ1µ = 0 =⇒

[
α̂†µ, α̂

†
µ

]
+

= 0 , (5.89)[
α̂µ, α̂

†
µ

]
+

= â†1µâ2µâ
†
2µâ1µ + â†2µâ1µâ

†
1µâ2µ = â†1µâ1µ + â†2µâ2µ = 1 , (5.90)[

α̂µ, d̂µ

]
+

=
[
â†1µâ2µ, â

†
2µâ2µ − â†1µâ1µ

]
+

= â†1µâ2µâ
†
2µâ2µ + â†1µâ2µâ

†
1µâ2µ

−â†1µâ2µâ
†
1µâ1µ − â†1µâ1µâ

†
1µâ1µ = â†1µâ2µ − â†1µâ2µ = 0 , (5.91)[

α̂†µ, d̂µ

]
+

=
[
â†2µâ1µ, â

†
2µâ2µ − â†1µâ1µ

]
+

= â†2µâ1µâ
†
2µâ2µ + â†2µâ2µâ

†
2µâ1µ

−â†2µâ1µâ
†
1µâ1µ − â†1µâ1µâ

†
2µâ1µ = â†2µâ1µ − â†2µâ1µ = 0 , (5.92)

as well as

d̂2
µ =

(
â†2µâ2µ − â†1µâ1µ

)(
â†2µâ2µ − â†1µâ1µ

)
= â†2µâ2µâ

†
1µâ1µ + â†1µâ1µâ

†
1µâ1µ − â†1µâ1µâ

†
2µâ2µ

−â†2µâ2µâ
†
1µâ1µ = â†2µâ2µ + â†1µâ1µ = 1 =⇒

[
d̂µ, d̂µ

]
+

= 2 . (5.93)

All those commutator and anti-commutator relations (5.85), (5.86) and (5.87)–(5.93) imply

that a single electron in a two-level system is formally equivalent to a single spin-1/2. Due to

the above assumption E2 > E1 the indices 1 and 2 correspond to the ground and the excited

state of the two-level system, which could be identified with the spin down and the spin up of

the spin-1/2 system, respectively. This leads inevitably to the following identifications for the

corresponding operators:

σ+µ = σxµ + iσyµ ⇐⇒ α̂†µ = â†2µâ1µ , (5.94)

σ−µ = σxµ − iσyµ ⇐⇒ α̂µ = â†1µâ2µ , (5.95)

σzµ ⇐⇒ d̂µ = â†2µâ2µ − â†1µâ1µ . (5.96)

Indeed, the non-trivial commutators from (5.85), (5.86) go over into[
σ+µ, σ−µ

]
−

= σzµ ,
[
σ+µ, σzµ

]
−

= −2σ+µ ,
[
σ−µ, σzµ

]
−

= 2σ−µ , (5.97)

which is equivalent to the Lie algebra (4.207) of Pauli matrices. In the same way the anti-

commutators (5.88)–(5.93) are converted to

σ2
+µ = σ2

−µ = 0 ,
[
σ+µ, σ−µ

]
+

= 1 ,
[
σ+µ, σzµ

]
+

=
[
σ−µ, σzµ

]
+

= 0 , σ2
zµ = 1 , (5.98)

which corresponds to the Clifford algebra (4.206) of Pauli matrices. Note that (5.97) and (5.98)

could also directly be deduced from the corresponding matrix representation

σ+µ =

(
0 1

0 0

)
µ

, σ−µ =

(
0 0

1 0

)
µ

, σzµ =

(
1 0

0 −1

)
µ

. (5.99)
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Due to this formal equivalence the Hamiltonian for light and matter with rotated wave approx-

imation (5.84) can also be cast in the form

Ĥ =
∑
λ

~ωλb̂
†
λ(t)b̂λ(t) +

∑
µ

~Ω

2
σzµ(t) +

∑
λ

∑
µ

[
~gλµb̂λ(t)σ+µ(t) + ~g∗λµb̂

†
λ(t)σ−µ(t)

]
.(5.100)

Thus, this Hamiltonian corresponds to a sum of Jaynes-Cummings Hamiltonians (4.308). Fi-

nally, for the sake of completeness, we also write down the closed set of Heisenberg equations

of light and matter (5.72)–(5.76) in the spin 1/2 notation:

∂

∂t
b̂†λ(t) = iωλb̂

†
λ(t) + i

∑
µ

gλµσ+µ(t) , (5.101)

∂

∂t
b̂λ(t) = −iωλb̂λ(t)− i

∑
µ

g∗λµσ−µ(t) , (5.102)

∂

∂t
σ−µ(t) = −iΩσ−µ(t) + i

∑
λ

gλµb̂λ(t)σzµ(t) , (5.103)

∂

∂t
σ+µ(t) = iΩσ+µ(t) + i

∑
λ

g∗λµb̂λ(t)†σzµ(t) , (5.104)

∂

∂t
σzµ(t) = 2i

∑
λ

[
g∗λµb̂

†
λ(t)σ−µ(t)− gλµb̂λ(t)σ+µ(t)

]
. (5.105)



Chapter 6

Quantum Mechanical Equations of

Light Field and Atoms with Baths

In the laser the cavity modes and the electrons in the atoms do not only interact with one

another as described in Chapter 5, but also with their respective surroundings. For instance,

the cavity field is coupled to mirrors and scattering centers, whereas the electrons are pumped or

interact with lattice vibrations or suffer from atomic collisions leading to non-radiative atomic

transitions All these external sources acting on the electromagnetic field and the electrons

are called heat baths or reservoirs. In general, the heat baths are large systems compared

to the subsystems of the laser. Therefore, one can assume that these heat baths are kept at

their individual temperatures, which may differ from each other appreciably. For instance, the

temperature of the pump source is much higher than that of the lattice vibrations. A heat bath

has simultaneously two effects on the Heisenberg equations of the second quantized operators

describing light and matter. On the one hand they lead to damping or pumping terms in the

respective operator-valued equations of motion. However, such a damping or pumping alone

would have the effect that the canonical equal-time commutator and anti-commutator relations

between the second-quantized operators would decrease or increase with time. Therefore, a

heat bath also has the second effect of giving rise to operator-valued stochastic forces, which

are tuned in such a way that the canonical commutator or anti-commutator relations between

the second-quantized operators are preserved during the dynamics upon a bath average. The

aim of this chapter is now to derive those so-called quantum Langevin equations for the second-

quantized operators of light and matter and to check those quantum mechanical consistency

relations upon a bath average.

6.1 Heat Bath For Light Field

In principle, each cavity mode of the electromagnetic field is coupled to an individual heat

bath. Therefore, we drop the cavity mode index λ for the time being and restrict the following
181
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Figure 6.1: Illustration for the coupling of a photon operator to a bath of harmonic oscillators

at frequencies ω, where the bilinear interaction is characterized by complex strengths gω.

consideration without loss of generality to a system which consists of one single cavity mode of

frequency ω0:

ĤS = ~ω0b̂
†(t)b̂(t) . (6.1)

The heat bath itself is modelled by an infinite number of harmonic oscillators

ĤB =
∑
ω

~ωB̂†ω(t)B̂ω(t) , (6.2)

where the bath operators B̂†ω, B̂ω fulfill the usual equal-time bosonic commutator relations:[
B̂ω(t), B̂ω′(t)

]
−

=
[
B̂†ω(t), B̂†ω′(t)

]
−

= 0 ,
[
B̂ω(t), B̂†ω′(t)

]
−

= δω ω′ . (6.3)

The interaction between the system and the bath is now assumed to be bilinear in the system

and the bath operators:

ĤSB = b̂†(t)
∑
ω

~gωB̂ω(t) +
∑
ω

~g∗ωB̂†ω(t)b̂(t) . (6.4)

Thus, the annihilation (creation) of a bath quantum of energy ~ω occurs simultaneously with

the creation (annihilation) of a photon of energy ~ω0 and gω denotes the corresponding complex-

valued interaction strength at frequency ω. This system-bath model is illustrated in Fig. 6.1

and is described by the total Hamiltonian

Ĥ = ĤS + ĤB + ĤSB (6.5)

determining the Heisenberg equation of any operator. On the one hand the evolution equation

for the light field operator turns out to be

∂

∂t
b̂†(t) =

i

~

[
Ĥ, b̂†(t)

]
−

= iω0b̂
†(t) + i

∑
ω

g∗ωB̂
†
ω(t) (6.6)

and the dynamics of the bath operators follows from

∂

∂t
B̂†ω(t) =

i

~

[
Ĥ, B̂†ω(t)

]
−

= iωB̂†ω(t) + igω b̂
†(t) . (6.7)
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The latter represents an inhomogeneous linear differential equation of first order determining

B̂†ω(t), which can be solved with standard procedures as follows. At first, the homogeneous

differential equation is solved with

B̂†ω,hom(t) = B̂†ω(t0)eiω(t−t0) . (6.8)

Then a particular solution is obtained with the method of varying constants

B̂†ω,part(t) = Ĉ(t)eiω(t−t0) . (6.9)

Inserting the ansatz (6.9) in the inhomogeneous differential equation (6.7) yields a differential

equation for the function Ĉ(t):

∂Ĉ(t)

∂t
= igω b̂

†(t)e−iω(t−t0) , (6.10)

which can straight-forwardly be integrated

Ĉ(t) = igω

∫ t

t0

dτ b̂†(τ)e−iω(τ−t0) . (6.11)

Adding now homogeneous and particular solution (6.8) and (6.9) with (6.11) yields the general

solution for the dynamics of the bath operators:

B̂†ω(t) = B̂†ω(t0)eiω(t−t0) + igω

∫ t

t0

dτ b̂†(τ)eiω(t−τ) . (6.12)

Inserting this general solution for B̂†ω(t) into the evolution equation (6.6) for the photon creation

operator b̂†(t) yields

∂

∂t
b̂†(t) = iω0b̂

†(t) + F̂ †(t) + Γ̂†(t) . (6.13)

The term from which the damping will emerge reads

F̂ †(t) = −
∑
ω

|gω|2
∫ t

t0

dτ b̂†(τ)eiω(t−τ) . (6.14)

Now we allow for both positive and negative frequencies and perform the limit of having a

continuum of bath degrees of freedom, so that the sum over the frequencies leads to an integral.

Furthermore, we assume that the constant gω, which describes the coupling between the system

operator b̂† and the bath operator B̂†ω, does not depend on the frequency ω, see Fig. 6.2. With

this we get

F̂ †(t) = − |g|2
∫ t

t0

dτ b̂†(τ)

∫ ∞
−∞

dω eiω(t−τ) (6.15)

and the frequency integral yields a delta function

F̂ †(t) = −2π |g|2
∫ t

t0

dτ b̂†(τ)δ(t− τ) . (6.16)
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a) b)

Figure 6.2: Strength of interaction gω between photon operator and bath operators at different

frequencies ω: a) Discrete and b) continuum case.

For the evaluation of the integral it must be noted that the delta function has the property∫ t

0

dτ δ(t− τ) =
1

2
. (6.17)

Thus, finally we yield the damping term

F̂ †(t) = −κb̂†(t) (6.18)

with the damping constant

κ = π |g|2 . (6.19)

This damping describes photon losses, which are due to semi-transparent cavity mirrors or an

interaction with scattering centers. Correspondingly the last term in the evolution equation

(6.13) for b̂†(t) reads

Γ̂†(t) = i
∑
ω

g∗ωB̂
†
ω(t0)eiω(t−t0) . (6.20)

This represents an operator-valued fluctuating force. The reason is that the effect of the op-

erator B̂†ω(t0) at the initial time t0 is not known precisely. If we assume that the heat bath is

initially at equilibrium with some temperature T , it is described by the thermal density matrix

ρ̂B =
1

ZB

e−βĤB (6.21)

with the bath Hamiltonian (6.2) and the partition function

ZB = TrB e
−βĤB . (6.22)

Any thermal average over the heat bath is then defined by

〈•〉B = TrB (ρ̂B •) . (6.23)

With this we obtain immediately from (6.20)–(6.23) that the heat bath average over the fluc-

tuating field operator vanishes

〈Γ̂†(t)〉B = 0 , 〈Γ̂(t)〉B = 0 (6.24)
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due to the property

〈B̂†ω(t0)〉B = 0 , 〈B̂ω(t0)〉B = 0 . (6.25)

Correspondingly the correlation functions of the fluctuating field operators yield

〈Γ̂†(t)Γ̂(t′)〉B =
∑
ω

|gω|2 eiω(t−t′)nω(T ) , (6.26)

〈Γ̂(t)Γ̂†(t′)〉B =
∑
ω

|gω|2 e−iω(t−t′) [1 + nω(T )] , (6.27)

which is independent of the initial time t0 due to the property

〈B̂†ω(t0)B̂ω′(t0)〉B = δω,ω′nω(T ) , (6.28)

〈B̂ω(t0)B̂†ω′(t0)〉B = δω,ω′ [1 + nω(T )] . (6.29)

Here nω(T ) denotes the occupation number of the bath mode corresponding to the frequency

ω of the heat bath at temperature T . Also in (6.26) and (6.27) we allow the coupling constant

to the bath gω to be independent on the frequency ω, so that performing the limit of having a

continuum of bath degrees of freedom converts the sums over the frequencies to integrals:

〈Γ̂†(t)Γ̂(t′)〉B = |g|2
∫ ∞
−∞

dω eiω(t−t′)nω(T ) , (6.30)

〈Γ̂(t)Γ̂†(t′)〉B = |g|2
∫ ∞
−∞

dω e−iω(t−t′) [1 + nω(T )] . (6.31)

As the thermal occupation nω(T ) of the bath mode is supposed to vary slowly around the

frequency ω0 of the photonic harmonic oscillator, it can be approximated by nω0(T ), so by

taking into account the damping constant (6.19) we get:

〈Γ̂†(t)Γ̂(t′)〉B = 2κnω0(T )δ(t− t′) , (6.32)

〈Γ̂(t)Γ̂†(t′)〉B = 2κ [1 + nω0(T )] δ(t− t′) . (6.33)

We read off from the delta function in time that the heat bath has a very short memory, which is

called a Markov property. As the Fourier transform in time would lead to a constant in frequency

space, such a noise is called to be white. Furthermore, the strength of both correlations (6.32)

and (6.33) are proportional to the damping constant κ and is, thus, intimately connected with

the dissipation. This represents an illustrative example of the seminal fluctuation-dissipation

theorem that the strength of fluctuations is determined by the strength of the dissipation.

In view of later purposes, we also obtain from (6.32), (6.33) for the bath average over the

commutator of the operator-valued fluctuating force〈[
Γ̂(t), Γ̂†(t′)

]
−

〉
B

= 2κδ(t− t′) . (6.34)

Now we show explicitly how the fluctuating field operators restore quantum mechanical consis-

tency. To this end we solve the evolution equation (6.13) for b̂†(t), which reduces due to (6.18)

to

∂

∂t
b̂†(t) = (iω0 − κ) b̂†(t) + Γ̂†(t) , (6.35)
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and obtain

b̂†(t) = b̂†(0)e(iω0−κ)t +

∫ t

0

dτ Γ̂†(τ)e(iω0−κ)(t−τ) . (6.36)

Correspondingly the dynamics of b̂(t) is given by

b̂(t) = b̂(0)e(−iω0−κ)t +

∫ t

0

dτ Γ̂(τ)e(−iω0−κ)(t−τ) . (6.37)

With this we can calculate how the equal-time commutator of b̂(t) and b̂†(t) changes with time.

Within the heat bath average we find due to (6.24)〈[
b̂(t), b̂†(t)

]
−

〉
B

=
[
b̂(0), b̂†(0)

]
−
e−2κt (6.38)

+

∫ t

0

dτ

∫ t

0

dτ ′
〈[

Γ̂(τ), Γ̂†(τ ′)
]
−

〉
B

e(iω0−κ)(t−τ ′)e(−iω0−κ)(t−τ) .

