
Chapter 7

Klein-Gordon Field

The first relativistic quantum field, which we deal with here, is the Klein-Gordon field. It

represents a free scalar field and describes in its second-quantized form particles with spin 0.

One example for such particles within the realm of the standard model of elementary particles

is the Higgs particle H, which is electrically neutral and gives all particles their mass due to

its interaction with them. Another example is provided by the pions, which were originally

introduced by Hideki Yukawa as the exchange particles giving rise to the nuclear force. There

exists a neutral pion π0 and two charged pions with π+ and its antiparticle π−. Note that the

pions turned out to be the lightest mesons, i.e. they consist of two quarks. Therefore, they are

are unstable, decay via weak or electromagnetic interaction, and are considered nowadays no

longer as elementary particles.

Coupling the charged pions minimally to the electromagnetic field yields a theory, which is

called scalar electrodynamics. In its second quantized form it microscopically describes the

interaction between charged pions due to the exchange of photons. From a pedagogical point

of view it would be reasonable to introduce scalar QED before QED as the description of matter

by the Klein-Gordon theory is much simpler than the Dirac theory. Therefore, starting with

scalar QED would make it easier to understand several technical issues as, for instance, the

Feynman diagrams of QED without having to deal with the intricate spinor algebra of the

Dirac theory. Another motivation to study scalar electrodynamics would he that it represents

the relativistic generalization of the Ginzburg-Landau theory of superconductivity. However,

due to time constraints, we will not be able to work out scalar electrodynamics, so here we can

only refer the interested reader to the relevant literature.

7.1 Action and Equations of Motions

The action of the Schrödinger fields ψ(x, t) and ψ∗(x, t) in (4.8)–(4.10) is not invariant with

respect to Lorentz transformations as it contains partial derivatives of first (second) order with

respect to the time (space) coordinate(s). In contrast to that a relativistic action must treat
89
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Figure 7.1: Comparison of relativistic and non-relativistic energy scales.

temporal and spatial partial derivatives on an equal footing. Depending on the respective

internal spin degrees of freedom there are different ways how to convert the non-relativistic

Schrödinger action (4.8)–(4.10) into a relativistic one.

In the following we deal with charged relativistic particles like the pions π+ and π−, which do

not have any internal spin degree of freedom. Such particles are described by Klein-Gordon

fields Ψ(xλ) and Ψ∗(xλ). The corresponding action

A = A [Ψ∗(•);Ψ(•)] (7.1)

is defined by a spatio-temporal integral over the Lagrange density according to

A =
1

c

�
d4xL

�
Ψ∗(xλ), ∂µΨ

∗(xλ);Ψ(xλ), ∂νΨ(xλ)
�
, (7.2)

where we have d4x = cdt d3x. The Lagrange density of the Klein-Gordon fields is given by the

real-valued Lorentz invariant

L = Agµν ∂µΨ
∗(xλ) ∂νΨ(xλ) + BΨ∗(xλ)Ψ(xλ) . (7.3)

In the following we choose the yet unknown constants A and B in such a way that the Lagrange

density of the Klein-Gordon fields (7.3) goes over in the non-relativistic limit into the Lagrange

density (4.10) of the Schrödinger fields. To this end we decompose at first the derivatives in

(7.3) into their respective temporal and spatial contributions:

L = A

�
1

c2
∂Ψ∗(x, t)

∂t

∂Ψ(x, t)

∂t
−∇Ψ∗(x, t)∇Ψ(x, t)

�
+ BΨ∗(x, t)Ψ(x, t) . (7.4)

Performing the transition from a relativistic to the corresponding non-relativistic theory one

has to take into account that the corresponding energy scales are shifted by the rest energy

Mc2 of the particles with mass M with respect to each other:

Erel = Enon−rel +Mc2 . (7.5)

This becomes apparent from Fig. 6.1, where the relativistic dispersion relation is compared

with its non-relativistic limit, and is illustrated in Fig. 7.1. As a quantum mechanical wave
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function depends exponentially via e−iEt/h̄ from the energy E, (7.5) suggests to perform the

separation ansatz

Ψ(x, t) = e−iMc2t/h̄ ψ(x, t) , (7.6)

Ψ∗(x, t) = eiMc2t/h̄ ψ∗(x, t) . (7.7)

Inserting (7.6), (7.7) into the Lagrange density of the Klein-Gordon fields (7.3), we obtain

L =
A

c2

�
∂ψ∗(x, t)

∂t

∂ψ(x, t)

∂t
+

i

h̄
Mc2

�
ψ∗(x, t)

∂ψ(x, t)

∂t
− ∂ψ∗(x, t)

∂t
ψ(x, t)

��

−A∇ψ∗(x, t)∇ψ(x, t) +

�
B +

M2c2

h̄2 A

�
ψ∗(x, t)ψ(x, t) . (7.8)

In the non-relativistic limit c → ∞ we have now to guarantee that (7.8) reduces term by term

to (4.10):

• Due to a partial integration in time the second and third term in (7.8) can be merged. A

comparison with (4.10) then fixes the constant A:

2Mi

h̄
A = ih̄ =⇒ A =

h̄2

2M
. (7.9)

• With this choice of A the first term in (7.8) vanishes in the non-relativistic limit c → ∞
and the fourth term turns out to yield the correct kinetic energy of the Schrödinger field.

• The last term in (7.8) must vanish as the Schrödinger field does not have such a mass

term, so also the constant B is determined by taking into account (7.9)

B = −M2c2

h̄2 A =⇒ B = −1

2
Mc2 . (7.10)

Inserting (7.9) and (7.10) into (7.4) the action of the Klein-Gordon field

A = A [Ψ∗(•, •);Ψ(•, •)] (7.11)

is given by a spatio-temporal integral

A =

�
dt

�
d3xL

�
Ψ∗(x, t),∇Ψ∗(x, t),

∂Ψ∗(x, t),

∂t
;Ψ(x, t),∇Ψ(x, t),

∂Ψ(x, t),

∂t

�
(7.12)

with the Lagrange density

L =
h̄2

2Mc2
∂Ψ∗(x, t)

∂t

∂Ψ(x, t)

∂t
− h̄2

2M
∇Ψ∗(x, t)∇Ψ(x, t)− Mc2

2
Ψ∗(x, t)Ψ(x, t) . (7.13)

Similar to the discussion of the Schrödinger fields in Section 4.4 the Hamilton principle of

classical field theory

δA
δΨ∗(x, t)

= 0 , =⇒ δA
δΨ(x, t)

= 0 (7.14)



92 CHAPTER 7. KLEIN-GORDON FIELD

leads to the Euler-Lagrange equations

∂L
∂Ψ∗(x, t)

−∇ ∂L
∂∇Ψ∗(x, t)

− ∂

∂t

∂L
∂Ψ∗(x,t)

∂t

= 0 , (7.15)

∂L
∂Ψ(x, t)

−∇ ∂L
∂∇Ψ(x, t)

− ∂

∂t

∂L
∂Ψ(x,t)

∂t

= 0 . (7.16)

In order to evaluate (7.15), (7.16) we need the following partial derivatives from the Lagrange

density (7.13):

∂L
∂Ψ∗(x, t)

= −1

2
Mc2Ψ(x, t) ,

∂L
∂∇Ψ∗(x, t)

= − h̄2

2M
∇Ψ(x, t) ,

∂L
∂Ψ∗(x,t)

∂t

=
h̄2

2Mc2
Ψ(x, t)

∂t
, (7.17)

∂L
∂Ψ(x, t)

= −1

2
Mc2Ψ∗(x, t) ,

∂L
∂∇Ψ(x, t)

= − h̄2

2M
∇Ψ∗(x, t) ,

∂L
∂Ψ(x,t)

∂t

=
h̄2

2Mc2
Ψ∗(x, t)

∂t
. (7.18)

Inserting the additional calculation (7.17) and (7.18) into the Euler-Lagrange equations (7.15),

(7.16), we obtain the Klein-Gordon equations for the fields Ψ(x, t) and Ψ∗(x, t):

1

c2
∂2Ψ(x, t)

∂t2
−∇2Ψ(x, t) +

M2c2

h̄2 Ψ(x, t) = 0 , (7.19)

1

c2
∂2Ψ∗(x, t)

∂t2
−∇2Ψ∗(x, t) +

M2c2

h̄2 Ψ∗(x, t) = 0 . (7.20)

They represent wave equations, which contain an additional term due to the finiteness of the

Compton wave length of the particles

λC = 2π
h̄

Mc
. (7.21)

For a pion π+ or π− with the rest energy Mc2 = 139.6 MeV the Compton wave length (7.21)

amounts to λC ≈ 9 fm, which is of the order of magnitude of the size of the atomic nucleus.

The appearance of the Compton wave length (7.21) can be physically understood as follows.

A relativistic particle with the momentum uncertainty Δp = Mc yields via the Heisenberg

uncertainty relation a corresponding spatial uncertainty

Δx =
h̄

Mc
, (7.22)

which is of the order of the Compton wave length (7.21). Wherever a relativistic particle is

confined to a region, which is of the order of the Compton wave length, the resulting energy

uncertainty becomes so large that particle-antiparticle pairs are generated out of the vacuum.

This peculiar phenomenon is best illustrated by the Klein paradox, which arises for a pion

π+ running against a potential step of height V , see Fig. 7.2. Provided that the potential

height V reaches the order of the rest energy 2Mc2 of two pions, the wave function falls off

exponentially in the region of the potential threshold. This then leads to the generation of

particle-antiparticle pairs, which have to move due to momentum conservation in opposite

directions. As a consequence, one observes within the potential threshold a negative charge
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Figure 7.2: The scattering of a pion π+ at a potential threshold with height V ∼ 2Mc2 leads

to the Klein paradox that the reflection coefficient becomes larger than one. This is due to the

creation of particle-antiparticle pairs within a region, which has the extension of the Compton

wave length (7.22).

density, so that the situation emerges as depicted in Fig. 7.2. Surprisingly, this leads to a

reflection coefficient of this one-particle scattering problem, which is larger than one. The

Klein paradox has, therefore, the consequence that a relativistic quantum theory can never be

restricted to a one-particle theory. Instead, it has to be extended to a relativistic quantum field

theory in order to incorporate adequately the inherent many-body phenomena. Inserting the

ansatz (7.6), (7.7) in the Klein-Gordon equations (7.19), (7.20) for the wave functions Ψ(x, t),

Ψ∗(x, t), we obtain

1

c2
∂2ψ(x, t)

∂t2
− 2iM

h̄

∂ψ(x, t)

∂t
−∇2ψ(x, t) = 0 , (7.23)

1

c2
∂2ψ∗(x, t)

∂t2
+

2iM

h̄

∂ψ∗(x, t)

∂t
−∇2ψ∗(x, t) = 0 . (7.24)

In the non-relativistic limit c → ∞ both (7.23) and (7.24) go over into the corresponding

Schrödinger equations for the wave functions ψ(x, t) and ψ∗(x, t), as expected:

ih̄
∂Ψ(x, t)

∂t
= − h̄2

2M
∇2Ψ(x, t) , (7.25)

−ih̄
∂Ψ∗(x, t)

∂t
= − h̄2

2M
∇2 Ψ∗(x, t) . (7.26)

Note that, historically, Erwin Schrödinger discovered on his quest for a quantum mechanical

wave equation in 1926 at first the Klein-Gordon equation. But solving this relativistic wave

equation for the example of the Coulomb potential he found that the resulting energy eigenval-

ues disagreed with the measured spectral lines of the hydrogen atom. In retrospect we know

that this is due to the fact that the Klein-Gordon equation does not take into account the

spin 1/2 degree of freedom of the electron in the hydrogen atom. Due to this discrepancy

he abandoned the Klein-Gordon equation and derived instead in the non-relativistic limit the
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Schrödinger equation, where he obtained a much better agreement between the corresponding

solution of the Coulomb problem and the measured spectral lines of the hydrogen atom.

7.2 Continuity Equation

Now we multiply (7.19) with Ψ∗(x, t) and (7.20) with Ψ(x, t) and subtract both from each

other, yielding at first

1

c2
Ψ∗(x, t)

∂2Ψ(x, t)

∂t2
− 1

c2
Ψ(x, t)

∂2Ψ∗(x, t)

∂t2
−Ψ∗(x, t)∇2Ψ(x, t) +Ψ(x, t)∇2Ψ∗(x, t) = 0 , (7.27)

where the mass terms have dropped out. This can be recast into the form

∂

∂t

�
Ψ∗(x, t)

∂Ψ(x, t)

∂t
− ∂Ψ∗(x, t)

∂t
Ψ(x, t)

�

+∇
�
Ψ(x, t)∇Ψ∗(x, t)−Ψ∗(x, t)∇Ψ(x, t)

�
= 0 . (7.28)

which corresponds to a continuity equation:

∂ρ(x, t)

∂t
+∇j(x, t) = 0 . (7.29)

Here both density ρ(x, t) and current density j(x, t) are only determined up to a yet unknown

constant K:

ρ(x, t) =
K

c2

�
Ψ∗(x, t)

∂Ψ(x, t)

∂t
− ∂Ψ∗(x, t)

∂t
Ψ(x, t)

�
, (7.30)

j(x, t) = K
�
Ψ(x, t)∇Ψ∗(x, t)−Ψ∗(x, t)∇Ψ(x, t)

�
. (7.31)

The constant K can now be fixed uniquely by considering the non-relativistic limit c → ∞. To

this end one inserts the ansatz (7.19), (7.20) into (7.30), (7.31) and gets

ρ(x, t) =
K

c2

�
ψ∗(x, t)

∂ψ(x, t)

∂t
− ∂ψ∗(x, t)

∂t
ψ(x, t)− 2iMc2

h̄
ψ∗(x, t)ψ(x, t)

�
, (7.32)

j(x, t) = K
�
ψ(x, t)∇Ψ∗(x, t)− ψ∗(x, t)∇ψ(x, t)

�
. (7.33)

We have then to demand that (7.32), (7.33) go over in the non-relativistic limit c → ∞ to the

corresponding non-relativistic expressions:

ρ(x, t) = ψ∗(x, t)ψ(x, t) , (7.34)

j(x, t) =
ih̄

2M

�
ψ(x, t)∇ψ∗(x, t)− ψ∗(x, t)∇ψ(x, t)

�
. (7.35)