With the initial canonical bosonic commutator[
b̂(0), b̂†(0)

]
−

= 1 (6.39)

and the heat bath average of the commutator of fluctuating field operators (6.34) this reduces

to 〈[
b̂(t), b̂†(t)

]
−

〉
B

= e−2κt + 2κe−2κt

∫ t

0

dτ e2κτ . (6.40)

Evaluating the remaining elementary integral∫ t

0

dτ e2κτ =
e2κt − 1

2κ
(6.41)

we obtain the intriguing result that the equal-time commutator relation is preserved with

respect to the heat bath average for all times:〈[
b̂(t), b̂†(t)

]
−

〉
B

= 1 . (6.42)

In a similar way we can also determine from (6.36) and (6.37) the heat bath average of the

photon number operator:

〈b̂†(t)b̂(t)〉B = b̂†(0)b̂(0)e−2κt +

∫ t

0

dτ

∫ t

0

dτ ′ 〈Γ̂†(τ)Γ̂(τ ′)〉B e
(iω0−κ)(t−τ ′)e(−iω−κ)(t−τ) . (6.43)

Due to the above correlation function of the fluctuating field operators (6.32) this reduces to

〈b̂†(t)b̂(t)〉B = b̂†(0)b̂(0)e−2κt + 2κnω0(T )e−2κt

∫ t

0

dτ e2κτ . (6.44)
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Taking into account the elementary integral (6.41) this finally yields for the time evolution of

the heat bath average of the photon number operator

〈b̂†(t)b̂(t)〉B = nω0(T ) +
[
b̂†(0)b̂(0)− nω0(T )

]
e−2κt . (6.45)

Thus, this heat bath average evolves exponentially starting from the operator-valued initial

value

lim
t→0
〈b̂†(t)b̂(t)〉B = b̂†(0)b̂(0) (6.46)

to its long-time limit

lim
t→∞
〈b̂†(t)b̂(t)〉B = nω0(T ) , (6.47)

which is just a c-number and corresponds to the occupation number of the bath mode corre-

sponding to the cavity mode frequency ω0 of the heat bath at temperature T . Furthermore, we

observe from (6.46) together with (6.24), (6.36), and (6.37)

〈b̂†(t)b̂(t)〉B − 〈b̂
†(t)〉B 〈b̂(t)〉B = nω0(T )

(
1− e−2κt

)
. (6.48)

Thus, the variance of the photon number operator with respect to the heat bath average

increases monotonously from the initial value zero to the the occupation number nω0(T ) of the

bath mode.

6.2 Heat Bath For Electron Field: Deterministic Part

In an analogous way we now treat also the heat bath for the electron field. As the respective

atoms are assumed to be distinguishable, we restrict ourselves to the heat bath of one single

atom, so we can drop the atom index µ. The starting point is again a total Hamiltonian Ĥ

of the form (6.5). But this time the system Hamiltonian consists of non-interacting electrons

with dispersion Ei:

ĤS =
∑
i

Eiâ
†
i âi . (6.49)

Each operator â†i âj of the electron field is coupled to its own bath operator B̂ijω according to

ĤSB =
∑
i,j

â†i âj~
∑
ω

gijωB̂ijω +
∑
i,j

~
∑
ω

g∗ijωB̂
†
ijωâ

†
j âi , (6.50)

where gijω denotes the respective coupling strength. And the bath Hamiltonian is again mod-

elled by harmonic oscillators

ĤB =
∑
i,j

∑
ω

~ωB̂†ijωB̂ijω . (6.51)
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Note that also the bath operators B̂†ijω, B̂ijω for the operators â†i âj of the electron field fulfill

the usual equal-time bosonic commutator relations:[
B̂ijω(t), B̂i′j′ω′(t)

]
−

=
[
B̂†ijω(t), B̂†i′j′ω′(t)

]
−

= 0 ,
[
B̂ijω(t), B̂†i′j′ω′(t)

]
−

= δi,i′δj,j′δω ω′ . (6.52)

At first we determine the Heisenberg equations for the operators â†i âj:

∂

∂t
â†i âj =

i

~

[
Ĥ, â†i âj

]
−

=
i

~
∑
i′

Ei′

[
â†i′ âi′ , â

†
i âj

]
−

(6.53)

+
i

~
∑
i′,j′

[
â†i′ âj′ , â

†
i âj

]
−
~
∑
ω

gi′j′ωB̂i′j′ω +
i

~
∑
i′,j′

~
∑
ω

g∗i′j′ωB̂
†
i′j′ω

[
â†j′ âi′ , â

†
i âj

]
−
.

Applying the above derived commutator relation (5.46) yields together with the atomic transi-

tion frequencies (5.48)

∂

∂t
â†i âj = iΩijâ

†
i âj + i

∑
i′

â†i′ âj
∑
ω

gi′iωB̂i′iω − i
∑
j′

â†i âj′
∑
ω

gjj′ωB̂jj′ω (6.54)

+i
∑
j′

∑
ω

g∗ij′ωB̂
†
ij′ω
â†j′ âj − i

∑
i′

∑
ω

g∗i′jωB̂
†
i′jωâ

†
i âi′ .

And the Heisenberg equations for the bath operators yield

∂

∂t
B̂†ijω =

i

~

[
Ĥ, B̂†ijω

]
−

= iωB̂†ijω + igijωâ
†
i âj . (6.55)

The solution of this inhomogeneous linear differential equation of first order reads

B̂†ijω(t) = B̂†ijω(t0)eiω(t−t0) + igijω

∫ t

t0

dτ â†i (τ)âj(τ)eiω(t−τ) (6.56)

with the correspondingly adjoint dynamics

B̂ijω(t) = B̂ijω(t0)e−iω(t−t0) − ig∗ijω
∫ t

t0

dτ â†j(τ)âi(τ)e−iω(t−τ) . (6.57)

Inserting the dynamics of the bath operators (6.56) and (6.57) back into the Heisenberg equa-

tions for the electron field (6.54) yields

∂

∂t
â†i (t)âj(t) = iΩijâ

†
i (t)âj(t) + i

∑
i′

â†i′(t)âj(t)
∑
ω

gi′iω(−i)g∗i′iω
∫ t

t0

dτ â†i (τ)âi′(τ)e−iω(t−τ)

−i
∑
i′

â†i âi′
∑
ω

gji′ω(−i)g∗ji′ω
∫ t

t0

dτ â†i′(τ)âj(τ)e−iω(t−τ)

+i
∑
i′

∑
ω

g∗ii′ωigii′ω

∫ t

t0

dτ â†i (τ)âi′(τ)eiω(t−τ)â†i′(t)âj(t)

−i
∑
i′

∑
ω

g∗i′jωigi′jω

∫ t

t0

dτ â†i′(τ)âj(τ)eiω(t−τ)â†i (t)âi′(t) + Γ̂ij(t) . (6.58)
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Here the fluctuating field operators read

Γ̂ij(t) = i
∑
i′

â†i′(t)âj(t)
∑
ω

gi′iωB̂i′iω(t0)e−iω(t−t0) − i
∑
i′

â†i (t)âi′(t)
∑
ω

gji′ωB̂ji′ω(t0)e−iω(t−t0)

+i
∑
i′

∑
ω

g∗ii′ωB̂
†
ii′ω

(t0)eiω(t−t0)â†i′(t)âj(t)− i
∑
i′

∑
ω

g∗i′jωB̂
†
i′jω(t0)eiω(t−t0)â†i (t)âi′(t) . (6.59)

The discussion of their correlations is relegated to the subsequent section. Here we focus

on identifying the respective deterministic terms in the Heisenberg equations (6.58) of the

electronic operators. To this end we assume for the electron field bath that the coupling

strengths gijω do not depend on the frequency ω and perform the limit of continuously many

bath degrees of freedom similar to the photon bath case illustrated in Fig. 6.2. The resulting

frequency integral leads to a delta function in time, which can be directly evaluated. With this

the Heisenberg equations (6.58) reduce to

∂

∂t
â†i âj = iΩijâ

†
i âj +

1

2

∑
i′

[
(γi′i + γi′j) â

†
i′ âjâ

†
i âi′ −

(
γji′ + γii′

)
â†i âi′ â

†
i′ âj

]
+ Γ̂ij , (6.60)

where we have introduced the damping constants

γij = 2π |gij|2 . (6.61)

As we restrict ourselves to the description of one electron, the product of four electronic oper-

ators is further simplified according to (5.87). The evolution equation (4.138) thus simplifies

to

∂

∂t
â†i âj = iΩijâ

†
i âj +

1

2

∑
i′

[
(γi′i + γi′j) δijâ

†
i′ âi′ −

(
γji′ + γii′

)
â†i âj

]
+ Γ̂ij . (6.62)

We distinguish now two cases where the quantum numbers i and j are different and coincide,

respectively:

i 6= j :
∂

∂t
â†i âj =

(
iΩij −

∑
i′

γji′ + γii′

2

)
â†i âj + Γ̂ij , (6.63)

i = j :
∂

∂t
â†i âi =

∑
i′

γi′iâ
†
i′ âi′ −

∑
i′

γii′ â
†
i âi + Γ̂ii . (6.64)

Now we approximate each atom by a two-level system, so the indices i, j can only assume the

values 1 and 2. In case of identifying i, j with 1, 2 and 2, 1, respectively, we obtain from (6.63)

the dynamics of the atomic polarisation amplitude operator (5.71):

∂

∂t
α̂ = (−iΩ− γ⊥) α̂ + Γ̂α (6.65)

and its adjoint

∂

∂t
α̂† = (iΩ− γ⊥) α̂† + Γ̂†α , (6.66)
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Figure 6.3: Schematic illustration of gains and losses for the occupations of both atomic levels:

Rates γ12 and γ21 describe pumping processes and non-radiative atomic transitions, respectively.

which have the fluctuating operator

Γ̂α = Γ̂12 , (6.67)

Γ̂†α = Γ̂†12 . (6.68)

Here the transversal relaxation parameter

γ⊥ =
1

2
(γ11 + γ12 + γ21 + γ22) (6.69)

characterizes the line width of the frequency Ω in the two-level atom, which is caused by the

decay of atomic dipole moments. Correspondingly, in case of identifying i=j with 1 and 2 leads

in (6.64) to the dynamics of the population of the respective levels:

∂

∂t
â†1â1 = γ21â

†
2â2 − γ12â

†
1â1 + Γ̂11 , (6.70)

∂

∂t
â†2â2 = −γ21â

†
2â2 + γ12â

†
1â1 + Γ̂22 . (6.71)

The deterministic part describes gains and losses for the respective occupations as sketched in

Fig. 6.3. The rate γ12 quantifies the pumping process, which can either be achieved with a

separate light source or, as in case of the He-Ne laser, by a scattering of the two-level systems

of Ne atoms with excited He atoms. The rate γ21 describes non-radiative atomic transitions

which are due to interactions of the laser-active atom with the solid-state matrix. Thus, the

resulting dynamics for the atomic population inversion operator (5.61) yields

∂

∂t
d̂ = (γ12 − γ21)− (γ12 + γ21) d̂+ Γ̂d , (6.72)

with the fluctuating operator

Γ̂d = Γ̂22 − Γ̂11 . (6.73)

Introducing the unsaturated population inversion

d0 =
γ12 − γ21

γ12 + γ21

(6.74)
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and the longitudinal relaxation parameter

γ‖ = γ12 + γ21 (6.75)

the dynamics of the population inversion operator (6.72) is finally of the form

∂

∂t
d̂ = γ‖

(
d0 − d̂

)
+ Γ̂d . (6.76)

Note that d0 represents the population inversion in equilibrium, which adjusts itself in the

absence of any interaction with the light field under the mutual impact of pumping and inco-

herent decay processes described by γ12 and γ21, respectively, see Fig. 6.3. And γ‖ denotes the

relaxation time for the population inversion to reach equilibrium.

6.3 Heat Bath for Electron Field: Stochastic Part

In this section we determine the correlation functions of the fluctuating field operators for the

electron field. To this end we assume that also the bath operators B̂ijω(t0), B̂†ijω(t0) at the

initial time t0 are distributed according to the equilibrium density matrix (6.21) with the bath

Hamiltonian (6.51). Thus, the thermal average (6.23) of the bath operators vanishes:

〈B̂ijω〉B = 0 , 〈B̂†ijω〉B = 0 . (6.77)

So far, the bath of the electron field has the same properties as the bath of the photon field. But

the first essential difference is now that the energies of the bath operators of the electron field

are supposed to be much larger than the photon field and the room temperature. Therefore,

we conclude that the bath modes are approximately not occupied:

〈B̂†ijω(t0)B̂i′j′ω′(t0)〉
B

= δii′δjj′δωω′nijω(T ) ≈ 0 . (6.78)

In view of the calculation of the correlation functions of the fluctuating field operators for the

electron field this has the consequence that only terms contribute which contain an expression

of the form

〈B̂ijω(t0)B̂†i′j′ω′(t0)〉
B

= δii′δjj′δωω′ [1 + nijω(T )] ≈ δiiδjj′δωω′ . (6.79)

But there is also a second qualitative difference between the bath of the electron field and the

photon field. In case of the photon field the fluctuating field operators describe an additive

noise. This means that Γ̂(t), Γ̂†(t) do not depend on the photon operators b̂(t), b̂†(t) as can

be seen from (6.20) and its adjoint. In contrast to that the fluctuating field operators of the

electron field describe multiplicative noise as Γ̂ij(t) depends explicitly on the electronic operators

â†i (t), âj(t) according to (6.59). This makes the evaluation for the fluctuating field operators

more complicated for the case of the electronic field. But we use a time scale argument in

order to determine the correlation functions at least approximately. Whereas the fluctuations
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of the bath operators occur on a very short time scale, the response of the electronic degree of

freedom is quite slow. This suggests to factorize the bath average as follows:

〈electron operators · bath operators〉B ≈ 〈electron operators〉B · 〈bath operators〉B . (6.80)

Taking into account (6.59) and (6.77) we conclude from (6.80) that the bath average of the

fluctuating field operators vanishes

〈Γ̂ij(t)〉B = 0 . (6.81)

Subsequently we calculate the correlation function of the fluctuating field operators:

〈Γ̂ij(t)Γ̂i′j′(t
′)〉B (6.82)

Inserting therein (6.59) we obtain in total 16 terms from which only four terms survive due to

(6.78). Applying for each of them the factorization approximation (6.80), this yields∑
kk′

∑
ωω′

[
〈â†k(t)âj(t)â

†
i′(t
′)âj′(t

′)〉B gkiωg
∗
k′j′ω′ 〈B̂kiω(t0)B̂†k′j′ω′(t0)〉

B
e−iω(t−t0)eiω

′(t′−t0)

+ 〈â†i (t)âk(t)â†k′(t
′)âj′(t

′)〉B gjkωg
∗
i′k′ω′ 〈B̂jkω(t0)B̂†i′k′ω′(t0)〉B e

−iω(t−t0)eiω
′(t′−t0)

−〈â†k(t)âj(t)â
†
k′(t

′)âj′(t
′)〉B gkiωg

∗
i′k′ω′ 〈B̂kiω(t0)B̂†i′k′ω′(t0)〉B e

−iω(t−t0)eiω
′(t′−t0)

−〈â†i (t)âk(t)â†i′(t
′)âk′(t

′)〉B gjkωg
∗
k′j′ω′ 〈B̂jkω(t0)B̂†k′j′ω′(t0)〉

B
e−iω(t−t0)eiω

′(t′−t0)
]
. (6.83)

Inserting the thermal average for the bath operators (6.79) reduces the correlation function

(6.83) to∑
k

∑
ω

[
〈â†k(t)âj(t)â

†
i′(t
′)âk(t′)〉B δij′ |gkiω|

2 + 〈â†i (t)âk(t)â†k(t)âj′(t
′)〉B δi′j |gjkω|

2
]
e−iω(t−t′)

−
∑
ω

[
〈â†i′(t)âj(t)â

†
i (t
′)âj′(t

′)〉B |gi′iω|
2 + 〈â†i (t)âj′(t)â

†
i′(t
′)âj(t

′)〉B
∣∣gjj′ω∣∣2] e−iω(t−t′) . (6.84)

Assuming as usual that the coupling strengths gijω do not depend on ω and allowing positive

as well as negative frequencies yields in the thermodynamic limit that the correlation functions

are proportional to the delta function:

〈Γ̂ij(t)Γ̂i′j′(t
′)〉B = Γ̂iji′j′δ(t− t′) . (6.85)

Thus, the fluctuating field operators of the electron field do not have any memory, which is

called the Markov property. With the definition (6.61) of the electronic damping constants we

obtain for the operator-valued weight in (6.85):

Γ̂iji′j′ =
∑
k

[
γkiδij′ 〈â†kâjâ

†
i′ âk〉B + γjkδi′j 〈â†i âkâ

†
kâj′〉B

]
−γi′i 〈â†i′ âjâ

†
i âj′〉B − γjj′ 〈â

†
i âj′ â

†
i′ âj〉B . (6.86)
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Provided that the electronic operators just describe one electron, the product of four operators

reduce to two operators according to (5.87), which simplifies (6.86) to

Γ̂iji′j′ =
∑
k

(
γkiδij′ 〈â†kâk〉B + γjk 〈â†i âj′〉B

)
δi′j − γi′iδij 〈â†i′ âj′〉B − γjj′δi′j′ 〈â

†
i âj〉B . (6.87)