This fixes the constant K to the value

K =
ih̄

2M
. (7.36)
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Thus, we obtain from (7.30), (7.31), and (7.36) for the density ρ(x, t) and the current density

j(x, t) of the Klein-Gordon fields

ρ(x, t) =
ih̄

2Mc2

�
Ψ∗(x, t)

∂Ψ(x, t)

∂t
− ∂Ψ∗(x, t)

∂t
Ψ(x, t)

�
, (7.37)

j(x, t) =
ih̄

2M

�
Ψ(x, t)∇Ψ∗(x, t)−Ψ∗(x, t)∇Ψ(x, t)

�
. (7.38)

From the continuity equation (7.29) follows the existence of the conserved quantity. Namely,

considering the time derivative of the quantity

Q =

�
d3x ρ(x, t) , (7.39)

we obtain from (7.29) and applying the theorem of Gauß

∂Q

∂t
= −
�

df · j(x, t) . (7.40)

Here the surface integral at infinity vanishes as the fields Ψ∗(x, t), Ψ(x, t) as well as the current

density j(x, t) in (7.38) are assumed to vanish fast enough at infinity, yielding

∂Q

∂t
= 0 . (7.41)

Now it turns out to be useful to define a scalar product between two arbitrary fields Ψ1(x, t)

and Ψ2(x, t) according to

�Ψ1,Ψ2� =
ih̄

2Mc2

�
d3x

�
Ψ∗

1(x, t)
∂Ψ2(x, t)

∂t
− ∂Ψ∗

1(x, t)

∂t
Ψ2(x, t)

�
. (7.42)

But note that this scalar product is not positive definite. For instance, choosing the ansatz

Ψ1(x, t) = Ψ2(x, t) = N eiMc2t/h̄ (7.43)

we obtain

�Ψ1,Ψ2� = −N2 < 0 . (7.44)

In order to investigate the non-relativistic limit of this scalar product, we insert (7.6), (7.7)

into (7.42):

�Ψ1,Ψ2� =
ih̄

2Mc2

�
d3x

�
ψ∗
1(x, t)

∂ψ2(x, t)

∂t
− ∂ψ1(x, t)

∂t
ψ2(x, t)−

2iMc2

h̄
ψ∗
1(x, t)ψ2(x, t)

�
(7.45)

Performing the limit c → ∞, we conclude

�Ψ1,Ψ2� = lim
c→∞

�Ψ1,Ψ2� =
�

d3xψ∗
1(x, t)ψ2(x, t) , (7.46)

which is just the positive definite scalar product used in the Schrödinger theory. Thus, from

the fact, that the scalar products of the Klein-Gordon and the Schrödinger theory differ, we
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read off that each quantum field theory has its own natural scalar product. It turns out that

this conclusion has far-reaching consequences, as the natural scalar product of a quantum field

theory represents a central technical tool. For instance, in the present case of the Klein-Gordon

theory, taking into account (7.37) we finally obtain a useful relation between the conserved

quantity (7.42) and the scalar product (7.39):

Q = �Ψ,Ψ� . (7.47)

As the scalar product is not positive definite, the conserved quantity can have both positive

and negative values. This makes it possible to identify Q, or more precisely eQ with the

electric charge of a complex-valued Klein-Gordon field, where e denotes the elementary charge.

Furthermore, we conclude that a real-valued Klein-Gordon field, where Ψ∗(x, t) = Ψ(x, t) holds,

leads to a vanishing charge Q due to (7.42) and (7.47).

7.3 Canonical Field Quantization

The two independent Klein-Gordon fields Ψ∗(x, t) and Ψ(x, t) have the two following two canon-

ically conjugated momentum fields:

Π∗(x, t) =
∂L

∂Ψ∗(x,t)
∂t

=
h̄2

2Mc2
∂Ψ(x, t)

∂t
, (7.48)

Π(x, t) =
∂L

∂Ψ(x,t)
∂t

=
h̄2

2Mc2
∂Ψ∗(x, t)

∂t
. (7.49)

where L denotes the Lagrange density of the Klein-Gordon field from (7.13). With the help of

a Legendre transformation we then obtain the Hamilton density from the Lagrange density:

H = Π∗(x, t)
∂Ψ∗(x, t)

∂t
+ Π(x, t)

∂Ψ(x, t)

∂t
− L . (7.50)

Inserting therein (7.13) together with (7.48), (7.49) this yields

H =
2Mc2

h̄2 Π∗(x, t)Π(x, t) +
h̄2

2M
∇Ψ∗(x, t)∇Ψ(x, t) +

Mc2

2
Ψ∗(x, t)Ψ(x, t) . (7.51)

The Hamilton function H of the charged Klein-Gordon field then follows from spatially inte-

grating this Hamilton density H:

H =

�
d3xH . (7.52)

With this one can perform a canonical field quantization along the lines outlined in Chapter

5. For the sake of brevity we do not work this out in detail for the Klein-Gordon field but

mention instead the result. At first, one assigns to the classical fields Ψ∗(x, t), Ψ(x, t), Π∗(x, t),
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and Π(x, t) corresponding second-quantized operators Ψ̂†(x, t), Ψ̂(x, t), Π̂†(x, t), and Π̂(x, t).

Due to the spin-statistic theorem of Pauli one performs for the Klein-Gordon field a bosonic

field quantization and obtains between both Ψ̂(x, t), Π̂(x, t) and Ψ̂†(x, t), Π̂†(x, t) equal-time

canonical commutation relations:

�
Ψ̂(x, t), Ψ̂(x�, t)

�
=
�
Π̂(x, t), Π̂(x�, t)

�
= 0,

�
Ψ̂(x, t), Π̂(x�, t)

�
= ih̄ δ(x− x�) , (7.53)

�
Ψ̂†(x, t), Ψ̂†(x�, t)

�
=
�
Π̂†(x, t), Π̂†(x�, t)

�
= 0,

�
Ψ̂†(x, t), Π̂†(x�, t)

�
= ih̄ δ(x− x�) . (7.54)

Due to the independence of the quantized degrees of freedom all mixed equal-time commutator

relations vanish:

�
Ψ̂(x, t), Ψ̂†(x�, t)

�
=
�
Ψ̂(x, t), Π̂†(x�, t)

�
=
�
Π̂(x, t), Ψ̂†(x�, t)

�
=
�
Π̂(x, t), Π̂†(x�, t)

�
= 0 . (7.55)

Furthermore, the canonical field quantization converts the classical Hamilton function (7.51),

(7.52) to the Hamilton operator:

Ĥ =

�
d3x

�
2Mc2

h̄2 Π̂†(x, t)Π̂(x, t) +
h̄2

2M
∇Ψ̂†(x, t)∇Ψ̂(x, t) +

Mc2

2
Ψ̂†(x, t)Ψ̂(x, t)

�
. (7.56)

Note that the respective order of the operators in (7.56) does not play a role due to (7.55).