Special cases of (6.87) read

Γ̂iii′i′ =
∑
k

(
γki 〈â†kâk〉B + γik 〈â†i âi′〉B

)
δii′ − γi′i 〈â†i′ âi′〉B − γii′ 〈â

†
i âi〉B , (6.88)

Γ̂ii′ii′ = 0 , i 6= i′ , (6.89)

Γ̂ii′i′i =
∑
k

(
γki 〈â†kâk〉B + γi′k 〈â†i âi〉B

)
, i 6= i′ . (6.90)

Note that (6.88)–(6.90) coincide with [8, (IV.5.29)–(IV.5.31)]. Now we implement the two-level

approximation, so that the indices i, i′ can only assume the values 1 and 2. With this we read

off on the one hand from (6.88)

Γ̂1111 = Γ̂2222 = γ21 〈â†2â2〉B + γ12 〈â†1â1〉B = −Γ̂1122 = −Γ̂2211 . (6.91)

Thus, we conclude for the correlation amplitude of the fluctuation operator of the population

inversion operator (6.73) due to (6.85)

〈Γ̂d(t)Γ̂d(t′)〉B =
(

Γ̂2222 + Γ̂1111 − Γ̂1122 − Γ̂2211

)
δ(t− t′) (6.92)

with the amplitude following from (6.91):

Γ̂2222 + Γ̂1111 − Γ̂1122 − Γ̂2211 = 4
(
γ21 〈â†2â2〉B + γ12 〈â†1â1〉B

)
. (6.93)

Provided that each atomic two-level system describes just one electron both occupation number

operators â†1â1, â†2â2 can be expressed in terms of the respective atomic inversion operator d̂

according to (5.79). Taking into account the longitudinal relaxation parameter (6.75) and the

unsaturated population inversion (6.74) we get for the amplitude (6.93)

Γ̂2222 + Γ̂1111 − Γ̂1122 − Γ̂2211 = 2γ‖

(
1− d0 〈d̂〉B

)
. (6.94)

On the other hand we obtain for the correlation of the fluctuation operator of the atomic

polarisation amplitude operator (6.67), (6.68) from (6.90)

〈Γ̂α(t)Γ̂†α(t′)〉B = Γ̂1221δ(t− t′) , (6.95)

〈Γ̂†α(t)Γ̂α(t′)〉B = Γ̂2112δ(t− t′) , (6.96)

where the respective amplitudes are given by

Γ̂1221 = γ11 〈â†1â1〉B + γ21 〈â†2â2〉B + γ21 〈â†1â1〉B + γ22 〈â†1â1〉B , (6.97)

Γ̂2112 = γ12 〈â†1â1〉B + γ22 〈â†2â2〉B + γ11 〈â†2â2〉B + γ12 〈â†2â2〉B . (6.98)
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Introducing again the atomic inversion operator d̂ according to (5.79) and using (6.69), (6.74),

and (6.75) yields

Γ̂1221 = γ⊥

(
1− 〈d̂〉B

)
−
γ‖
2

(
d0 − 〈d̂〉B

)
, (6.99)

Γ̂2112 = γ⊥

(
1 + 〈d̂〉B

)
+
γ‖
2

(
d0 − 〈d̂〉B

)
. (6.100)

In addition we read off from (6.87)

Γ̂1211 = −γ21 〈â†1â2〉B = −Γ̂1222 , Γ̂2111 = γ12 〈â†2â1〉B = −Γ̂2122 . (6.101)

From the definitions (6.75), (6.74) we straight-forwardly obtain the relations

γ‖d0 = γ12 − γ21

γ‖ = γ12 + γ21

}
⇐⇒

γ12 = γ‖ (1 + d0) /2

γ21 = γ‖ (1− d0) /2
, (6.102)

which thus yields due to (6.67), (6.68, and (6.73) the correlations

〈Γ̂α(t)Γ̂d(t
′)〉B =

(
Γ̂1222 − Γ̂1211

)
δ(t− t′) , (6.103)

〈Γ̂†α(t)Γ̂d(t
′)〉B =

(
Γ̂2122 − Γ̂2111

)
δ(t− t′) (6.104)

with the amplitudes

Γ̂1222 − Γ̂1211 = 2γ21 〈â†1â1〉B = γ‖ (1− d0) 〈α̂〉B , (6.105)

Γ̂2122 − Γ̂2111 = −2γ12 〈â†1â1〉B = −γ‖ (1 + d0) 〈α̂†〉B . (6.106)

Correspondingly we also read off

Γ̂1112 = γ12 〈â†1â2〉B = −Γ̂2212 , Γ̂1121 = −γ21 〈â†2â1〉B = −Γ̂2221 , (6.107)

so we also deduce the correlations

〈Γ̂d(t)Γ̂α(t′)〉B =
(

Γ̂2212 − Γ̂1112

)
δ(t− t′) , (6.108)

〈Γ̂d(t)Γ̂†α(t′)〉B =
(

Γ̂2221 − Γ̂1121

)
δ(t− t′) . (6.109)

with the amplitudes

Γ̂2212 − Γ̂1112 = −γ‖ (1 + d0) 〈α̂〉B , (6.110)

Γ̂2221 − Γ̂1121 = γ‖ (1− d0) 〈α̂†〉B . (6.111)

Thus, the correlation functions obey the symmetry relations

〈Γ̂d(t)Γ̂α(t′)〉B =

〈[
Γ̂†α(t)Γ̂d(t

′)
]†〉

B

, 〈Γ̂d(t)Γ̂†α(t′)〉B =

〈[
Γ̂α(t)Γ̂d(t

′)
]†〉

B

. (6.112)

We conclude this section with the observation that also for the electron field the strength of

fluctuations is determined by the strength of the deterministic forces describing dissipation and

pumping, so that the fluctuation-dissipation theorem is also valid here.
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6.4 Heat Bath for Electron Field: Consistency

Now we show explicitly that the fluctuating operators, whose properties were determined in

the previous section, restore quantum mechanical consistency. To this end we formally solve at

first the quantum Langevin equations of the electron field operators (6.65), (6.66), and (6.76):

α̂†(t) = α̂†(0)e(iΩ−γ⊥)t +

∫ t

0

dτ Γ̂†α(τ)e(iΩ−γ⊥)(t−τ) , (6.113)

α̂(t) = α̂(0)e(−iΩ−γ⊥)t +

∫ t

0

dτ Γ̂α(τ)e(−iΩ−γ⊥)(t−τ) , (6.114)

d̂(t) = d0 +
[
d̂(0)− d0

]
e−γ‖t +

∫ t

0

dτ Γ̂d(τ)e−γ‖(t−τ) . (6.115)

Here the respective Langevin forces have according to the previous section the following seven

non-trivial correlation functions with respect to the bath average:

〈Γ̂†α(t)〉B = 〈Γ̂α(t)〉B = 〈Γ̂d(t)〉B = 0 , (6.116)

〈Γ̂†α(t)Γ̂α(t′)〉B =
{
γ⊥

[
1 + 〈d̂(t)〉B

]
+
γ‖
2

[
d0 − 〈d̂(t)〉B

]}
δ(t− t′) , (6.117)

〈Γ̂α(t)Γ̂†α(t′)〉B =
{
γ⊥

[
1− 〈d̂(t)〉B

]
−
γ‖
2

[
d0 − 〈d̂(t)〉B

]}
δ(t− t′) , (6.118)

〈Γ̂d(t)Γ̂d(t′)〉B = 2γ‖

[
1− d0 〈d̂(t)〉B

]
δ(t− t′) , (6.119)

〈Γ̂α(t)Γ̂d(t
′)〉B =

〈[
Γ̂d(t)Γ̂

†
α(t′)

]†〉
B

= γ‖ (1− d0) 〈α̂(t)〉B δ(t− t
′) , (6.120)

〈Γ̂d(t)Γ̂α(t′)〉B =

〈[
Γ̂†α(t)Γ̂d(t

′)
]†〉

B

= −γ‖ (1 + d0) 〈α̂(t)〉B δ(t− t
′) . (6.121)

Now we have to check whether all commutator and anti-commutator relations listed in (5.85),

(5.86) and (5.87)–(5.93) remain valid with respect to the thermal average. To this end we focus

on the five non-vanishing commutator and anti-commutator relations and start with obtaining

from (6.113), (6.114) by applying (6.116) and (6.117)

〈α̂†(t)α̂(t)〉B = α̂†(0)α̂(0)e−2γ⊥t

+e−2γ⊥t

∫ t

0

dτ

{
γ⊥

[
1 + 〈d̂(τ)〉B

]
+

1

2
γ‖

[
d0 − 〈d̂(τ)〉B

]}
e2γ⊥τ (6.122)

and, correspondingly, by applying (6.116) and (6.118)

〈α̂(t)α̂†(t)〉B = α̂(0)α̂†(0)e−2γ⊥t

+e−2γ⊥t

∫ t

0

dτ

{
γ⊥

[
1− 〈d̂(τ)〉B

]
− 1

2
γ‖

[
d0 − 〈d̂(τ)〉B

]}
e2γ⊥τ . (6.123)

Thus, from combining (6.122) and (6.123) we directly read off the consistency for the anti-

commutator 〈[
α̂†(t), α̂(t)

]
+

〉
B

=
[
α̂†(0), α̂(0)

]
+
e−2γ⊥t + 2γ⊥e

−2γ⊥t

∫ t

0

dτ e2γ⊥τ (6.124)
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by taking into account (5.90) at the initial time t = 0 and the elementary integral (6.41):〈[
α̂†(t), α̂(t)

]
+

〉
B

= 1 . (6.125)

The investigation of the corresponding commutator is more involved as we yield from (6.122)

and (6.123) at first〈[
α̂†(t), α̂(t)

]
−

〉
B

=
[
α̂†(0), α̂(0)

]
− e
−2γ⊥t

+e−2γ⊥t

∫ t

0

dτ
{

2γ⊥ 〈d̂(τ)〉B + γ‖

[
d0 − 〈d̂(τ)〉B

]}
e2γ⊥τ . (6.126)

Inserting therein the solution of the population inversion operator (6.115) together with (6.116)

we get 〈[
α̂†(t), α̂(t)

]
−

〉
B

=
[
α̂†(0), α̂(0)

]
− e
−2γ⊥t

+e−2γ⊥t

{
2γ⊥d0

∫ t

0

dτ e2γ⊥τ +
(
2γ⊥ − γ‖

) [
d̂(0)− d0

] ∫ t

0

dτ e(2γ⊥−γ‖)τ
}
, (6.127)

so that the remaining elementary integrals are of the type (6.41) and yield with (6.115) and

(6.116), indeed, that the commutator (5.85) holds at time t provided that it is fulfilled at the

initial time t = 0: 〈[
α̂†(t), α̂(t)

]
−

〉
B

= 〈d̂(t)〉B . (6.128)

In the same way we proceed for the bath average of the square of the population inversion

operator (6.115), which reads due to (6.116)

〈d̂2(t)〉B = d2
0 +

[
d̂(0)− d0

]2

e−2γ‖t + 2d0

[
d̂(0)− d0

]
e−γ‖t

+2γ‖e
−2γ‖t

∫ t

0

dτ
[
1− d0 〈d̂(τ)〉B

]
e2γ‖τ . (6.129)

Taking into account (6.115) and (6.116) the second line of (6.129) yields the integral

2γ‖e
−2γ‖t

{(
1− d2

0

) ∫ t

0

dτ e2γ‖τ − d0

[
d̂(0)− d0

] ∫ t

0

dτ eγ‖τ
}
, (6.130)

whose evaluation with the help of (6.41) yields(
1− d2

0

) (
1− e−2γ‖t

)
− 2d0

[
d̂(0)− d0

] (
e−γ‖t − e−2γ‖t

)
. (6.131)

Thus, substituting the second line of (6.129) by (6.131) we finally end up with

〈d̂2(t)〉B = 1 +
[
d̂2(0)− 1

]
e−2γ‖t , (6.132)

so that (5.93) is valid at time t provided it is valid at the initial time t = 0. Subsequently we

deduce from (6.114) and (6.115) together with (6.116), (6.120), and (6.121)

〈α̂(t)d̂(t)〉B = α̂(0)e(−iΩ−γ⊥)t
{
d0 +

[
d̂(0)− d0

]
e−γ‖t

}
+γ‖ (1− d0) e(−iΩ−γ⊥−γ‖)t

∫ t

0

dτ 〈α̂(τ)〉B e(
iΩ+γ⊥+γ‖)τ (6.133)
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and also

〈d̂(t)α̂(t)〉B =
{
d0 +

[
d̂(0)− d0

]
e−γ‖t

}
α̂(0)e(−iΩ−γ⊥)t

−γ‖ (1 + d0) e(−iΩ−γ⊥−γ‖)t
∫ t

0

dτ 〈α̂(τ)〉B e(
iΩ+γ⊥+γ‖)τ . (6.134)

Thus, inserting therein (6.114) and (6.116) and taking into account the elementary integral

(6.41) yields for the commutator〈[
α̂(t), d̂(t)

]
−

〉
B

=
[
α̂(0), d̂(0)

]
−
e(−iΩ−γ⊥−γ‖)t + 2α̂(0)

(
eγ‖t − 1

)
e(−iΩ−γ⊥−γ‖)t . (6.135)

Provided that the commutator (5.86) is valid at the initial time t = 0 it remains to be valid at

any time t due to (6.114) and (6.116):[
α̂(0), d̂(0)

]
−

= 2α̂(0) =⇒
〈[
α̂(t), d̂(t)

]
−

〉
B

= 2 〈α̂(t)〉B . (6.136)

Correspondingly we obtain also the adjoint of Eq. (6.136):[
α̂†(0), d̂(0)

]
−

= −2α̂(0) =⇒
〈[
α̂†(t), d̂(t)

]
−

〉
B

= −2
〈
α̂†(t)

〉
B
. (6.137)





Chapter 7

Semiclassical Laser Equations

At the beginning we review the quantum Langevin equations for the laser, which are too

complicated to solve exactly. Therefore, we perform a series of approximations in order to

be able to study at least roughly some laser properties. In a first step we determine the

expectation values for all system observables, yielding the seminal microscopic semiclassical

laser equations. Afterwards, we specialize to the homogeneous single-mode laser, which leads

to a qualitative understanding of the laser dynamics in form of three macroscopic equations.

Within the third step we adiabatically eliminate the polarization from the description, which

reduces the three macroscopic equations to two rate equations. For the latter we then perform

a linear stability analysis in order to determine both the laser threshold and the frequency of

the laser. And, finally, in the fifth step we work out a nonlinear analysis in the immediate

vicinity of the laser threshold, which allows to derive the underlying order parameter equation

for the nonequilibrium phase transition from the incoherent lamp light to the coherent laser

light.

7.1 Quantum Langevin Equations of Laser

We start with summarizing all the results of the preceding two chapters concerning both the

coherent and the incoherent interaction of light and matter. Thus, we list the coupled equations

for the light and the matter field operators, which represent quantum Lange quations and, thus,

consist of both a deterministic and a stochastic part:

∂

∂t
b̂†λ(t) = (iωλ − κ) b̂†λ(t) + i

∑
µ

gλµα̂
†
µ(t) + Γ̂†bλ(t) , (7.1)

∂

∂t
b̂λ(t) = (−iωλ − κ) b̂λ(t)− i

∑
µ

g∗λµα̂µ(t) + Γ̂bλ(t) , (7.2)

∂

∂t
α̂†µ(t) = (iΩ− γ⊥) α̂†µ(t)− i

∑
λ

g∗λµd̂
†
µ(t)b̂†λ(t) + Γ̂†αµ(t) , (7.3)

199
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∂

∂t
α̂µ(t) = (−iΩ− γ⊥) α̂µ(t) + i

∑
λ

gλµd̂µ(t)b̂λ(t) + Γ̂αµ(t) , (7.4)

∂

∂t
d̂µ(t) = γ‖

[
d0 − d̂µ(t)

]
+ 2i

∑
λ

[
g∗λµb̂

†
λ(t)α̂µ(t)− gλµα̂†µ(t)b̂λ(t)

]
+ Γ̂dµ(t) . (7.5)

Here the bath expectation values of all Langevin operators vanish:

〈Γ̂†bλ(t)〉B = 〈Γ̂bλ(t)〉B = 〈Γ̂†αµ(t)〉
B

= 〈Γ̂αµ(t)〉B = 〈Γ̂dµ(t)〉B = 0 . (7.6)

The correlation functions of the Langevin field operators read

〈Γ̂bλ(t)Γ̂bλ′(t
′)〉B = 〈Γ̂†bλ(t)Γ̂†bλ′(t

′)〉B = 0 , (7.7)

〈Γ̂†bλ(t)Γ̂bλ′(t
′)〉B = 2κnω0(T )δλλ′δ(t− t′) , (7.8)

〈Γ̂bλ(t)Γ̂†bλ′(t
′)〉B = 2κ

[
nω0(T ) + 1

]
δλλ′δ(t− t′) . (7.9)

Here the Kronecker symbol δλλ′ describes the independence of the respective cavity modes.

Furthermore, all correlation functions of the Langevin matter operators are given by

〈Γ̂dµ(t)Γ̂dµ′(t
′)〉B = 2γ‖

[
1− d0 〈d̂µ(t)〉B

]
δµµ′δ(t− t′) , (7.10)

〈Γ̂αµ(t)Γ̂†αµ′(t
′)〉

B
=

{
γ⊥

[
1− 〈d̂µ(t)〉B

]
− 1

2
γ‖

[
d0 − 〈d̂µ(t)〉B

]}
δµµ′δ(t− t′) , (7.11)

〈Γ̂†αµ(t)Γ̂αµ′(t
′)〉

B
=

{
γ⊥

[
1 + 〈d̂µ(t)〉B

]
+

1

2
γ‖

[
d0 − 〈d̂µ(t)〉B

]}
δµµ′δ(t− t′) , (7.12)

〈Γ̂αµ(t)Γ̂αµ′(t
′)〉B = 〈Γ̂†αµ(t)Γ̂†αµ′(t

′)〉
B

= 0 , (7.13)

〈Γ̂αµ(t)Γ̂dµ′(t
′)〉B = 〈Γ̂dµ(t)Γ̂αµ′(t

′)〉B = γ‖ (1− d0) 〈α̂µ(t)〉B δµµ′δ(t− t
′) , (7.14)

〈Γ̂†αµ(t)Γ̂dµ′(t
′)〉

B
= 〈Γ̂dµ(t)Γ̂†αµ′(t

′)〉
B

= −γ‖ (1 + d0) 〈α̂†µ(t)〉
B
δµµ′δ(t− t′) . (7.15)

On the one hand, the Kronecker symbol δµµ′ reflects the distinguishability of the respective

laser active atoms and, on the other hand, the delta function δ(t − t′) represents the Markow

property, i.e. the short memory of the Langevin operators.

7.2 Expectation Values

Performing the bath average upon the quantum Langevin equations of the laser (7.1)–(7.5), we

observe at first that the Langevin operators drop out due to (7.6). Secondly, we use again the

time scale hierarchy that the matter degrees of freedom vary much faster than the field degrees

of freedom, yielding the factorization approximation (6.80). This leads to the following coupled
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evolution equations for the bath expectation values of field and matter operators:

∂

∂t
〈b̂†λ(t)〉B = (iωλ − κ) 〈b̂†λ(t)〉B + i

∑
µ

gλµ 〈α̂†µ(t)〉
B
, (7.16)

∂

∂t
〈b̂λ(t)〉B = (−iωλ − κ) 〈b̂λ(t)〉B − i

∑
µ

g∗λµ 〈α̂µ(t)〉B , (7.17)

∂

∂t
〈α̂†µ(t)〉

B
= (iΩ− γ⊥) 〈α̂†µ(t)〉

B
− i
∑
λ

g∗λµ 〈d̂µ(t)〉B 〈b̂
†
λ(t)〉B , (7.18)

∂

∂t
〈α̂µ(t)〉B = (−iΩ− γ⊥) 〈α̂µ(t)〉B + i

∑
λ

gλµ 〈d̂µ(t)〉B 〈b̂λ(t)〉B , (7.19)

∂

∂t
〈d̂µ(t)〉B = γ‖

[
d0 − 〈d̂µ(t)〉B

]
+ 2i

∑
λ

[
g∗λµ 〈b̂

†
λ(t)〉B 〈α̂µ(t)〉B − gλµ 〈α̂

†
µ(t)〉

B
〈b̂λ(t)〉B

]
. (7.20)

Note that the bath expectation value of each operator has, in general, still an operator character

concerning the system observable. However, in order to simplify the following discussion further,

we eliminate also this operator character by restricting ourselves to the expectation values of

those operators with respect to the degrees of freedom of the system:

bλ(t) = 〈〈b̂λ(t)〉B〉S , b∗λ(t) = 〈〈b̂†λ(t)〉B〉S , (7.21)

αµ(t) = 〈〈α̂µ(t)〉B〉S , α∗µ(t) = 〈〈α̂†µ(t)〉
B
〉
S
, dµ(t) = 〈〈d̂µ(t)〉B〉S . (7.22)

Also for the system expectation value we take advantage of the time scale hierarchy that light

quantites vary on a time scale, which is much slower than the one of the matter quantities, and

assume a corresponding factorization property:

〈light operators ·matter operators〉S ≈ 〈light operators〉S · 〈matter operators〉S . (7.23)

With this we obtain the field equations from (7.16) and (7.17):

∂

∂t
b∗λ(t) = (iωλ − κ) b∗λ(t) + i

∑
µ

gλµα
∗
µ(t) , (7.24)

∂

∂t
bλ(t) = (−iωλ − κ) bλ(t)− i

∑
µ

g∗λµαµ(t) . (7.25)

The first term describes the oscillation and the damping of a resonator mode in absence of any

light-matter interaction. The second term takes into account that the dipole moments of all

laser active atoms represent the source for the dynamics of a resonator mode. The second set

of evolution equations concerns the matter degrees of freedom. According to (7.18) and (7.19)

the atomic dipole moment changes via

∂

∂t
α∗µ(t) = (iΩ− γ⊥)α∗µ(t)− i

∑
λ

g∗λµdµ(t)b∗λ(t) , (7.26)

∂

∂t
αµ(t) = (−iΩ− γ⊥)αµ(t) + i

∑
λ

gλµbλ(t)dµ(t) . (7.27)
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a) b)

Figure 7.1: Two mode selection schemes: a) Selection of near axial modes with long lifetime

and b) selection with respect to wavelength according to (7.29).

Here the first term denotes in absence of any light field the transition frequency of the two-

level atom and its damping, where the latter is caused by the interaction of the atom with its

environment. The second term accounts for the fact that any population inversion in presence of

a light field yields an atomic polarization. Finally, the atomic population imbalance is governed

by

∂

∂t
dµ(t) = γ‖

[
d0 − dµ(t)

]
+ 2i

∑
λ

[
g∗λµb

∗
λ(t)αµ(t)− gλµα∗µ(t)bλ(t)

]
. (7.28)

The first term describes the relaxation toward an equilibrium population imbalance, which

is set by the competing effects of pumping and losses. The second term deals with the fact

that a polarization in presence of a light field drives the population imbalance. Note that

the semiclassical equations (7.24)–(7.28) also directly follow from describing the light-matter

interaction within the Maxwell-Schrödinger theory.

7.3 Homogeneous Single-Mode Laser

In order to realistically describe the laser in the framework of the semiclassical laser theory

one has to take into account approximately 103 resonator modes and 1018 laser active atoms.

Because of the nonlinearity of the semiclassical equations this leads to such a complexity that

it is not possible to obtain any analytic solution.

But for a more qualitative understanding of the laser it is sufficient to extract from the semi-

classical laser equations a simple but physically reasonable model. To this end we perform the

following physical approximations:

• So far we have already concentrated the description on a homogeneous laser as we always

considered all laser active atoms to be equal. In principle, it could occur, for instance,

that both the transition frequency Ω and the damping constant γ⊥ vary from atom to

atom, which would necessitate that they get an additional µ-index.

• From now on we restrict ourselves to the case that only one single field mode becomes

dominant in the resonator. In principle, two mode selection schemes by the mirrors are

feasible:
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– Due to the arrangement of the mirrors only light, which is emitted very close to the

axis, remains in the resonator long enough. This represents a mode selection with

respect to the lifetime, see Fig. 7.1a).

– Because of interference effects only such axial modes can survive in the resonator,

which vanish at both mirrors. According to Fig. 7.1b) this yields a mode selection

with respect to the wavelength via

kn =
2π

λn
= n

π

L
=⇒ λn =

2L

n
, n ∈ N . (7.29)

• As a consequence of both previous assumptions the coupling constant gλµ between the

resonator mode λ and the laser active atom µ does no longer depend in the indices λ, µ:

gλµ = g . (7.30)

With these physical approximations the semiclassical laser equations (7.24)–(7.28) reduce to

ḃ(t) = (−iω − κ) b(t)− ig∗
∑
µ

αµ(t) , (7.31)

α̇µ(t) = (−iΩ− γ⊥)αµ(t) + igdµ(t)b(t) , (7.32)

ḋµ(t) = γ‖
[
d0 − dµ(t)

]
+ 2i

[
g∗b∗(t)αµ(t)− gα∗µ(t)b(t)

]
. (7.33)

Due to the assumed homogeneity of the laser we can now introduce macroscopic matter vari-

ables by summing over all respective microscopic matter variables. To this end we define the

polarization

P (t) =
∑
µ

αµ(t) , (7.34)

the saturated population inversion

D(t) =
∑
µ

dµ(t) (7.35)

and the unsaturated population inversion

D0 = Nd0 , (7.36)

where the number of laser active atoms is denoted by

N =
∑
µ

1 . (7.37)

With these definitions and identifying the field mode b(t) with the electric field E(t) we ob-

tain from the microscopic semiclassical laser equations (7.31)–(7.33) the following macroscopic

equations for the homogeneous single-mode laser:

Ė(t) = (−iω − κ)E(t)− ig∗P (t) , (7.38)

Ṗ (t) = (−iΩ− γ⊥)P (t) + igD(t)E(t) , (7.39)

Ḋ(t) = γ‖
[
D0 −D(t)

]
+ 2i

[
g∗E∗(t)P (t)− gP ∗(t)E(t)

]
. (7.40)

Note that we treat here the general off-resonant case that the resonator frequency ω and the

transition frequency Ω of the laser active two-level atoms do not coincide.
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7.4 Derivation of Rate Equations

We start with the observation that the evolution equations (7.38)–(7.40) have the following

global U(1)-symmetry involving both the light and the matter degrees of freedom:

E(t)→ E(t)e−iϕ , E∗(t)→ E∗(t)eiϕ ,

P (t)→ P (t)e−iϕ , P ∗(t)→ P ∗(t)eiϕ , D(t)→ D(t) . (7.41)

It could happen that this global U(1)-symmetry is dynamically broken. In order to take into

account this possibility we transform the respective variables into a co-rotating frame

E(t)→ Ẽ(t)e−iω̃t , E∗(t)→ Ẽ∗(t)eiω̃t ,

P (t)→ P̃ (t)e−iω̃t , P ∗(t)→ P̃ ∗(t)eiω̃t , D(t)→ D̃(t) . (7.42)

Here the frequency ω̃ of the co-rotating frame corresponds to the laser frequency, which is

currently not known but will be specified below. The ansatz (7.42) converts (7.38)–(7.40) into

Ė(t) =
[
− i (ω − ω̃)− κ

]
E(t)− ig∗P (t) , (7.43)

Ṗ (t) =
[
− i (Ω− ω̃)− γ⊥

]
P (t) + igD(t)E(t) , (7.44)

Ḋ(t) = γ‖
[
D0 −D(t)

]
+ 2i

[
g∗E∗(t)P (t)− gP ∗(t)E(t)

]
, (7.45)

where we left out the tilde at all quantities for the sake of simplicity. We remark that in

the resonant case the laser frequency ω̃ can be chosen to coincide with ω = Ω and, thus,

the macrosopic laser equations (7.43)–(7.45) turn out to be formally equivalent to differential

equations, which were set up in 1963 by the meteorologist Edward Lorenz as a simplified

mathematical model for atmospheric convection [53].

The typical time scales of the electric field E(t), the polarization P (t), and the population

inversion D(t) are approximately determined by the time scales associated to the respective

damping constants:

κ =
1

τE
, γ⊥ =

1

τP
, γ‖ =

1

τD
. (7.46)

In case of a homogeneous single-mode laser the typical time scales are of the order

τE = 10−6 s , τP = 10−12 s , τD = 10−10 s . (7.47)

In a first approximation it is, therefore, justified to assume for so-called class A lasers [54, page

14], as for instance a dye laser or a semiconductor laser, the following time-scale hierarchy

τP � τE , τD . (7.48)

Thus, the polarization P (t) is regarded as a fast decreasing quantity, whereas both the electric

field E(t) and the inversion D(t) are the slowly varying quantities. This time-scale hierarchy
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allows an adiabatic elimination of the polarization P (t), i.e. its time derivate in (7.44) can be

neglected:

Ṗ (t) =
[
− i (Ω− ω̃)− γ⊥

]
P (t) + igD(t)E(t) ≈ 0 . (7.49)

Solving (7.49) for the polarization yields

P (t) =
ig

i (Ω− ω̃) + γ⊥
D(t)E(t) . (7.50)

Inserting the approximative result (7.50) for the polarization P (t) into the evolution equations

(7.43) and (7.45) for the electric field E(t) and the population inversion D(t) yields

Ė(t) =
[
− i (ω − ω̃)− κ

]
E(t) +

|g|2

i (Ω− ω̃) + γ⊥
D(t)E(t) , (7.51)

Ḋ(t) = γ‖
[
D0 −D(t)

]
− 2 |g|2 2γ⊥

(Ω− ω̃)2 + γ2
⊥
|E(t)|2D(t) . (7.52)

Equation (7.52) suggests to introduce the photon number

n(t) = |E(t)|2 , (7.53)

which is a measure for the intensity of the electric field E(t). Thus, the evolution equation for

the population inversion (7.52) is of the form

Ḋ(t) = γ‖
[
D0 −D(t)

]
− 2Wn(t)D(t) (7.54)

with the Einstein coefficient

W = |g|2 2γ⊥

(Ω− ω̃)2 + γ2
⊥
. (7.55)

Furthermore, decomposing the electric field into both its amplitude taking into account (7.53)

and its phase according to

E(t) =
√
n(t) eiϕ(t) (7.56)

we obtain from the real part of (7.51) and (7.55) an equation of motion for the photon number

ṅ(t) = −2κn(t) +Wn(t)D(t) , (7.57)

whereas the imaginary part gives the corresponding equation of motion for the phase

ϕ̇(t) = ω̃ − ω + (ω̃ − Ω)
W

2γ⊥
D(t) . (7.58)
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Figure 7.2: Laser active atoms modelled as two-level systems of energies E1, E2 and occupation

numbers N1(t), N2(t).

7.5 Phenomenological Laser Theory

We argue now that the rate equations (7.54) and (7.57) for the population inversion D(t) and

the photon number n(t) derived above within the realm of the semiclassical laser theory also

follow from a phenomenological theory for the homogeneous single-mode laser. The underlying

assumptions are the following:

• For the electric field is supposed that only one field mode survives in the cavity. Whereas

in a full quantum mechanical treatment one introduces a photon number n(t), whose

possible values are positive integers, the phenomenological theory assumes that the photon

number n(t) can take any positive real value.

• The laser active atoms are modelled as two-level systems, see Fig. 7.2, so that the number

N1(t), N2(t) of atoms occupying the states E1, E2 are assumed to take positive real

numbers.

The field equation summarizes gains and losses for the photon number n(t). By neglecting the

spontaneous emission one obtains

ṅ(t) = −2κn(t) +W21N2(t)n(t)−W12N1(t)n(t) , (7.59)

where κ describes resonator losses, W21 stands for the induced emission, and W12 represents the

absorption. Here the Einstein coefficients W12, W21 characterize the strength of the coherent

interaction between light and matter. Within the proper quantum mechanical treatment of

Subsection 4.3.1 and within the phenomenological theory of Einstein for rederiving the Planck

radiation formula in Subsection 4.3.4 we derived that both Einstein coefficients coincide:

W = W12 = W21 . (7.60)

With this the evolution equation (7.59) for the photon number n(t) reduces to (7.57), where

we have introduced the population inversion as the difference of the occupation numbers in the

higher and the lower level:

D(t) = N2(t)−N1(t) . (7.61)



7.5. PHENOMENOLOGICAL LASER THEORY 207

In order to obtain a closed system of equations it becomes necessary to regard also the evolution

of the population inversion. To this end one has to take into account the gains and losses for

the respective occupation numbers N1(t), N2(t):

Ṅ2(t) = γ12N1(t)− γ21N2(t) +W12N1(t)n(t)−W21N2(t)n(t) , (7.62)

Ṅ1(t) = −γ12N1(t) + γ21N2(t)−W12N1(t)n(t) +W21N2(t)n(t) . (7.63)

Here γ12 describes the pumping process and γ21 the non-radiative transitions, which are due to

interactions of the laser active atoms with the surrounding solid-state matrix, see also Fig. 6.3.