With the Hamilton operator we then obtain the following Heisenberg equations:

ih̄
∂Ψ̂(x, t)

∂t
=
�
Ψ̂(x, t), Ĥ

�
−

=⇒ ∂Ψ̂(x, t)

∂t
=

2Mc2

h̄2 Π̂†(x, t) , (7.57)

ih̄
∂Ψ̂†(x, t)

∂t
=
�
Ψ̂†(x, t), Ĥ

�
−

=⇒ ∂Ψ̂†(x, t)

∂t
=

2Mc2

h̄2 Π̂(x, t) , (7.58)

ih̄
∂Π̂(x, t)

∂t
=
�
Π̂(x, t), Ĥ

�
−

=⇒ ∂Π̂(x, t)

∂t
=

h̄2

2M
ΔΨ̂†(x, t)− Mc2

2
Ψ̂†(x, t) , (7.59)

ih̄
∂Π̂†(x, t)

∂t
=
�
Π̂†(x, t), Ĥ

�
−

=⇒ ∂Π̂†(x, t)

∂t
=

h̄2

2M
ΔΨ̂(x, t)− Mc2

2
Ψ̂(x, t) . (7.60)

Note that the respective commutators are evaluated either with the operator identity (3.43) or

with functional derivatives similar to Section 4.3. Furthermore, combining (7.57) and (7.60) as

well as (7.58) and (7.59), we read off that both field operators Ψ̂†(x, t) and Ψ̂(x, t) obey the

Klein-Gordon equation:

�
1

c2
∂

∂t2
−Δ+

M2c2

h̄2

�
Ψ̂(x, t) = 0 , (7.61)

�
1

c2
∂

∂t2
−Δ+

M2c2

h̄2

�
Ψ̂†(x, t) = 0 . (7.62)

In the following we determine the solutions of the operator-valued partial differential equations

(7.61), (7.62) and work out their corresponding physical interpretation.
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7.4 Plane Waves

The field operator Ψ̂(x, t) as a function of its spatial degree of freedom x is now expanded into

plane waves:

Ψ̂(x, t) =

�
d3p âp(t)Np exp

�
i

h̄
px

�
. (7.63)

Here Np denotes a normalization constant, which is fixed later on appropriately. Inserting

the decomposition (7.63) into the Klein-Gordon equation (7.61) of the field operator, yields an

ordinary differential equation of second order for the respective Fourier operators âp(t):

∂

∂t2
âp(t) +

p2c2 +M2c4

h̄2 âp(t) = 0 . (7.64)

The general solution of (7.64) reads

âp(t) = â(1)p exp

�
− i

h̄
Ept

�
+ â(2)p exp

�
i

h̄
Ept

�
. (7.65)

Here we have introduced as an abbreviation the relativistic energy-momentum dispersion

Ep =
�

p2c2 +M2c4 , (7.66)

which obeys the symmetry

Ep = E−p . (7.67)

Inserting (7.65) into the plane wave expansion (7.63), we obtain at first

Ψ̂(x, t) =

�
d3pNp

�
â(1)p exp

�
i

h̄
(px− Ept)

�
+ â(2)p exp

�
i

h̄
(px+ Ept)

��
. (7.68)

Performing in the second term the substitution p → −p, taking into account (7.67), and

assuming

Np = N−p (7.69)

converts (7.68) into

Ψ̂(x, t) =

�
d3pNp

�
â(1)p exp

�
i

h̄
(px− Ept)

�
+ â

(2)
−p exp

�
− i

h̄
(px− Ept)

��
. (7.70)

Thus, redefining â
(2)
−p as â

(2)
p allows to compactly summarize (7.70) as

Ψ̂(x, t) =
2�

r=1

�
d3p â(r)p u(r)

p (x, t) . (7.71)

Here we have introduced u
(r)
p (x, t) as an abbreviation for the plane waves

u(r)
p (x, t) = Np exp

�
εr

i

h̄
(px− Ept)

�
(7.72)
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with the notation

εr =

�
+1; r = 1

−1; r = 2
. (7.73)

The normalization constant Np is now fixed by demanding for the scalar product between the

plane waves u
(r)
p (x, t) and u

(r�)
p� (x, t):

�u(r)
p , u

(r�)
p� � = εr δr,r� δ(p− p�) . (7.74)

Thus, this condition amounts to demanding that the plane waves (7.72) with r = 1 and r = 2

correspond to the charge +1 and −1, respectively, as follows from (7.47) and (7.73). Taking

into account the scalar product of the Klein-Gordon theory defined in (7.42) as well as (7.72),

we get at first

�u(r)
p , u

(r�)
p� � =

εrEp + εr�Ep�

2Mc2
NpNp� exp

�
i

h̄
(εrEp − εr�Ep�) t

�

×
�

d3x exp

�
i

h̄
(εr�p

� − εrp)x

�
. (7.75)

Performing the spatial integral yields δ(εr�p
� − εrp) = δ(p� − εrεr�p), so we conclude from the

symmetries (7.67) and (7.69):

�u(r)
p , u

(r�)
p� � = (2πh̄)3Ep

Mc2
N2

p

εr + εr�

2
exp

�
i

h̄
(εr − εr�)Ept

�
δ(p� − εrεr�p) . (7.76)

Due to the observation

εr + εr�

2
=

�
εr; r = r�

0; r �= r�
= εr δr,r� , (7.77)

which follows from (7.73), Eq. (7.76) reduces to (7.74) provided the normalization is fixed by

Np =

�
Mc2

(2πh̄)3
Ep . (7.78)

Indeed, the normalization (7.78) obeys the imposed symmetry (7.69) due to (7.67).

For the following calculations we need another technical result. Namely, considering the com-

plex conjugated plane wave u
(r)∗
p (x, t), this just corresponds to exchanging the indices r = 1

and r = 2 according to (7.72):

u(1)∗
p (x, t) = u(2)

p (x, t) , u(2)∗
p (x, t) = u(1)

p (x, t) . (7.79)

Therefore, we read off from (7.74) and (7.79) the scalar product between two complex conju-

gated plane waves:

�u(r)∗
p , u

(r�)∗
p� � = −εr δr,r� δ(p− p�) . (7.80)
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7.5 Fourier Operators

According to (7.71) and

Ψ̂†(x, t) =
2�

r=1

�
d3p â(r)p

† u(r)∗
p (x, t) . (7.81)

both the field operator Ψ̂(x, t) and its adjoint Ψ̂†(x, t) are expanded in plane waves with time-

independent Fourier operators â
(r)
p and â

(r)†
p . With the help of the scalar product of the Klein-

Gordon field both relations can be inverted so that, conversely, the Fourier operators â
(r)
p and

â
(r)†
p are expressed in terms of the field operator Ψ̂(x, t) and its adjoint Ψ̂†(x, t). Taking into

account (7.74) and (7.80) we get at first

â(r)p = εr �u(r)
p , Ψ̂� , (7.82)

â(r)†p = −εr �u(r)∗
p , Ψ̂†� , (7.83)

which reduces due to (7.42) to

â(r)p =
ih̄εr
2Mc2

�
d3x

�
u(r)∗(x, t)

∂Ψ̂(x, t)

∂t
− ∂u(r)∗(x, t)

∂t
Ψ̂(x, t)

�
, (7.84)

â(r)†p =
−ih̄εr
2Mc2

�
d3x

�
u(r)(x, t)

∂Ψ̂†(x, t)

∂t
− ∂u(r)(x, t)

∂t
Ψ̂†(x, t)

�
. (7.85)

Applying the Heisenberg equations of motion (7.57) and (7.58) we arrive at the following

representation for the Fourier operators:

â(r)p =
ih̄εr
2Mc2

�
d3x

�
2Mc2

h̄2 u(r)∗(x, t) Π̂†(x, t)− ∂u(r)∗(x, t)

∂t
Ψ̂(x, t)

�
, (7.86)

â(r)†p =
−ih̄εr
2Mc2

�
d3x

�
2Mc2

h̄2 u(r)(x, t) Π̂(x, t)− ∂u(r)(x, t)

∂t
Ψ̂†(x, t)

�
. (7.87)

With this and the canonical equal-time commutator relations between the field operators and

the momentum operators (7.53)–(7.55) we determine the commutation relations between the

Fourier operators â
(r)
p and â

(r)†
p . At first we get straight-forwardly the trivial commutators
�
â(r)p , â

(r�)
p�

�
−
=
�
â(r)†p , â

(r�)†
p�

�
−
= 0 . (7.88)

And for the non-trivial commutator we obtain at first

�
â(r)p , â

(r�)†
p�

�
−
= εrεr�

ih̄

2Mc2

�
d3x

�
u(r)
p (x, t)

∂u
(r�)
p� (x, t)

∂t
− ∂u

(r)
p (x, t)

∂t
u
(r�)
p� (x, t)

�
, (7.89)

so taking into account (7.42), ε2r = 1 due to (7.73), and (7.74) finally yields
�
â(r)p , â

(r�)†
p�

�
−
= εr δr,r� δ(p− p�) . (7.90)

Here the appearance of the factor εr indicates due to (7.73) that â
(2)
p and â

(2)†
p due not represent

a creation and annihilation operator, respectively. We come back to this observation in due

course, but before we determine how both the Hamilton operator and the charge operator are

decomposed in terms of the Fourier operators â
(r)
p and â

(r)†
p .
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7.6 Hamilton Operator

The plane wave expansions (7.71) and (7.81) of the field operators Ψ̂(x, t) and Ψ̂†(x, t) have

together with (7.57), (7.58), and (7.72), the following consequences:

∇Ψ̂(x, t) =
i

h̄

2�

r=1

�
d3p εrp â(r)p u(r)

p (x, t) , (7.91)

∇Ψ̂†(x, t) = − i

h̄

2�

r=1

�
d3p εrp â(r)†p u(r)∗

p (x, t) , (7.92)

Π̂(x, t) =
ih̄

2Mc2

2�

r=1

�
d3p εrEp â

(r)†
p u(r)∗

p (x, t) , (7.93)

Π̂†(x, t) =
−ih̄

2Mc2

2�

r=1

�
d3p εrEp â

(r)
p u(r)

p (x, t) . (7.94)

Using now all plane wave expansions (7.71), (7.81) and (7.91)–(7.94) in the Hamilton operator

of the Klein-Gordon field (7.56) we get at first

Ĥ =
2�

r=1

2�

r�=1

�
d3p

�
d3p�
�
εrεr�EpE

�
p

2Mc2
+

εrεr�pp
�

2M
+

Mc2

2

�
â(r)†p â

(r�)
p�

×
�

d3x u(r)∗
p (x, t)u

(r�)
p� (x, t) . (7.95)

The remaining spatial integral is evaluated with (7.67), (7.72), and (7.78), yielding
�

d3x u(r)∗
p (x, t)u

(r�)
p� (x, t) =

Mc2

Ep

exp

�
i

h̄
(εr − εr�)Ept

�
δ(p� − εrεr�p) . (7.96)

Inserting (7.96) into (7.95) the integration with respect to the momenta p� can be evaluated by

taking into account the symmetry (7.67)

Ĥ =
2�

r=1

2�

r�=1

�
d3p

�
εrεr�E

2
p

2Mc2
+

p2

2M
+

Mc2

2

�
Mc2

Ep

exp

�
i

h̄
(εr − εr�)Ept

�
â(r)†p â(r

�)
εrεr�p

.(7.97)

With the relativistic energy-momentum dispersion (7.66) this simplifies to

Ĥ =
2�

r=1

2�

r�=1

�
d3p

εrεr� + 1

2
Ep exp

�
i

h̄
(εr − εr�)Ept

�
â(r)†p â(r

�)
εrεr�p

. (7.98)

As Eq. (7.73) implies the auxiliary calculation

εrεr� + 1

2
=

�
1; r = r�

0; r �= r�
= δr,r� , (7.99)

the Hamilton operator of the Klein-Gordon field (7.98) finally reduces to

Ĥ =
2�

r=1

�
d3pEp â

(r)†
p â(r)p . (7.100)
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Thus, whereas the intermediate results (7.97) and (7.98) suggest that the second-quantized

Hamilton operator Ĥ of the Klein-Gordon theory may explicitly depend on time, the result

(7.100) reveals that it turns out to be time-independent. This is consistent with the fact

that the energy of the Klein-Gordon theory is a conserved quantity due its time translational

invariance.

7.7 Charge Operator

According to (7.37), (7.39) and (7.42), (7.47), respectively, the charge of the Klein-Gordon field

is defined by

Q =
ih̄

2Mc2

�
d3x

�
Ψ∗(x, t)

∂Ψ(x, t)

∂t
− ∂Ψ∗(x, t)

∂t
Ψ(x, t)

�
. (7.101)

Due to (7.48) and (7.49) the charge (7.101) can be reexpressed as follows:

Q =
i

h̄

�
d3x
�
Ψ∗(x, t)Π∗(x, t)− Π(x, t)Ψ(x, t)

�
. (7.102)

Within the second quantization we assign to the charge a corresponding operator:

Q̂ =
i

h̄

�
d3x
�
Ψ̂†(x, t) Π̂†(x, t)− Π̂(x, t) Ψ̂(x, t)

�
. (7.103)

Note that here the respective order of the operators does play a role due to (7.53) and (7.54).

The particular operator order chosen in (7.103) guarantees that the charge operator Q̂ commutes

with the Hamilton operator (7.56) due to applying (3.10) and (3.43):

�
Q̂, Ĥ

�
−
= 0 . (7.104)

Thus energy and charge remain to be both conserved quantities also in the second quantized

Klein-Gordon theory. Inserting in (7.103) the plane wave expansions (7.71), (7.81) and (7.93),

(7.94) we get at first

Q̂ =
2�

r=1

2�

r�=1

�
d3p

�
d3p�

εrEp + εr�Ep�

2Mc2
â(r)†p â

(r�)
p�

�
d3x u(r)∗

p (x, t)u
(r�)
p� (x, t) . (7.105)

Taking into account the symmetry (7.67), the integral (7.96), and the auxiliary calculation

(7.77), the charge operator (7.105) reduces finally to the form

Q̂ =
2�

r=1

�
d3p εr â

(r)†
p â(r)p . (7.106)

Thus, also the charge operator Q̂ turns out to be time independent, which confirms that the

charge is a conserved quantity for the Klein-Gordon field.
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7.8 Redefinition of Fourier Operators

Now we aim for a consistent physical interpretation of the results obtained so far within the

second quantization of the Klein-Gordon field. From the commutation relations (7.88) and

(7.90) we read off that the Fourier operators â
(1)
p , â

(2)†
p and â

(1)†
p , â

(2)
p have to be interpreted

as annihilation operators and creation operators, respectively. This observation suggests to

reinterpret the Fourier operators as follows:

âp = â(1)p , â†p = â(1)†p , b̂p = â(2)†p , b̂†p = â(2)p . (7.107)

By using different letters a and b we express that the corresponding operators âp, b̂p and â†p,

b̂†p describe the annihilation and the creation of different kinds of particles. Furthermore, this

redefinition leaves the trivial commutation relations (7.88) invariant:

[âp, âp� ]− =
�
â†p, â

†
p�

�
−
=
�
b̂p, b̂p�

�
−
=
�
b̂†p, b̂

†
p�

�
−
= 0 , (7.108)

�
âp, b̂p�

�
−
=
�
âp, b̂

†
p�

�
−
=
�
â†p, b̂p�

�
−
=
�
â†p, b̂

†
p�

�
−
= 0 . (7.109)

But the non-trivial commutation relations (7.90) are converted to
�
âp, â

†
p�

�
−
=
�
b̂p, b̂

†
p�

�
−
= δ(p− p�) . (7.110)

And the plane wave expansions (7.71) and (7.81) of the field operators Ψ̂(x, t) and Ψ̂†(x, t) then

read due to (7.79):

Ψ̂(x, t) =

�
d3p
�
âp up(x, t) + b̂†p u

∗(x, t)
�
, (7.111)

Ψ̂†(x, t) =

�
d3p
�
â†p u

∗
p(x, t) + b̂p u(x, t)

�
. (7.112)

Here we have introduced according to (7.72) and (7.78)

up(x, t) = u(1)
p (x, t) =

�
Mc2

(2πh̄)3Ep

exp

�
i

h̄
(px− Ept)

�
. (7.113)

In addition, the Hamilton operator (7.100) and the charge operator (7.106) read due to the

redefinition (7.107)

Ĥ =

�
d3pEp

�
â†pâp + b̂pb̂

†
p

�
, (7.114)

Q̂ =

�
d3p
�
â†pâp − b̂pb̂

†
p

�
. (7.115)

In order to obtain a normal ordering of the operators we have to use the commutator (7.110),

yielding

Ĥ =

�
d3pEp

�
â†pâp + b̂†pb̂p

�
+ δ(0)

�
d3pEp , (7.116)

Q̂ =

�
d3p
�
â†pâp − b̂†pb̂p

�
− δ(0)

�
d3p . (7.117)
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The vacuum state is defined here as usual

âp|0� = 0 , b̂p|0� = 0 . (7.118)

With this the vacuum expectation values of both the Hamilton operator and the charge operator

result to

�0|Ĥ|0� = δ(0)

�
d3pEp , (7.119)

�0|Q̂|0� = −δ(0)

�
d3p , (7.120)

which are divergent due to two reasons. On the one hand the factor δ(0) is divergent and on the

other hand the respective momentum integrals are divergent as well. Therefore, one considers

instead of the Hamilton operator and the charge operator the respective renormalized quantities:

: Ĥ : = Ĥ − �0|Ĥ|0� =
�

d3pEp

�
â†pâp + b̂†pb̂p

�
, (7.121)

: Q̂ : = Q̂− �0|Q̂|0� =
�

d3p
�
â†pâp − b̂†pb̂p

�
. (7.122)

We recognize that both renormalized operators : �0|Ĥ|0� : and : �0|Q̂|0� : are normal ordered,

i.e. the creation (annihilation) operators stand on the left-hand (right-hand) side.

The results (7.121) and (7.122) allow now for the following physical interpretation. The op-

erators â†p, âp (b̂†p, b̂p) describe particles of charge 1 (-1) and energy Ep. As the two particle

types only differ by their charge, they represent particles and their respective antiparticles. The

particle type a (b) can be identified with the pion π+ (π−). On the basis of this insight, we

recognize in (7.111) that the field operator Ψ̂(x, t) contains both the annihilation of particles a

with charge 1 and the creation of antiparticles b with charge −1. These microscopic processes

act together such that the field operator Ψ̂(x, t) describes the annihilation of a charge 1 and,

correspondingly, the adjoint field operator Ψ̂†(x, t) represents the creation of a charge 1 at the

space-point (x, t). This physical interpretation of the second-quantized operators Ψ̂(x, t) and

Ψ̂†(x, t) turns out to be crucial for the corresponding propagator of the Klein-Gordon theory.

7.9 Definition of Propagator

In the following we investigate in more detail the Klein-Gordon propagator, which is an im-

portant ingredient of quantum field theory when the interaction of the Klein-Gordon field with

other quantum fields is treated perturbatively. For instance, the Klein-Gordon propagator is

an essential building block of scalar quantum electrodynamics, where the photon exchange be-

tween charged pions is described graphically in terms of corresponding Feynman diagrams. But

the Klein-Gordon propagator turns out to be also central for this lecture from a technical point

of view. On the one hand, its non-relativistic limit leads to the Schrödinger propagator, which
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is discussed in detail in Appendix A and is used in the context of non-relativistic quantum

many-body theory. On the other hand, we will see later on that the propagator of the Dirac

theory is determined by partial derivatives from the Klein-Gordon propagator. Thus, having a

profound understanding of the Klein-Gordon propagator represents a prerequisite for the Dirac

propagator, which is a key element of the Feynman diagrams of quantum electrodynamics.

Let us start with defining the Klein-Gordon propagator as the vacuum expectation value of the

product of two field operators:

G(x, t;x�, t�) =
�
0
���T̂
�
Ψ̂(x, t) Ψ̂†(x�, t�)

���� 0
�
. (7.123)

The symbol T̂ denotes the time-ordered product of the field operators Ψ̂(x, t) and Ψ̂†(x�, t�).

Given two time-dependent bosonic operators Â(t) and B̂(t�), their time-ordered product reads

T̂
�
Â(t) B̂(t�)

�
= Θ(t− t�) Â(t) B̂(t�) +Θ(t� − t) B̂(t�) Â(t) , (7.124)

where we have used the Heaviside function

Θ(t) =

�
1 ; t > 0

0 ; t < 0
. (7.125)

Thus, the operator-valued factors in (7.124) are put into chronological order so that the operator

having the later time argument is put first, i.e. to the left. If the two time arguments happen

to be equal, problems might arise since the operator ordering is then not well defined. In the

present case (7.123), however, this is not the case since the operators Ψ̂(x, t) and Ψ̂†(x�, t) at

equal time commute due to (7.55). Taking into account (7.124) in (7.123) leads to

G(x, t;x�, t�) = Θ(t− t�)
�
0
���Ψ̂(x, t) Ψ̂†(x�, t�)

��� 0
�
+Θ(t� − t)

�
0
���Ψ̂†(x�, t�) Ψ̂(x, t)

��� 0
�
. (7.126)

Note that this introduction of the Klein-Gordon propagator with a time-ordered product of field

operators appears admittedly to be quite unmotivated at this stage of the lecture. But it will be

justified a posteriori when dealing perturbatively with interacting quantum fields. Namely, such

a perturbative treatment is performed systematically in the so-called Dirac interaction picture,

where the unperturbed Hamiltonian determines the time dependence of the field operators, so

that their interpretation of representing creation and annihilation operators is preserved, and

the perturbative Hamiltonian affects the quantum states. And the latter turns out to lead to the

time evolution operator in the Dirac interaction picture, whose perturbative expansion naturally

involves the time-ordered product of field operators. Thus, in conclusion, any perturbative

treatment in quantum field theory is based on the time-ordered product of field operators.