The last two terms take absorption and induced emission processes into account. As a result

of these respective gains and losses for the occupation numbers N1(t), N2(t) the total number

of laser active atoms is conserved:

N1(t) +N2(t) = N . (7.64)

Correspondingly, the evolution equation for the population inversion (7.61) results due to (7.60)

in

Ḋ(t) = 2γ12N1(t)− 2γ21N2(t)− 2Wn(t)D(t) . (7.65)

Eliminating N1, N2 via N , D from (7.61) and (7.65) yields

N2(t) =
1

2

[
N +D(t)

]
, N1(t) =

1

2

[
N −D(t)

]
, (7.66)

and one gets then from (7.65)

Ḋ(t) = (γ12 − γ21)N − (γ12 + γ21)D(t)− 2Wn(t)D(t) . (7.67)

Introducing the unsaturated population inversion (7.36) together with (6.74) and the longitu-

dinal relaxation parameter (6.75) thus finally converts the evolution equation of the population

inversion (7.65) to the form (7.54). We conclude that the unsaturated inversion D0 is the

stationary solution of the population inversion provided that no interaction between light and

matter would be present, i.e. W = 0. In order to guarantee that D0 is positive, the pumping

parameter γ12 has to be larger than the parameter γ21 describing the non-radiative transitions.

Note that without a net pumping, i.e. D0 = 0, the rate equations (7.54) and (7.57) of the

phenomenological laser theory have the form of the Lotka-Volterra model, which was originally

designed to explain temporal oscillations of fish populations. To this end one has to identify

the photon number n(t) with the number of predator fishes and the population inversion D(t)

with the number of prey fishes [53].

As the semiclassical laser equations allow to derive the rate equations (7.54) and (7.57), we

conclude that they already contain the induced emission and absorption as the elementary co-

herent interaction processes of light and matter. Consequently, we can read off from (7.55) how

the corresponding Einstein coefficient (7.60) depends on the respective microscopic parameters.
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But note that the frequency ω̃ of the co-rotating frame has not yet been determined and does

not explicitly appear in the rate equations.

The rate equations of the phenomenological laser theory (7.54) and (7.57) represent a set of

first-order differential equations for the photon number n(t) and the population inversion D(t),

which self-consistently depend on each other in the sense of circular causality as discussed on

page 177. As it is not possible to solve them analytically, we perform further approximations

in such a way that one can extract at least the most important information of the dynamics.

In particular, the performed analysis aims at obtaining an approximate solution, which reflects

that circular causality. To this end perform successively first a linear stability analysis and

afterwards a nonlinear analysis.

7.6 Linear Stability Analysis

The rate equations of the phenomenological laser theory read due to (7.54) and (7.57):

ṅ(t) = F1(n(t), D(t)) = −2κn(t) +Wn(t)D(t) , (7.68)

Ḋ(t) = F2(n(t), D(t)) = γ‖ [D0 −D(t)]− 2Wn(t)D(t) . (7.69)

They possess two stationary solutions, where the first one corresponds to the lamp light

n0
1 = 0 , D0

1 = D0 , (7.70)

whereas the second one deals with the laser light

n0
2 =

γ‖
4κ

(
D0 −

2κ

W

)
, D0

2 =
2κ

W
, D0 ≥ D0,crit. . (7.71)

Here the critical value of the unsaturated population inversion turns out to be given by the

resonator damping in absence of any matter κ and the Einstein coefficient W :

D0,crit. =
2κ

W
. (7.72)

In order to perform a linear stability analysis around both stationary solutions one needs the

Jacobian

L(n,D) =


∂F1(n,D)

∂n

∂F1(n,D)

∂D
∂F2(n,D)

∂n

∂F2(n,D)

∂D

 =

(
−2κ+WD Wn

−2WD −γ‖ − 2Wn

)
. (7.73)

The linear stability analysis of the first stationary solution (7.70) yields from (7.73) the Jacobian

L = L(n0
1, D

0
1) =

(
−2κ+WD0 0

−2WD0 −γ‖

)
, (7.74)
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a) b)

Figure 7.3: Bifurcation diagram of the rate equations (7.54) and (7.57): Increasing the unsatu-

rated population inversion D0 as the control parameter changes a) the photon number and b)

the population inversion. Stability (instabilitiy) corresponds to a solid (dashed) line.

which has the eigenvalues

λ11 = −2κ+WD0 , λ12 = −γ‖ . (7.75)

Increasing the control parameter of the unsaturated population inversion (7.36) by increasing

the pumping, the stability of the first stationary solution changes as is generic for dynamical

systems [53, 55]. For a smaller value of D0 the first stationary solution (7.70) is a stable node

due to

D0 < D0,crit. =
2κ

W
: λ11(D0) < 0 , λ12(D0) < 0 , (7.76)

but for a larger value of D0 it becomes an unstable saddle because of

D0 > D0,crit. =
2κ

W
: λ11(D0) > 0 , λ12(D0) < 0 . (7.77)

Thus, provided that the pumping reaches the critical unsaturated population inversion D0 =

D0,crit., two effects occur simultaneously, namely the first stationary solution (7.70) becomes

unstable and the second stationary solution (7.71) starts to exist. The linear stability analysis

of the second stationary solution (7.71) yields from (7.73) the Jacobian

L = L(n0
2, D

0
2) =

 0
γ‖W

4κ

(
D0 −

2κ

W

)
−4κ −

γ‖W

2κ
D0

 , (7.78)

which has the eigenvalues

λ2± = −
γ‖WD0

4κ
±

√(
γ‖WD0

4κ

)2

− γ‖D
(
D0 −

2κ

W

)
< 0 , D0 > D0,crit. . (7.79)

Thus, whenever the second stationary solution exists, it represents a stable node. The results of

the linear stability analysis are summarized in the bifurcation diagram of Fig. 7.3, which shows
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how the stationary solutions of both the photon number n and the saturated population inver-

sion D change with increasing the control parameter of the unsaturated population inversion

D0.

As the second stationary solution (7.71) corresponds to coherent laser light, we can now answer

the question, which frequency ω̃ the laser light has. To this end we go back to the evolution

equation of the phase (7.58) and demand stationarity:

0 = ω̃ − ω + (ω̃ − Ω)
W

2γ⊥
D =⇒ ω̃ =

ω + ΩDW/2γ⊥
1 +DW/2γ⊥

. (7.80)

Inserting the stationary population imbalance D from (7.71) into (7.80) yields for the laser

frequency the result

ω̃ =
γ⊥ω + κΩ

γ⊥ + κ
. (7.81)

It represents a law of levels, where the laser frequency ω̃ lies between the cavity mode frequency

ω and the atomic transition frequency Ω. Which of the latter two frequencies dominates depends

on the respective weights in form of the damping constant κ of the cavity mode and the line

width γ⊥ of the atomic transition. For instance, provided that κ is larger than γ⊥ the cavity

mode has such a short lifetime that the atomic transition survives and, thus, the laser mode

frequency ω̃ coincides approximately with the atomic transition frequency Ω and vice versa. A

special case occurs for the resonance ω = Ω, when cavity mode frequency and atomic transition

frequency coincide, so the laser frequency (7.81) reduces to

ω̃ = ω = Ω . (7.82)

Furthermore, inserting the obtained laser frequency (7.81) in the Einstein coefficient (7.55)

yields

W =
2 |g|2

γ⊥

(κ+ γ⊥)2

(ω − Ω)2 + (κ+ γ⊥)2
. (7.83)

Thus, the largest Einstein coefficient (7.83) for varying detuning ∆ = ω − Ω occurs in the

resonant case (7.81), where we get

W =
2 |g|2

γ⊥
, (7.84)

which is independent of both frequencies ω and Ω.

7.7 Adiabatic Elimination

From the linear stability analysis of the rate equations in the previous section we deduce that

the dynamical behavior of the laser changes qualitatively provided that the control parameter
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Figure 7.4: Eigenvalues of the first stationary solution (7.75) in the complex plane in the vicinity

of the critical control parameter value (7.85).

D0 reaches the critical value D0,crit.. This motivates in the following to perform a subsequent

nonlinear analysis of the equations, which is valid in the neighborhood of this critical control

parameter value:

D0 ≈ D0,crit. =
2κ

W
. (7.85)

In this region of the control parameter the eigenvalues of the first stationary solution (7.75)

obey the inequality

|λ11(D0)| � |λ12(D0)| (7.86)

as is illustrated in Fig. 7.4. Each eigenvalue (7.75) generates a typical time scale

τn =
1

|λ11(D0)|
, τD =

1

|λ12(D0)|
. (7.87)

Therefore, the inequality of the eigenvalues (7.86) is equivalent to a hierachy of the time scales

(7.87):

τn � τD . (7.88)

This means that the photon number n(t) as the unstable mode is a slowly varying quantity.

Depending on the value of the control parameter D0 the photon number n(t) slowly decreases,

does not change, or slowly increases as is depicted in Fig. 7.5a). Contrary to that the population

inversion D(t) as the stable mode is a fast evolving quantity. Therefore, the inversion D(t) quasi

instantaneously tends to an equilibrium value

Deq.(t) = Deq.(n(t)) , (7.89)

which is presribed by the slowly varying quantity, i.e. the photon number n(t). Note that

such an equilibrium (7.89) is known in the theory of dynamical systems as a center manifold.

In order to obtain the equilibrium value (7.89) one applies the approximation of an adiabatic

elimination of the fast decreasing quantity, i.e. the population inversion:

Ḋeq.(t) = γ‖
[
D0 −Deq.(t)

]
− 2WDeq.(t)n(t) ≈ 0 . (7.90)
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a) b)

Figure 7.5: a) Photon number n(t) and b) population inversion D(t) change on a slow and a

fast time scale, respectively, in the vicinity of the critical control parameter value (7.85).

Solving (7.90) for the saturated population inversion in equilibrium Deq.(t) yields the quasi-

stationary result

Deq.(t) =
D0

1 + 2Wn(t)/γ‖
, (7.91)

which is smaller than the unsaturated population inversion D0 being prescribed by the pumping

mechanism as is illustrated by Fig. 7.5b). Near the instability, when the photon number n(t)

is smaller, this relation can be further approximated by

Deq.(t) = D0 −
2WD0

γ‖
n(t) +O

(
n(t)2

)
. (7.92)

In the language of the self-organization theory synergetics one says that the photon number n(t)

has enslaved the population inversion Deq.(t) via (7.91) or (7.92) [53]. This has the consequence

that the population inversion D(t) no longer represents an independent dynamical variable, so

that the two-dimensional system effectively reduces to a one-dimensional one. Indeed, inserting

the relation between the population inversion Deq.(t) and the photon number n(t) in the original

ordinary differential equation of the photon number n(t), one results in

ṅ(t) = (−2κ+WD0) n(t)− 2W 2D0

γ‖
n(t)2 +O

(
n(t)2

)
. (7.93)

This is the order parameter equation, which correctly describes the activity of the laser near

its threshold. Within the theory of dynamical systems it is classified as the normal form of a

transcritical bifurcation.

The order parameter equation can be compared with the evolution equation of a classical

particle in a conservative potential under the influence of friction:

mẍ(t) = −αẋ(t)− ∂V (x(t))

∂x(t)
. (7.94)

In the overdamped case it is allowed to neglet the inertial force. By choosing an appropriate

time scale according to t′ = αt and x′(t′) = x (t′/α) we obtain

dx′(t′)

dt′
= −∂V (x′(t′))

∂x′(t′)
. (7.95)
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a) b) c)

Figure 7.6: Shape of the potential (7.97) changes with the control parameter of the unsaturated

population inversion D0: a) D0 < D0,crit., b) D0 = D0,crit., and c) D0 > D0,crit..

This result shows that the order parameter equation (7.93) can be interpreted as the over-

damped mation of a particle in a conservative potential. Indeed, the order parameter equation

(7.93) can be reformulated as

ṅ(t) = −∂V (n(t))

∂n(t)
(7.96)

by introducing the conservative potential

V (n) =
1

2
(2κ−WD0) n2 +

2W 2D0

3γ‖
n3 +O(n4) . (7.97)

The dependence of the potential shape on the control parameter D0 is illustrated in Fig. 7.6.

The extrema of the potential correspond to the stationary solution of the order parameter

equation (7.93). In case of D0 < D0,crit. the equilibrium value of the photon number vanishes,

which corresponds to lamp light, see Fig. 7.6a):

n0
1 = 0 . (7.98)

At the critical point D0 = D0,crit. it takes longer to reach the equilibrium (7.98) as the potential

becomes flatter there, see Fig. 7.6b). This is a generic phenomenon of phase transitions known

in the literature as critical slowing down. But in case of D0 > D0,crit. the photon number

acquires a positive value

n0
2 =

γ‖
2WD0

(
D0 −

2κ

W

)
≈
γ‖
4κ

(
D0 −

2κ

W

)
, (7.99)

which characterizes the laser light, see Fig. 7.6c). In this way one recovers the results of the

linear stability analysis in the previous section from the nonlinear analysis. But in addition

it is possible to integrate the order parameter equation (7.93) analytically by applying the

method of separating variables. Thus, one obtains an approximation for the time evolution of

the photon number n(t) and the inversion D(t) which is valid near the instability (7.85).
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Chapter 8

Quantum Theory of Laser

The semiclassical laser theory allows to describe many properties of the laser, which ultimately

originate from the induced emission and the absorption as elementary processes of the light-

matter interaction. For instance, we found both wthin a linear stability analysis and a nonlinear

analysis that there exists a critical pumping threshold above which the laser activity sets in, but

below which no light exists. The latter finding is insofar unsatisfactorialy as the semiclassical

laser theory does not cover the description of usual lamp light, which is based on the spontaneous

emission and which is, thus, only accessible within a full quantum mechanical treatment. This

means that, apart from the damping of the respective physical quantities, also their fluctuations

have to be taken into account systematically. With this it is then possible to analyze in detail

the fluctuation properties of the both the lamp and the laser light as well as the peculiar

coherence properties of the laser light.

To this end we set up in a first step the quantum Langevin equations for the homogeneous

single-mode laser and perform systematically an adiabatic elimination of the matter operators

at zero temperature up to leading order in the light-matter interaction strength. With this

we obtain a redual quantum Langevin equation for the photon operator, which contains apart

from deterministic terms also an additive noise term, whose strength represents the spontaneous

emission from all excited atoms. Subsequently we analyze the solution of the quantum Langevin

equation in the immediate vicinity of the classical stationary solutions found within the linear

stability analysis in the previous chapter. In this way we derive both for the lamp and the laser

light the seminal Schawlow-Townes limit, i.e. the minimal spectral linewidth of a laser, which

can not be undershot.

8.1 Homogeneous Single-Mode Laser

Let us start with the basic equations for the quantum theory of the homogeneous single-mode

laser. In order to simplify the following discussion we assume now to be at resonance, i.e. the

cavity mode frequency ω coincides with the atomic transition frequency Ω. With this we obtain
215
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from (7.2), (7.4), and (7.5):

∂

∂t
b̂(t) = (−iω − κ) b̂(t)− ig∗

∑
µ

α̂µ(t) + Γ̂b(t) , (8.1)

∂

∂t
α̂µ(t) = (−iω − γ⊥) α̂µ(t) + igd̂µ(t)b̂(t) + Γ̂αµ(t) , (8.2)

∂

∂t
d̂µ(t) = γ‖

[
d0 − d̂µ(t)

]
+ 2i

[
g∗b̂†(t)α̂µ(t)− gα̂†µ(t)b̂(t)

]
+ Γ̂dµ(t) . (8.3)

Here the bath expectation values of the respective Langevin operators are defined in (7.6)–

(7.15). They reveal the Markow property, i.e. a short memory of the Langevin operators, which

turns out to be crucial in the following as it allows to work out an approximative solution

for the quantum Langevin equation of the laser. Namely, the structural similiarity between

those quantum mechanical equations and the previous semiclassical laser equations (7.31)–

(7.33) motivates us to work out an adiabatic elimination solution strategy along similar lines as

in the previous chapter. To this end we start with the transformation into a co-rotating frame:

b̂(t) = ˆ̃b(t)e−iωt , b̂†(t) = ˆ̃b†(t)eiωt ,

α̂µ(t) = ˆ̃αµ(t)e−iωt , α̂†µ(t) = ˆ̃α†µ(t)eiωt , d̂µ(t) = ˆ̃dµ(t) , (8.4)

which also necessitates a corresponding transformation of the Langevin operators:

Γ̂b(t) = ˆ̃Γb(t)e
−iωt , Γ̂αµ(t) = ˆ̃Γαµ(t)e−iωt , Γ̂dµ(t) = ˆ̃Γdµ(t) . (8.5)

Inserting (8.4) and (8.5) in (8.1)–(8.3) as well as omitting the tilde for all quantities we end up

with

∂

∂t
b̂(t) = −κb̂(t)− ig∗

∑
µ

α̂µ(t) + Γ̂b(t) , (8.6)

∂

∂t
α̂µ(t) = −γ⊥α̂µ(t) + igd̂µ(t)b̂(t) + Γ̂αµ(t) , (8.7)

∂

∂t
d̂µ(t) = γ‖

[
d0 − d̂µ(t)

]
+ 2i

[
g∗b̂†(t)α̂µ(t)− gα̂†µ(t)b̂(t)

]
+ Γ̂dµ(t) . (8.8)

Note that the transformation of the Langevin operators (8.5) does not affect the bath expec-

tation values (7.6)–(7.15) due to the assume resonance. In this co-rotating frame the damping

constants κ, γ⊥, and γ‖ determine the time scales upon which the respective quantities vary.

Due to (7.46) and (7.47) the inequality of the damping constants

κ� γ⊥ , γ‖ (8.9)

implies a time scale hierarchy. Whereas the field operator b̂(t) varies slowly, the matter oper-

ators α̂µ(t), d̂µ(t) vary fast. This motivates to perform an adiabatic elimination of the matter

operators α̂µ(t), d̂µ(t) as follows. The adiabatic elimination of α̂µ(t)

∂

∂t
α̂µ(t) ≈ 0 (8.10)
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yields with (8.7):

α̂µ(t) = i
g

γ⊥
d̂µ(t)b̂(t) +

1

γ⊥
Γ̂αµ(t) . (8.11)

Inserting (8.11) into (8.8) yields together with an adiabatic elimination of d̂µ(t):

∂

∂t
d̂µ(t) = γ‖

[
d0 − d̂µ(t)

]
− 4|g|2

γ⊥
b̂†(t)b̂(t)d̂µ(t) + Γ̂dµ(t)

+
2i

γ⊥

[
g∗b̂†(t)Γ̂αµ(t)− gΓ̂†αµ(t)b̂(t)

]
≈ 0 . (8.12)

In the vicinity of the laser threshold the photon number operator

n̂(t) = b̂†(t)b̂(t) (8.13)

is small, thus we conclude from (8.12)

d̂µ(t) ≈ d0

[
1− 4|g|2

γ⊥γ‖
b̂†(t)b̂(t)

]
+ fluctuating terms . (8.14)

Now we have to insert (8.14) in (8.11) and, subsequently (8.11) in (8.6) in order to obtain a

resulting evolution equation for the field mode operator b̂(t). By doing so, we observe that the

fluctuating terms, which have not been further specified in (8.14), would lead to noise terms

for the field mode operator b̂(t), which are of quadratic or higher order in the light-matter

interaction strength g. As we restrict ourselves here to noise terms in (8.6), which are at most

of first order in g, we neglect the unspecified noise terms in (8.14). Note that the noise terms in

(8.14) would lead to multiplicative noise in (8.6), so their neglection simplifies considerably the

subsequent analysis. With this the adiabatic elimination of the matter operators α̂µ(t) yields

at first

∂

∂t
b̂(t) = −κb̂(t)− ig∗

∑
µ

{
igd0

γ⊥

[
1− 4|g|2

γ⊥γ‖
b̂†(t)b̂(t)

]
b̂(t) +

1

γ⊥
Γ̂αµ(t)

}
+ Γ̂b(t) . (8.15)

Using the unsaturated population inversion (7.36) with the atom number (7.37) as well as the

Einstein coefficient (7.84), the final quantum Langevin equation for the field mode operator

b̂(t) reads:

∂

∂t
b̂(t) =

(
−κ+

WD0

2

)
b̂(t)− W 2D0

γ‖
b̂†(t)b̂2(t) + Γ̂tot(t) . (8.16)

Provided that the cavity mode is occupied with a large number of photons, the second quantized

photon operators could be substituted by c-numbers according to

b̂(t) ≈
√
n(t) , b̂†(t) ≈

√
n(t) , (8.17)

so the deterministic part of the quantum Langevin equation (8.16) turns out to be equivalent

to the order parameter equation for the photon number n(t) derived in the previous chapter in

Eq. (7.93). Furthermore, we note that the resulting Langevin operator in (8.16) is given by

Γ̂tot(t) = Γ̂b(t)− i
g∗

γ⊥

∑
µ

Γ̂αµ(t) . (8.18)
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Its bath expectation values follow from those of the Langevin operators Γ̂b(t) and Γ̂αµ(t), which

are defined in (7.6)–(7.12). The trivial bath expectation values read〈
Γ̂tot(t)

〉
B

=
〈

Γ̂†tot(t)
〉

B
=
〈

Γ̂tot(t)Γ̂tot(t
′)
〉

B
=
〈

Γ̂†tot(t)Γ̂
†
tot(t

′)
〉

B
= 0 . (8.19)

and the non-trivial bath average yields at first〈
Γ̂†tot(t)Γ̂tot(t

′)
〉

B
=
〈

Γ̂†b(t)Γ̂b(t
′)
〉

B
+
|g|2

γ2
⊥

∑
µ

∑
µ′

〈
Γ̂†αµ(t)Γ̂αµ′ (t

′)
〉

B
. (8.20)

Inserting (7.9) and (7.12) we get again a correlation function with Markov property〈
Γ̂†tot(t)Γ̂tot(t

′)
〉

B
= Q̂δ(t− t′) (8.21)

with the operator-valued amplitude

Q̂ = 2κnω(T ) +
|g|2

γ2
⊥

∑
µ

{
γ⊥

[
1 + 〈d̂µ(t)〉B

]
+

1

2
γ‖

[
d0 − 〈d̂µ(t)〉B

]}
. (8.22)

The latter involves the bath average of the atomic population inversion, which follows from

(8.14) and depends on the thermal average of the photon number operator (8.13) via

〈d̂µ(t)〉B = d0

[
1− 4|g|2

γ⊥γ‖
〈n̂(t)〉B

]
(8.23)

as the bath average of each Langevin operator vanishes according to (7.6). Furthermore, per-

forming the sum over all atoms in (8.22) with the help of (7.36) and (8.23), e.g.∑
µ

〈d̂µ(t)〉B = D0

[
1− 4|g|2

γ⊥γ‖
〈n̂(t)〉B

]
, (8.24)

as well as taking into account (7.37) the operator-valued amplitude (8.22) yields

Q̂ = 2κnω(T ) +
|g|2

γ⊥
(N +D0) +

2|g|4(γ‖ − 2γ⊥)

γ3
⊥γ‖

D0 〈n̂(t)〉B . (8.25)

As already mentioned above, concerning the noise we restrict ourselves to the leading order in

the light-matter interaction strength g, which is of quadratic order, so the last term in (8.25)

can be dropped. Again this has the consequence that the more complicated multiplicative noise

term is neglected, which simplifies the further considerations. Provided that the temperature

T is small enough, we can neglect in addition also the thermal contribution and the operator-

valued amplitude (8.25) reduces to the c-number

Q̂ =
|g|2

γ⊥
(N +D0) . (8.26)

Thus, under these assumptions the noise term in the quantum Langevin equation (8.16) turns

out to be additive due to (8.21) and (8.26). However, the question arises how the c-number noise
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strength (8.26) can be physically interpreted. To this end we recognize that (8.26) represents

the product of two factors. The first is identified to be the Einstein coefficient W defined for

vanishing detuning in (7.84), whereas the second one is recognized to coincide with the number

of excited atoms N2 due to combining (7.61) and (7.64), so we conclude

Q̂ = WN2 . (8.27)

Therefore we arrive at the physical interpretation that the c-number noise strength (8.27)

corresponds to the spontaneous emission rate of all excited atoms.

8.2 Schawlow-Townes Limit

Let us analyze now the residual quantum Langevin equation of the photon operator (8.16). In

order to simplify the discussion we focus here upon the case that we are below the threshold

with a small number of photons, so that the nonlinear term is negligible. In that case the

nonlinear Langevin equation (8.16) reduces to a linear one

∂

∂t
b̂(t) = −κ̃b̂(t) + Γ̂tot(t) , (8.28)

where we have introduced the abbreviation

κ̃ = κ− WD0

2
. (8.29)

As the damping constant κ desribes the losses of the electric field due to resonator losses without

light-matter interaction, one is tempted to interpret (8.29) as the effective damping constant

in case that the light-matter interaction is taken into account. This would mean then that

increasing the control parameter D0 would correspond to a reduced laser linewidth. In order

to justify this interpretation we determine

for both lamp and laser light. Here we follow the physical notion to analyze the fluctuations of

the photon operators around the stationary solutions of the previous chapter. To this end we

perform the ansatz

b̂(t) =
√
n0 + δb̂(t) , (8.30)

where we have for lamp light according to



220 CHAPTER 8. QUANTUM THEORY OF LASER



Appendix A

Harmonic Oscillator

The harmonic oscillator represents a standard quantum mechanical model with which it is

possible to describe quite successfully, for instance, collective oscillations in molecules or in

solids. The Hamilton operator of a one-dimensional harmonic oscillator with mass M and

frequency ω reads

Ĥ =
p̂2

2M
+
M

2
ω2x̂2 , (A.1)

where one demands non-trivial commutation relations between the coordinate operator q̂ and

the momentum operator p̂:[
x̂, x̂
]
− =

[
p̂, p̂
]
− = 0 ,

[
p̂, x̂
]
− =

~
i
. (A.2)

The problem is now to solve the eigenvalue problem of the Hamilton operator

Ĥ|α〉 = Eα|α〉 , (A.3)

i.e. to determine how the energy eigenvalues Eα and the energy eigenfunctions |α〉 depend on the

quantum number α. Usually this representation-free eigenvalue problem (A.3) is transformed

into the coordinate representation, so it amounts to solve the corresponding Schrödinger equa-

tion by taking into account the appropriate Dirichlet boundary condition. In the following,

however, we proceed differently by solving the representation-free eigenvalue problem (A.3)

directly by taking into account the commutator relations (A.2).

At first, the two hermitian operators x̂ and p̂ are transformed into two new operators â† and

â, which are adjoint with respect to each other:

â† =

√
Mω

2~

(
x̂− i

Mω
p̂

)
, â =

√
Mω

2~

(
x̂+

i

Mω
p̂

)
. (A.4)

The inverse transformation reads correspondingly

x̂ =

√
~

2Mω

(
â† + â

)
, p̂ =

√
~Mω

2
i
(
â† − â

)
. (A.5)
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Here the physical dimension of the coordinate operator x̂ is provided by the oscillator length√
~/(2Mω), whereas the corresponding one

√
~Mω/2 of the momentum operator p̂ is related

to the oscillator length via the Heisenberg uncertainty relation. Inserting (A.5) into (A.1), the

Hamilton operator of the harmonic oscillator can be expressed in terms of the new operators

â† and â, yielding

Ĥ =
~ω
2

(
â†â+ ââ†

)
. (A.6)

Furthermore, the transformation (A.4) allows to deduce from (A.2) the commutation relations

between the new operators â† and â:[
â, â
]
− =

[
â†, â†

]
− = 0 ,

[
â, â†

]
− = 1 . (A.7)

Using (A.7) the Hamilton operator of the harmonic oscillator (A.6) reduces to

Ĥ = ~ω
(
n̂+

1

2

)
, (A.8)

where the zero-point energy ~ω/2 and the operator

n̂ = â†â (A.9)

appear. Applying the ABC-rule for commutators (2.61) we obtain the commutation relations

for the operator (A.9): [
n̂, â†

]
− = â† , (A.10)[

n̂, â
]
− = −â . (A.11)

Let us now consider the eigenvalue problem of the operator (A.9):

n̂|λ〉 = λ|λ〉 (A.12)

As the operator (A.9) is hermitian, its eigenvalues λ must be real. Furthermore, the com-

mutation relations (A.10) and (A.11) allow to investigate which consequences occur once the

operators â† and â are applied to the eigenfunctions |λ〉. On the one hand we read off from

(A.10) and (A.12)

n̂â†|λ〉 =
(
â†n̂+ â†

)
|λ〉 = (λ+ 1)â†|λ〉 =⇒ â†|λ〉 ∼ |λ+ 1〉 , (A.13)

on the other hand we conclude from (A.11) and (A.12)

n̂â|λ〉 =
(
ân̂− â

)
= (λ− 1)â|λ〉 =⇒ â|λ〉 ∼ |λ− 1〉 . (A.14)

Thus, the operators â† and â can be considered as ladder operators, which allow to climb up or

down the ladder of eigenfunctions |λ〉. Applying the raising (lowering) ladder operator â† (â)

to |λ〉 yields an eigenfunction corresponding to an eigenvalue which is increased (decreased) by

one, see Fig. A.1
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Figure A.1: Raising (lowering) operator â† (â) increases (decreases) the quantum number λ of

the harmonic oscillator by one.

Furthermore, one can show that the eigenvalues λ of the operator n̂ are always positive by

taking into account (A.9) and (A.12) and by assuming without loss of generality that the

eigenfunctions |λ〉 are normalized:

0 ≤ 〈âλ|âλ〉 = 〈λ|â†â|λ〉 = 〈λ|n̂|λ〉 = λ〈λ|λ〉 = λ . (A.15)

From (A.14) and (A.15) we conclude that the eigenvalues λ are given by positive integer number

including zero:

λ = n = 0, 1, 2, . . . . (A.16)

If there were a positive, non-integer eigenvalue λ, one could apply iteratively the lowering ladder

operator â and reduce in this way the eigenvalue due to (A.14) until it would become negative.

But this would then contradict the inequality (A.15). Thus, due to this contradiction proof,

there must be a ground state |0〉 with the property

â|0〉 = 0 ⇐⇒ 〈0|â† = 0 . (A.17)

Based on this we construct now eigenfunctions |n〉, which are normalized

〈n|n〉 = 1 . (A.18)

At first, we deduce from (A.7), (A.9), (A.12), (A.16), and (A.18):

〈â†n|â†n〉 = 〈n|ââ†|n〉 = 〈n|
(
â†â+ 1

)
|n〉 = 〈n|

(
n̂+ 1

)
|n〉 = n+ 1 . (A.19)

From (A.13), (A.16), (A.18), and (A.19) follows a rule how applying the raising ladder operator

â† upon the normalized eigenfunction |n〉 yields the next normalized eigenfunction |n+ 1〉:

â†|n〉 = Cn|n+ 1〉 =⇒ C2
n〈n+ 1|n+ 1〉 = n+ 1 =⇒ â†|n〉 =

√
n+ 1 |n+ 1〉 . (A.20)
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And then iterating (A.20) yields a prescription how the eigenfunctions |n〉 can be constructed

from the ground state |0〉 defined by (A.17):

|n〉 =
1√
n
â†|n− 1〉 =

1√
n(n− 1)

(
â2
)2|n− 2〉 = . . . =⇒ |n〉 =

1√
n!