In order to determine the equation of motion for the Klein-Gordon propagator we calculate the

first time derivative:

∂G(x, t;x�, t�)

∂t
= δ(t− t�)

�
0

����
�
Ψ̂(x, t), Ψ̂†(x�, t�)

�
−

���� 0
�

(7.127)

+Θ(t− t�)

�
0

�����
∂Ψ̂(x, t)

∂t
Ψ̂†(x�, t�)

����� 0
�

+Θ(t� − t)

�
0

�����Ψ̂
†(x�, t�)

∂Ψ̂(x, t)

∂t

����� 0
�

.
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Here we have used that the fact that the time derivative of the Heaviside function yields the

delta function:

∂Θ(t)

∂t
= δ(t) . (7.128)

As the commutator of the field operators Ψ̂(x, t) and Ψ̂†(x�, t) at the same time t vanish ac-

cording to (7.55), the first term in (7.127) goes away. Another time derivative leads then with

(7.128) to

∂2G(x, t;x�, t�)

∂t2
= δ(t− t�)

�
0|
�
∂Ψ̂(x, t)

∂t
, Ψ̂†(x�, t�)

�

−
|0
�

(7.129)

+Θ(t− t�)

�
0

�����
∂2Ψ̂(x, t)

∂t2
Ψ̂†(x�, t�)

����� 0
�

+Θ(t� − t)

�
0

�����Ψ̂
†(x�, t�)

∂2Ψ̂(x, t)

∂t2

����� 0
�

.

Taking into account (7.54), (7.57), (7.61), and (7.126) we finally obtain
�
1

c2
∂2

∂t2
−Δ+

M2c2

h̄2

�
G(x, t;x�, t�) = −i

2M

h̄
δ(t− t�) δ(x− x�) . (7.130)

Thus, we recognize that the Klein-Gordon propagator represents the Green function of the

Klein-Gordon equation. As a coupling of the Klein-Gordon field to other quantum fields yields

as a Heisenberg equation an inhomogeneous Klein-Gordon equation, its perturbative solution is

based on the knowledge of the corresponding Green function, i.e. the Klein-Gordon propagator.

In view of the non-relativistic limit c → ∞ we have to separate the rest energy from the

Klein-Gordon propagator due to (7.5):

G(x, t;x�, t�) = g(x, t;x�, t�) exp

�
− i

h̄
Mc2t

�
. (7.131)

Inserting the ansatz (7.131) in the equation of motion (7.130) we get
�

1

c2
∂2

∂t2
− 2iM

h̄

∂

∂t
−Δ

�
g(x, t;x�, t�) = −i

2M

h̄
δ(t− t�) δ(x− x�) . (7.132)

Performing then the non-relativistic limit c → ∞ Eq. (7.132) reduces to
�
ih̄

∂

∂t
+

h̄2

2M
Δ

�
g(x, t;x�, t�) = ih̄ δ(t− t�) δ(x− x�) . (7.133)

Thus, g(x, t;x�, t�) coincides with the Green function of the Schrödinger equation and can be

identified with the Schrödinger propagator discussed in the exercises.

7.10 Interpretation of Propagator

Now we deal with the physical interpretation of the Klein-Gordon propagator (7.126). To this

end we state two commutation relations for the charge operator (7.103):
�
Q̂, Ψ̂(x, t)

�
−

= −Ψ̂(x, t) , (7.134)
�
Q̂, Ψ̂†(x, t)

�
−

= Ψ̂†(x, t) . (7.135)
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Figure 7.3: Graphical representation of the Klein-Gordon propagator (7.126) describing the

propagation of the charge 1 from (x�, t�) to (x, t).

Thus, the field operators Ψ̂(x, t) and Ψ̂†(x, t) decrease and increase the charge by one unit,

respectively, as was already anticipated at the end of Section 7.8. Namely, denoting with |q�
an eigenstate of the charge operator Q̂ with eigenvalue q, i.e.

Q̂|q� = q |q� , (7.136)

we conclude with the help of the commutator relations (7.134), (7.135):

Q̂Ψ̂(x, t)|q� = Ψ̂(x, t)
�
Q̂− 1

�
|q� = (q − 1)Ψ̂(x, t)|q� =⇒ |q − 1� ∼ Ψ̂(x, t)|q� , (7.137)

Q̂Ψ̂†(x, t)|q� = Ψ̂†(x, t)
�
Q̂+ 1

�
|q� = (q + 1)Ψ̂†(x, t)|q� =⇒ |q + 1� ∼ Ψ̂†(x, t)|q� . (7.138)

Against this background the Klein-Gordon propagator (7.126) describes the propagation of

the charge 1 from (x�, t�) to (x, t), see Fig. 7.3, via two microscopic processes. Taking into

account the plane wave decompositions (7.111), (7.112) the first term in (7.126) describes the

propagation of a particle of charge +1 from (x�, t�) to (x, t), whereas the second term considers

the propagation of an antiparticle of charge −1 from (x, t) to (x�, t�). Thus, the Klein-Gordon

propagator (7.126) takes both processes of particle and antiparticle propagation into account.

But, according to the intuitive physical picture of Richard Feynman, particles with positive

energy propagate forward in time, whereas antiparticles are considered to have negative energy,

which move backwards in time.

7.11 Calculation of Propagator

Now we insert the plane wave decompositions (7.111), (7.112) of the field operators Ψ̂(x, t),

Ψ̂†(x, t) into the definition of the Klein-Gordon propagator (7.126). Due to the commutation

relations (7.108)–(7.110) and the definition of the vacuum state (7.118) we obtain the plane

wave representation

G(x, t;x�, t�) =

�
d3p
�
Θ(t− t�)up(x, t)u

∗
p(x

�, t�) +Θ(t� − t)up(x
�, t�)u∗

p(x, t)
�
. (7.139)
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Inserting the plane wave (7.113) together with the relativistic energy-momentum dispersion

(7.66), one obtains the following Fourier representation of the Klein-Gordon propagator:

G(x, t;x�, t�) =
Mc2

(2πh̄)3

�
d3p

1�
p2c2 +M2c4

×
�
Θ(t− t�) exp

�
i

h̄

�
p(x− x�)−

�
p2c2 +M2c4 (t− t�)

��

+Θ(t� − t) exp

�
i

h̄

�
p(x� − x)−

�
p2c2 +M2c4 (t� − t)

���
. (7.140)

In the following we evaluate this momentum integral analytically. At first, substituting in the

second term p → −p, both terms are combined as follows:

G(x, t;x�, t�) =
Mc2

(2πh̄)3

�
d3p

1�
p2c2 +M2c4

× exp

�
i

h̄
p(x− x�)− i

h̄

�
p2c2 +M2c4 |t− t�|

�
. (7.141)

Introducing subsequently spherical coordinates for the momentum integral, we obtain at first

G(x, t;x�, t�) =
Mc2

(2πh̄)3

� 2π

0

dϕ

� π

0

dθ sin θ

� ∞

0

dp p2
1�

p2c2 +M2c4

× exp

�
i

h̄
p|x− x�| cos θ − i

h̄

�
p2c2 +M2c4 |t− t�|

�
. (7.142)