(
â†
)n|0〉 . (A.21)

Apart from being normalized according to (A.18), two different eigenfunctions |n〉 and |n′〉 are

orthogonal:

〈n|n′〉 = 0 , n 6= n′ . (A.22)

Indeed, we have due to the eigenvalue problem (A.12) with (A.16) and the hermiticity of the

operator (A.9)

n〈n|n′〉 = 〈n̂n|n′〉 = 〈n|n̂n′〉 = n′〈n|n′〉 , (A.23)

which implies (A.22). Thus, (A.18) and (A.22) can be summarized by the orthonormality

relation

〈n|n′〉 = δn,n′ . (A.24)

Furthermore, the eigenfunctions (A.21) represent a basis for the Hilbert space of the quantum

mechanical harmonic oscillator, so they fulfill the completeness relation

∞∑
n=0

|n〉〈n| = 1 . (A.25)

For the sake of completeness we also determine the action of the lowering ladder operator â

upon the eigenfunction |n〉. At first we obtain from (A.12) with (A.16) and (A.18)

〈ân|ân〉 = 〈n|â†â|n〉 = 〈n|n̂|n〉 = n . (A.26)

Thus, we conclude from (A.14) and (A.26)

â|n〉 = Dn|n− 1〉 =⇒ D2
n〈n− 1|n− 1〉 = n =⇒ â|n〉 =

√
n |n− 1〉 . (A.27)

Finally, we read off from (A.8), (A.9), (A.12), and (A.16) the energy eigenvalues of the harmonic

oscillator

En = ~ω
(
n+

1

2

)
. (A.28)



Appendix B

Values of Riemann Zeta Function

Here we consider the generating function

I(k) =

∫ ∞
0

dx
sin(kx)

ex − 1
. (B.1)

A Taylor expansion of the sine-function in the numerator yields

I(k) =
∞∑
n=0

(−1)n

(2n+ 1)!
k2n+1 In , (B.2)

so the integrals

In =

∫ ∞
0

dx
x2n+1

ex − 1
(B.3)

follow from the knowledge of the generating function via

In = (−1)n
∂2n+1

∂k2n+1
I(k)

∣∣∣∣
k=0

. (B.4)

Furthermore, from the geometric series follows a useful series representation for the Bose-

Einstein function

1

ex − 1
=

∞∑
m=1

e−mx (B.5)

and taking into account the Schwinger trick (2.184) we obtain from (B.3)

In = (2n+ 1)! ζ(2n+ 2) (B.6)

with the Riemann zeta (2.222). Thus, together with (B.4) we recognize

ζ(2n+ 2) =
(−1)n

(2n+ 1)!

∂2n+1

∂k2n+1
I(k)

∣∣∣∣
k=0

, n ∈ N0 , (B.7)

i.e. the Riemann zeta function for even integers follows from the generating function (B.1).
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Figure B.1: The Dirac comb (2.212) is an infinite series of Dirac delta functions with unity

spacing.

In order to calculate the generating function (B.1) we proceed as follows. At first we write

sin(kx) as the imaginary part of eikx, so we can restate (B.1) as

I(k) = lim
ε↓0

Im

∫ ∞
ε

dx
eikx

ex − 1
. (B.8)

In order to evaluate the integral we consider the following contour integral in the complex plane:∮
C(ε,R)

dz
eikz

ez − 1
. (B.9)

Here C(ε, R) denotes the contour from ε to R, then to R + 2πi, then to ε+ 2πi, then we go to

the point 2πi − εi avoiding the pole at 2πi by taking a clockwise quarter circle with radius ε

and center 2πi. From there we go to εi, and finally we return to ε, avoiding the pole at zero by

taking a clockwise quarter circle with radius ε and center zero, see Fig. B.1. Because there are

no poles in the integration contour we conclude from the residue theorem∮
C(ε,R)

dz
eikz

ez − 1
= 0 (B.10)

for any R > ε. In the limit R → ∞ the integral along C2 vanishes, and the integrals over C1

and C3 yield together:

lim
R→∞

(∫
C1
dz

eikz

ez − 1
+

∫
C3
dz

eikz

ez − 1

)
=
(
1− e−2πk

) ∫ ∞
ε

dx
eikx

ex − 1
. (B.11)

Correspondingly, we get for the integral over C5:∫
C5
dz

eikz

ez − 1
= −i

∫ 2π−ε

ε

dy
e−ky

eiy − 1
. (B.12)

And, finally, for the integrals over C4 and C6 we use the fact that the integrations over clockwise

quarter circles around simple poles are given by −iπ/2 times the residues at the poles:∫
C4
dz

eikz

ez − 1
= −iπ

2
Res
z=2πi

eikz

ez − 1
= −iπ

2
e−2πk , (B.13)∫

C6
dz

eikz

ez − 1
= −iπ

2
Res
z=0

eikz

ez − 1
= −iπ

2
. (B.14)
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We remember that the residue of a function f(z) at z0 is defined as an anti-clockwise integral

along a circle C around z0, i.e.

Res
z=z0

f(z) =
1

2πi

∫
C
dz f(z) , (B.15)

which is practically evaluated in case of f(z) having a simple pole at z0 according to

Res
z=z0

f(z) = lim
z→z0

(z − z0) f(z) . (B.16)

Thus, we conclude from (B.8)–(B.14):

(
1− e−2πk

) ∫ ∞
ε

dx
eikx

ex − 1
− 1

2

∫ 2π−ε

ε

dy e−ky − π

2

(
1 + e−2πk

)
= 0 . (B.17)

In the limit ε ↓ 0 we then finally get for the generating function (B.8):

I(k) = − 1

2k
+
π

2
coth(πk) . (B.18)

Using the Taylor expansion of the hyperbolic function

cothx =
1

x
+

1

3
x− 1

45
x3 + . . . , (B.19)

we obtain from (B.7) the special values of the Riemann zeta function for even integers:

ζ(2) =
π2

6
, (B.20)

ζ(4) =
π4

90
. (B.21)





Appendix C

Atomic Units

The Bohr-Sommerfeld model for the hydrogen atom assumes that the electron is held in a

circular orbit of radius a by electrostatic attraction from the nucleus. The centripetal force is

equal to the Coulomb force, e.g.

Mv2

a
=

e2

4πε0a2
, (C.1)

where M and e denote the mass and the charge of the electron, respectively. This equation

determines the velocity v of the electron at any radius a:

v =

√
e2

4πε0Ma
. (C.2)

The total energy E of the electron

E =
1

2
Mv2 − e2

4πε0a
(C.3)

reduces due to (C.2) for any radius a to

E = − e2

8πε0a
. (C.4)

Thus, the total energy (C.4) is half the potential energy, i.e. it is negative and inversely propor-

tional to a. This means that it takes energy to pull the orbiting electron away from the proton.

For infinite values of a the energy is zero, corresponding to a motionless electron infinitely far

from the proton.

According to the Bohr-Sommerfeld condition the angular momentum of the electron

L = Mva (C.5)

is not arbitrary but quantised via

L = n~ (C.6)
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with the principal quantum number n ∈ N. Inserting (C.2) into (C.5) yields with (C.6) that

the radius of the circular orbit is not arbitrary but takes the quantized values

an = aBn
2 . (C.7)

Here the Bohr radius represents the characteristic length scale of the hydrogen atom, which is

given by

aB =
4πε0~2

Me2
(C.8)

with the value

aB = 0.5 Å = 5 · 10−11 m . (C.9)

Another important length scale is the Compton wavelength of the electron:

λC =
2π~
Mc

. (C.10)

The ratio of the two length scales (C.8) and (C.10) yields the Sommerfeld fine-structure con-

stant, which represents the smallness parameter of quantum electrodynamics:

α =
λC

2πaB

=
e2

4π~ε0c
≈ 1

137
. (C.11)

Furthermore, inserting (C.7) into (C.1) we get for the energy of the electron in the hydrogen

atom a result, which also follows from Schrödinger theory, i.e. a non-relativistic quantum theory

without spin:

En = −Ry
1

n2
, n ∈ N . (C.12)

Here the Rydberg energy represents the energy scale

Ry =
Me4

32π2ε20~2
, (C.13)

which can be re-expressed in terms of the rest energy Mc2 and the Sommerfeld fine-structure

constant (C.11):

Ry =
1

2
Mc2α2 . (C.14)

With the rest energy Mc2 of the electron being 0.511 MeV, this yields for the Rydberg energy

(C.14) the value

Ry =
0.511 MeV

2(137)2
= 13.6 eV . (C.15)

Any atomic frequency is then of the order

ωfi ∼
E(a0)

~
∼ α2 Mc2

~
∼ α2 c

λC

. (C.16)



Appendix D

Heisenberg Uncertainty Relation

Here we recall the Heisenberg uncertainty principle, which is of fundamental importance for

quantum mechanics. Defining the expectation value of an operator Ô with respect to some

state |ψ〉 as follows

〈Ô〉 = 〈ψ|Ô|ψ〉 , (D.1)

we consider the variances of two hermitian operators Â and B̂:

〈(∆Â)2〉 = 〈Â2〉 − 〈Â〉
2

= 〈(Â− 〈Â〉)2〉 , (D.2)

〈(∆B̂)2〉 = 〈B̂2〉 − 〈B̂〉
2

= 〈(B̂ − 〈B̂〉)2〉 . (D.3)

The product of both variances then yields at first

〈(∆Â)2〉 · 〈(∆B̂)2〉 = 〈(Â− 〈Â〉)2〉 · 〈(B̂ − 〈B̂〉)2〉
= 〈(Â− 〈Â〉)ψ|(Â− 〈Â〉)ψ〉 · 〈(B̂ − 〈B̂〉)ψ|(B̂ − 〈B̂〉)ψ〉 . (D.4)

Applying the Schwarz inequality we obtain the following lower bound:

〈(∆Â)2〉 · 〈(∆B̂)2〉 ≥
∣∣∣〈(Â− 〈Â〉)ψ|(B̂ − 〈B̂〉)ψ〉∣∣∣2 . (D.5)

The right-hand side represents the absolute square of some complex number z ∈ C for which

the following general inequality holds:

|z|2 ≥ |Im z|2 =

∣∣∣∣z − z∗2i

∣∣∣∣2 . (D.6)

With this follows the downward estimate

〈(∆Â)2〉 · 〈(∆B̂)2〉 ≥ 1

4

∣∣∣〈[Â, B̂]−〉
∣∣∣2 , (D.7)

which represents the Heisenberg uncertainty for any pair of hermitian operators Â and B̂.
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Appendix E

Useful Integrals

Here we deal with two integrals, which appear occasionally in theoretical physics.

E.1 First Integral

At first we determine the integral ∫ ∞
−∞

dx
sinx

x
, (E.1)

where the integrand is known as the sinc-function. To this end we consider the family of

auxiliary integrals

I(a) =

∫ ∞
0

dx
sinx

x
e−ax , a > 0 , (E.2)

which vanish in the limit that the family parameter a tends to infinity:

I(∞) = 0 . (E.3)

The partial derivative of (E.2) with respect to a then yields the elementary integral

∂I(a)

∂a
= −

∫ ∞
0

dx sinx e−ax , (E.4)

which is straight-forwardly calculated, for instance, as follows:

∂I(a)

∂a
= −Im

∫ ∞
0

dx e−(a−i)x = −Im
1

a− i
= −Im

a+ i

a2 + 1
= − 1

a2 + 1
. (E.5)

Integrating (E.5) with respect to a and implementing (E.3) we get b = π/2 and with this

I(a) =
π

2
− arctan a . (E.6)

Thus, due to (E.2), evaluating (E.6) at a = 0 leads to the wanted integral (E.1):∫ ∞
−∞

dx
sinx

x
= 2 I(0) = π . (E.7)
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E.2 Second Integral

Now we deal with the integral, which appears in (4.55):∫ ∞
−∞

dx
sin2 x

x2
, (E.8)

where the integrand is the square of the sinc-function, which occurs, for instance, also at the

slit diffraction. Again we proceed by considering a family of integrals

J(b) =

∫ ∞
−∞

dx
sin2(bx)

x2
, (E.9)

which fulfill the property

J(0) = 0 . (E.10)

Performing here the derivative with respect to the family parameter b yields

∂J(b)

∂b
=

∫ ∞
−∞

dx
sin(2bx)

x
, (E.11)

which reduces with the substitution z(x) = 2bx to the integral (E.7). Thus, we obtain a result,

which turns out to be independent of b:

∂J(b)

∂b
= π . (E.12)

Integrating (E.12) with respect to b and taking into account (E.10) we finally obtain∫ ∞
−∞

dx
sin2 x

x2
= J(1) = π . (E.13)



Appendix F

Selection Rules

In this Appendix we calculate the selection rules (4.106) for electric dipole transitions in the

hydrogen atom. To this end we have to investigate for which quantum numbers the dipole

matrix elements (4.105) do not vanish. To this end we have to take into account the wave

functions of the electron in the hydrogen atom, which are given in spherical coordinates by [40,

Sect. 9.2]

ψnlm(r, ϑ, ϕ) = Rnl(r)Ylm(ϑ, ϕ) . (F.1)

It turns out that the selection rules are not affected by the radial wave function Rnl(r), only

the angular dependences are decisive, which are determined by the spherical harmonics

Ylm(ϑ, ϕ) = NlmP
(m)
l (cosϑ)eimϕ . (F.2)

Here the associated Legendre polynomials

P
(m)
l (x) = (−1)m(1− x2)m/2

∂m

∂xm
Pl(x) (F.3)

depend on the Legendre polynomials

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l . (F.4)

The spherical harmonics (F.2) are normalised according to∫ π

0

dϑ sinϑ

∫ 2π

0

dϕY ∗lm(ϑ, ϕ)Yl′m′(ϑ, ϕ) = δll′δmm′ , (F.5)

which determines the normalisation constants to be

Nlm =

√
2l + 1

4π

(l −m)!

(l +m)!
. (F.6)

Now we investigate the matrix element (4.105), which is responsible for the spontaneous emis-

sion rate. Due to the assumption (4.100) it reduces to

zfi =

∫
d3xψ∗nf lfmf (x) z ψnilimi(x) . (F.7)
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Evaluating (F.7) in spherical coordinates, this matrix element factorises according to

zfi = Ir · Iϑ,ϕ (F.8)

into the radial component

Ir =

∫ ∞
0

dr r3Rnf lf (r)Rnili(r) (F.9)

and the angular component

Iϑ,ϕ =

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕY ∗lfmf (ϑ, ϕ) cosϑYlimi(ϑ, ϕ) . (F.10)

Inserting (F.2) into (F.10) yields

Iϑ,ϕ =

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕNlfmfP
(mf )

lf
(cosϑ)e−imfϕ cosϑNlimiP

(mi)
li

(cosϑ)eimiϕ . (F.11)

Note that the associated Legendre polynomials satisfy the following recurrence relation [23,

(8.733.2)]

xP
(m)
l (x) =

l + 1−m
2l + 1

P
(m)
l+1 (x) +

l +m

2l + 1
P

(m)
l−1 (x) . (F.12)

Therefore we obtain for the angular integral (F.11)

Iϑ,ϕ =

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕNlfmfP
(mf )

lf
(cosϑ)e−imfϕeimiϕ (F.13)

×
{
li + 1−mi

2li + 1

Nlimi

Nli+1mi

Nli+1miP
(mi)
li+1 (cosϑ) +

li +mi

2li + 1

Nlimi

Nli−1mi

Nli−1miP
(mi)
li−1 (cosϑ)

}
.

Taking into account the normalization constants (F.6), we yield the side calculation

li+1 −mi

2ll+i

Nlimi

Nli+1mi

=

√
li + 1 +mi

(2li + 1)(2li + 3)(li + 1−mi)
, (F.14)

li +mi

2li + 1

Nlimi

Nli−1mi

=

√
li −mi

(2li + 1)(2li − 1)(li +mi)
. (F.15)

With this the angular integral (F.13) goes over into

Iϑ,ϕ =

∫ π

0

dϑ sin(ϑ)

∫ 2π

0

dϕY ∗lfmf (ϑ, ϕ)

{√
li + 1 +mi

(2li + 1)(2li + 3)(li+1 −mi)
Yli+1mi(ϑ, ϕ)

+

√
li −mi

(2li + 1)(2li − 1)(li +mi)
Yli−1mi(ϑ, ϕ)

}
, (F.16)

so that the orthonormality of the spherical harmonics (F.5) leads to

Iϑ,ϕ=

{√
li + 1−mi

(2li + 1)(2li + 3)(li + 1−mi)
δlf ,li+1

+

√
li −mi

(2li + 1)(2li − 1)(li +mi)
δlf ,li−1

}
δmf ,mi(F.17)

From (F.17) we read off the selection rules for the z-component of the dipole matrix element

in form of (4.106).



Appendix G

Lie Algebra Methods

G.1 Lie Algebra

A Lie algebra is a vector space G equipped with an inner product, called Lie bracket, which

maps the vector space into itself:

G × G → G ,(
Â, B̂

)
→

[
Â, B̂

]
. (G.1)

Such a Lie bracket has to fulfill the following properties. It is bilinear in both arguments, i.e.[
aÂ+ bB̂, Ĉ

]
= a

[
Â, Ĉ

]
+ b
[
B̂, Ĉ

]
, (G.2)[

Â, bB̂ + cĈ
]

= b
[
Â, B̂

]
+ c
[
Â, Ĉ

]
, (G.3)

respects the alternativity [
Â, Â

]
= 0 , (G.4)

and obeys the Jacobi identity[
Â,
[
B̂, Ĉ

]]
+
[
B̂,
[
Ĉ, Â

]]
+
[
Ĉ,
[
Â, B̂

]]
= 0 . (G.5)

In case of quantum mechanics the Lie bracket is obviously realized by the commutator[
Â, B̂

]
−

= ÂB̂ − B̂Â . (G.6)

From the closedness of the Lie algebra (G.56) follows that the commutator of any two operators

Ôi, Ôj in the vector space G must be an operator
[
Ôi, Ôj

]
−

within this vector space G. In case

of a finite-dimensional vector space G there must be a basis of linear independent operators

Ô1, Ô2, . . . , ÔN so that also the operators
[
Ôi, Ôj

]
−

can be expanded with respect to them:

[
Ôi, Ôj

]
−

=
N∑
k=1

cijkÔk . (G.7)
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The basis operators Ô1, Ô2, . . . , ÔN are called generators and the expansion coefficients cijk are

known as the structure constants of the Lie algebra. Note that the anti-commutativity of the

commutator (G.6) [
Ôi, Ôj

]
−

= −
[
Ôj, Ôi

]
−

(G.8)

and the Jacobi identity (G.5) imply the following constraints for the structure constants:

cijk = −cjik , (G.9)

cijk + cjki + ckij = 0 . (G.10)

G.2 Similarity Transformation

Let Ŝ be an invertible operator, so there exists its inverse Ŝ−1 with the property

ŜŜ−1 = Ŝ−1Ŝ = 1 . (G.11)

Then such an invertible operator defines for any operator Â of the Lie algebra G a so-called

similarity transformation:

Â→ ŜÂŜ−1 . (G.12)

For instance, the similarity transformed generators

Ôi → ŜÔiŜ
−1 ; i = 1, 2, . . . , N (G.13)

have the property that they have the same structure constants cijk of the Lie algebra as definied

via (G.7):

[
ŜÔiŜ

−1, ŜÔjŜ
−1
]
−

=
N∑
k=1

cijkŜÔkŜ
−1 . (G.14)

Thus, instead of considering the set of operators Ô1, Ô2, . . . , ÔN as the generators of the un-

derlying Lie algebra, one could also view ŜÔ1Ŝ
−1, ŜÔ2Ŝ

−1, . . . , ŜÔN Ŝ
−1 as the generators.

Furthermore, let f(z) be any analytic function with a Taylor series

f(z) =
∞∑
k=0

fkz
k . (G.15)

Then the similarity transformation of the operator-valued function f(Â) can be pulled inside

the function by inserting multiple identities (G.11):

Ŝf(Â)Ŝ−1 =
∞∑
k=0

fkŜÂ
kŜ−1 =

∞∑
k=0

fk

(
ŜÂŜ−1

)k
= f

(
ŜÂŜ−1

)
. (G.16)
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In particular, in quantum optics we are often interested in a similarity transformation of the

form

Ôi(t) = etẐÔie
−tẐ , (G.17)

where t denotes a parameter, Ôi represents a generator, and Ẑ is an arbitrary element of the

Lie algebra, so that it can be expanded with respect to the generators:

Ẑ =
N∑
i=1

ziÔi . (G.18)

The similarity transformation (G.17) can be evaluated as follows. At first, we differentiate the

transformation with respect to the parameter t, which yields

dÔi(t)

dt
= etẐẐÔie

−tẐ − etẐÔiẐe
−tẐ = etẐ

[
Ẑ, Ôi

]
−
e−tẐ . (G.19)

Inserting (G.18) therein allows to evaluate the commutators via the structure constants accord-

ing to (G.7), so we get

dÔi(t)

dt
= etẐ

N∑
j=1

zj

[
Ôj, Ôi

]
−
e−tẐ =

N∑
j=1

N∑
k=1

zjcjike
tẐÔke

−tẐ . (G.20)

Thus, the similarity transformation (G.17) follows from solving an operator-valued set of cou-

pled first-order linear differential equations:

dÔi(t)

dt
=

N∑
j=1

N∑
k=1

zjcjikÔk(t) . (G.21)

The corresponding initial conditions can directly be read off from (G.17):

Ôi(0) = Ôi ; i = 1, 2, . . . , N . (G.22)

G.3 Disentangling an Exponential

Lie algebra methods can also be used to disentangle an exponential of operators into products:

etẐ = ef1(t)Ô1ef2(t)Ô2 · · · efN (t)ÔN . (G.23)

Here Ẑ is again an arbitrary element of the Lie algebra with (G.18). The aim is now to find

the unknown functions f1(t), f2(t), . . . , fN(t). To this end we follow the same strategy as in

the previous section and differentiate (G.23) with respect to the parameter t. Multiplying in

addition from the right with the inverse of (G.23) yields

detẐ

dt
e−tẐ = Ẑ =

d

dt

(
ef1(t)Ô1ef2(t)Ô2 · · · efN (t)ÔN

)
e−fN (t)ÔN · · · e−f2(t)Ô2e−f1(t)Ô1 . (G.24)
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Together with (G.18) this reduces to

N∑
i=1

ziÔi = ḟ1(t)Ô1 + ḟ2(t)ef1(t)Ô1Ô2e
−f1(t)Ô1 + ḟ3(t)ef1(t)Ô1ef2(t)Ô2Ô3e

−f2(t)Ô2e−f1(t)Ô1

+ . . .+ ḟN(t)ef1(t)Ô1ef2(t)Ô2 · · · efN−1(t)ÔN−1ÔNe
−fN−1(t)ÔN−1 · · · e−f2(t)Ô2e−f1(t)Ô1 . (G.25)

Here each similarity transformation ŜÔiŜ
−1 on the right-hand side must be evaluated by us-

ing the techniques of the previous section. With this the right-hand side becomes a linear

combination of the generators Ôi. Comparing the respective coefficients on both sides of this

operator-valued equation yields a set of coupled first-order linear differential equations for the

functions f1(t), f2(t), . . . , fN(t). The corresponding initial conditions follow from (G.23) and

read

fi(0) = 0 ; i = 1, 2, . . . , N . (G.26)

G.4 Heisenberg-Weyl Algebra h4

A prominent example for a Lie algebra is the four-dimensional Heisenberg-Weyl algebra h4,

whose generators consists apart from the identity operator 1 of three operators occuring for

a harmonic oscillator, namely the raising (lowering) ladder operator â† (â) and the number

operator n̂ = â†â. From the respective non-trivial commutators (A.7), (A.10), and (A.11) one

can immediately read off all non-vanishing structure constants:

cââ†1 = 1 , câ†â1 = −1 , (G.27)

cn̂â†â† = 1 , câ†n̂â† = −1 , (G.28)

cn̂ââ = −1 , cân̂â = 1 . (G.29)

G.4.1 Similarity Transformation

Let us consider for some complex number α the operator

Ẑ = αâ† − α∗â (G.30)

and the corresponding similarity-transformed annihiliation operator

â(t) = etẐ âe−tẐ . (G.31)

From (G.20) and the non-trivial commutators (G.27)–(G.29) we read off that (G.31) satisfies

the differential equation

dâ(t)

dt
= αcâ†â1e

tẐ e−tẐ = −α . (G.32)
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It is solved by

â(t) = ĉ− tα , (G.33)

where the operator-valued integration constant ĉ is determined by the initial condition following

from (G.31):

â(0) = ĉ = â . (G.34)

Thus, the similarity-transformed annihiliation operator (G.31) reads

â(t) = â− tα , (G.35)

Specializing for t = 1 we find that the similarity transformation for the coherent displacement

operator

D̂(α) = eẐ = eαâ
†−α∗â (G.36)

is given by

D̂(α)âD̂†(α) = â− α (G.37)

as (G.36) represents a unitary transformation:

D̂†(α) = D̂−1(α) . (G.38)

G.4.2 Disentangling an Exponential

Let us aim now for disentangling the operator etẐ with Ẑ given in (G.30) as follows:

etαâ
†−tα∗â = ef1(t)â†ef2(t)n̂ef3(t)âef4(t) . (G.39)

Applying the general disentangling rule (G.25) to the case (G.39) yields

αâ† − α∗â = ḟ1(t)â† + ḟ2(t)ef1(t)â†n̂e−f1(t)â† + ḟ3(t)ef1(t)â†ef2(t)n̂âe−f2(t)n̂e−f1(t)â†

+ḟ4(t)ef1(t)â†ef2(t)n̂ef3(t)âe−f3(t)âe−f2(t)n̂e−f1(t)â† . (G.40)

Here the occuring similarity transformations have to be evaluated one after the other in an

iterative way:

ef1(t)â†n̂e−f1(t)â† = â†ef1(t)â† âe−f1(t)â† = n̂− â†f1(t) , (G.41)

ef1(t)â†ef2(t)n̂âe−f2(t)n̂e−f1(t)â† = e−f2(t)ef1(t)â† âe−f1(t)â† = e−f2(t) [â− f1(t)] , (G.42)

ef1(t)â†ef2(t)n̂ef3(t)âe−f3(t)âe−f2(t)n̂e−f1(t)â† = 1 . (G.43)

Note that we have used in (G.41) and (G.42) similarity transformations, which can be evaluated

along the lines of Section G.2:

esâ
†
âe−sâ

†
= â− s , (G.44)

esn̂âe−sn̂ = e−sâ . (G.45)
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Thus, inserting (G.41)–(G.43) into (G.40) leads to the following set of differential equations:

α = ḟ1(t)− ḟ2(t)f1(t) , (G.46)

0 = ḟ2(t) , (G.47)

−α∗ = ḟ3(t)e−f2(t) , (G.48)

0 = −ḟ3(t)f1(t) + ḟ4(t) . (G.49)

They have to be solved by taking into the initial conditions, which directly follow from (G.39):

f1(0) = f2(0) = f3(0) = f4(0) = 0 . (G.50)

The solution reads

f1(t) = αt , f2(t) = 0 , f3(t) = −α∗t , f4(t) = −t
2 |α|2

2
, (G.51)

so the disentangling formula (G.39) reduces for t = 1 to the following result for the displacement

operator (G.36):

D̂(α) = eαâ
†
e−α

∗âe−|α|
2/2 . (G.52)

Note that (G.52) represents the displacement operator D̂ in normal ordering as the operators

are arranged in such a way that the creation (annihilation) operators are positioned to the

left (right). The corresponding antinormally ordered product form can be found by inserting a

unity factor:

D̂(α) =
(
eαâ

†
e−α

∗âe−αâ
†
)
eαâ

†
e−|α|

2/2 . (G.53)

The term within the round brackets is recognized to be a similarity transformation of the

operator-valued exponential function e−α
∗â. It is evaluated according to (G.16) by pulling the

similarity transformation inside the exponential function

D̂(α) = exp
[
eαâ

†
(−α∗â) e−αâ

†
]
eαâ

†
e−|α|

2/2 (G.54)

and by using (G.44), yielding

D̂(α) = e−α
∗âeαâ

†
e|α|

2/2 . (G.55)

G.5 Lie Algebra su(1, 1)

The Lie algebra su(1, 1) is three-dimensional and the generators K̂1, K̂2, K̂3 are defined by the

commutation relations[
K̂1, K̂2

]
−

= −iK̂3 ,
[
K̂2, K̂3

]
−

= iK̂1 ,
[
K̂3, K̂1

]
−

= iK̂2 . (G.56)
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We recognize that they differ in one minus sign from the corresponding commutation relations

of the three-dimensional Lie algebra su(2), which is better known as the angular momentum

algebra, where the generators L̂1, L̂2, L̂3 obey[
L̂1, L̂2

]
−

= iL̂3 ,
[
L̂2, L̂3

]
−

= iL̂1 ,
[
L̂3, L̂1

]
−

= iL̂2 . (G.57)

Note that for the Lie algebra su(2) one can choose as a different basis L̂± = L̂1 ± iL̂2 and L̂3,

in which case the commutation relations (G.57) turn into[
L̂+, L̂−

]
−

= 2L̂3 ,
[
L̂3, L̂±

]
−

= ±L̂± . (G.58)

Correspondingly one can also consider K̂± = K̂1 ± iK̂2 and K̂3 as the generators of the Lie

algebra su(1, 1), which converts (G.56) into[
K̂+, K̂−

]
−

= −2K̂3 ,
[
K̂3, K̂±

]
−

= ±K̂± . (G.59)

Thus, also the commutation relations (G.58) and (G.59) differ by one minus sign. Using the

raising (lowering) ladder operator â† (â) and the number operator n̂ = â†â of the harmonic

oscillator one can construct a representation of the Lie algebra su(1, 1) as follows:

K̂+ =
â†2

2
, K̂− =

â2

2
, K̂3 =

1

2

(
n̂+

1

2

)
. (G.60)

Indeed, from the respective non-trivial commutators (A.7), (A.10), and (A.11) we deduce that

(G.59) is fulfilled.

G.5.1 Similarity Transformation

Here we consider the similarity transformation of the annihilation operator â

â(θ) = etZ âe−tZ (G.61)

with the operator

Ẑ = ξ∗
â2

2
− ξ â

†2

2
. (G.62)

Taking the derivative

G.5.2 Disentangling an Exponential

In order to obtain the squeezing operator in normal ordering, we make the ansatz

etẐ = ef+(t)â†2/2ef3(t)(n̂+1/2)/2ef−(t)â2/2 (G.63)
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with the operator (G.62). Rewriting (G.63) in terms of the generators (G.60) of the Lie algebra

su(1, 1), this disentangling of the exponential reads

et(ξ
∗K̂−−ξK̂+) = ef+(t)K̂+ef3(t)K3ef−(t)K̂− . (G.64)

Applying the general disentangling rule (G.25) to the case (G.64) yields at first

ξ∗K̂− − ξK̂+ = ḟ+(t)K̂+ + ḟ3(t)ef+(t)K̂+K̂3e
−f+(t)K̂+

+ḟ−(t)ef+(t)K̂+ef3(t)K̂3K̂−e
−f3(t)K̂3e−f1(t)K̂+ . (G.65)

Here the respective similarity transformations have to be evaluated one after the other in an

iterative way following Section G.2:

esK̂+K̂3e
−sK̂+ = K̂3 − sK̂+ , (G.66)

esK̂3K̂−e
−sK̂3 = e−sK̂− , (G.67)

esK̂+K̂−e
−sK̂+ = K̂− − 2sK̂3 + s2K̂+ . (G.68)

Thus, inserting (G.66)–(G.68) into (G.65) leads to the following set of differential equations:

ξ∗ = ḟ−(t)e−f3(t) , (G.69)

0 = ḟ3(t)− 2f+(t)ḟ−(t)e−f3(t) , (G.70)

−ξ = ḟ+(t)− f+(t)ḟ3(t) + ḟ−(t)f 2
+(t)e−f3(t) . (G.71)

They have to be solved by taking into account the initial conditions, which follow straight-

forwardly from (G.63):

f+(0) = f3(0) = f−(0) = 0 . (G.72)

Combining (G.69)–(G.71) leads to the Ricatti differential equation:

ḟ+(t)− ξ∗f 2
+(t) = −ξ . (G.73)

With the polar decompositions ξ = |ξ|eiϕ, ξ∗ = |ξ|e−iϕ, and the solution ansatz

f+(t) = c eiϕ
u̇(t)

u(t)
(G.74)

the nonlinear Ricatti differential equation (G.73) reduces to the linear differential equation

ü(t)− |ξ|2u(t) = 0 (G.75)

provided one chooses the constant c to be fixed by c = −1/|ξ|. Solving (G.75) by taking into

account the initial condition (G.72) yields due to (G.74)

f+(t) = −eiϕ tanh (|ξ|t) . (G.76)
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Correspondingly we then obtain from (G.69)–(G.72) also the other functions:

f3(t) = −2 ln [cosh (|ξ|t)] , (G.77)

f−(t) = e−iϕ tanh (|ξ|t) . (G.78)

Substituting the results (G.76)–(G.78) back into Eqs. (G.62), (G.63) and specializing to t = 1,

we find that the disentangled exponential reads

e(ξ
∗â2−ξâ†2)/2 = e−e

iϕ tanh |ξ|â†2/2
(

1

cosh |ξ|

)n̂+1/2

ee
−iϕ tanh |ξ|â2/2 . (G.79)
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