Evaluating the angle integrals explicitly, one gets two remaining integrals over the absolute

value of the momentum. Performing the substitution p → −p in the second integral, both

integrals over half axis can be combined into a single one over the whole real axis, yielding

G(x, t;x�, t�) =
−iMc2

4π2h̄2|x− x�|

� ∞

−∞
dp

p�
p2c2 +M2c4

× exp

�
i

h̄

�
p|x− x�|−

�
p2c2 +M2c4 |t− t�|

��
. (7.143)

Here the factor p in the integrand can be represented in terms of a partial derivative with

respect to the distance |x− x�|:

G(x, t;x�, t�) =
−Mc2

4π2h̄|x− x�|
∂

∂|x− x�|

� ∞

−∞
dp

1�
p2c2 +M2c4

× exp

�
i

h̄

�
p|x− x�|−

�
p2c2 +M2c4 |t− t�|

��
. (7.144)

Due to the substitution

p (z) = Mc sinh z , (7.145)

where we have

dp (z)

dz
= Mc cosh z = Mc

�
1 + sinh2 z =

1

c

�
p2c2 +M2c4 , (7.146)
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Eq. (7.144) is converted to

G(x, t;x�, t�) =
−Mc

4π2h̄|x− x�|
∂

∂|x− x�|

×
� ∞

−∞
dz exp

�
iMc

h̄

�
|x− x�| sinh z − c|t− t�| cosh z

��
. (7.147)

We now aim at simplifying the integral (7.147) by combining the two terms in the argument

of the exponential function into a single one. This is accomplished by the trick to perform the

substitution z = z� + z0, which introduces a new variable z0 into the calculation:

G(x, t;x�, t�) =
−Mc

4π2h̄|x− x�|
∂

∂|x− x�|

×
� ∞

−∞
dz exp

�
iMc

h̄

�
|x− x�| sinh (z + z0)− c|t− t�| cosh (z + z0)

��
. (7.148)

Taking into account the addition theorems of hyperbolic functions

sinh (z + z0) = sinh z cosh z0 + cosh z sinh z0 , (7.149)

cosh (z + z0) = cosh z cosh z0 + sinh z sinh z0 , (7.150)

the integral (7.148) gets at first more involved:

G(x, t;x�, t�) =
−Mc

4π2h̄|x− x�|
∂

∂|x− x�|

� ∞

−∞
dz

× exp

�
iMc

h̄

��
|x− x�| cosh z0 − c|t− t�| sinh z0

�
sinh z

+
�
|x− x�| sinh z0 − c|t− t�| cosh z0

�
cosh z

��
. (7.151)

But a closer inspection then reveals that the yet undetermined parameter z0 can be chosen in

such a way that the argument of the exponential function in (7.151) does only depend on one

term, for instance on the cosh z function:

tanh z0 =
sinh z0
cosh z0

=
|x− x�|
c|t− t�| . (7.152)

The subsequent hyperbolic side calculations

sinh z0 =
tanh z0�

1− tanh2 z0
=

|x− x�|�
c2 (t− t�)2 − (x− x�)2

, (7.153)

cosh z0 =
1�

1− tanh2 z0
=

c|t− t�|�
c2 (t− t�)2 − (x− x�)2

(7.154)

together with (7.152) then simplify the integral in (7.151) to

G(x, t;x�, t�) =
−Mc

4π2h̄|x− x�|
∂

∂|x− x�|

� ∞

−∞
dz

× exp

�
−i

Mc

h̄

�
c2 (t− t�)2 − (x− x�)2 cosh z

�
. (7.155)
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Here we can use the Hankel function of second kind [(8.405.2), Gradshteyn/Ryzhik]

H(2)
ν (x) = Jν(x)− iNν(x) , (7.156)

which consists of the Bessel function Jν(x) and the von Neumann function Nν(x), due to its

integral representation [(8.421.2), Gradshteyn/Ryzhik]

H(2)
ν (x) = −eiνπ/2

π i

� ∞

−∞
dt e−ix cosh t−νt . (7.157)

With this we obtain from (7.155)

G(x, t;x�, t�) =
iMc

4πh̄|x− x�|
∂

∂|x− x�| H
(2)
0

�
Mc

h̄

�
c2 (t− t�)2 − (x− x�)2

�
. (7.158)

Thus, it remains to evaluate the derivative, where we have to take into account [(8.473.6),

Gradshteyn/Ryzhik]

d

dx
H

(2)
0 (x) = −H

(2)
1 (x) . (7.159)

Thus we get for the Klein-Gordon propagator the following explicit result:

G(x, t;x�, t�) =
i(Mc/h̄)2

4π
�

c2 (t− t�)2 − (x− x�)2
H

(2)
1

�
Mc

h̄

�
c2 (t− t�)2 − (x− x�)2

�
. (7.160)

We note that the particle M enters here only in form of the Compton wave length (7.21).

In the non-relativistic limit c → ∞ the argument of the Hankel function becomes arbitrarily

large, so we we use [(8.451.4), Gradshtey/Ryzhik]:

H(2)
ν (x) ≈

�
2

πx
e−i(x−π

2
ν−π

4 ) , x � 1 . (7.161)

With this the non-relativistic limit of the Klein-Gordon propagator (7.160) is for t > t� of the

form (7.131) with

g(x, t;x�, t�) =

��
M

2πih̄ (t− t�)

�3

exp

�
iM (x− x�)2

2h̄ (t− t�)

�
. (7.162)

According to the exercises Eq. (7.162) represents the solution of the inhomogeneous Schrödinger

equation (7.133). Thus, indeed, the Klein-Gordon propagator reduces in the non-relativistic

limit to the Schrödinger propagator.

7.12 Covariant Form of Propagator

In view of obtaining a manifestly covariant form of the Klein-Gordon propagator, we extend

now its three-dimensional Fourier representation (7.141) to a four-dimensional one. To this end

we consider the integral

I (t− t�) = lim
η↓0

� ∞

−∞

dE

2πh̄

e−
i
h̄
E(t−t�)

E2 − E2
p + iη

. (7.163)
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Figure 7.4: Shift of energy poles according to the iη prescription of Richard Feynman.

Here the term iη with η > 0 shifts infinitesimally the poles of the integrand on the real axis into

the complex plane in a particular way. According to this iη prescription, which was introduced

by Richard Feynman, the pole at E = Ep is shifted below the real axis, whereas the pole at

E = −Ep is shifted above the real axis, see Fig. 7.4. As we see in due course this guarantees

that particles (antiparticles) move forward (backward) in time. To this end we evaluate the

integral (7.163) with the help of the residue theorem. In order to guarantee the convergence of

the integral one has to close the integration contour along the real axis for t > t� (t < t�) in the

lower (upper) part of the complex plane, yielding

t > t� : I (t− t�) =
−2πi

2πh̄
lim
η↓0

Res
E=

√
E2

p−iη

e−
i
h̄
E(t−t�)

E2 − E2
p + iη

= − i

2h̄Ep

e−
i
h̄
Ep(t−t�) , (7.164)

t < t� : I (t− t�) =
2πi

2πh̄
lim
η↓0

Res
E=−

√
E2

p−iη

e−
i
h̄
E(t−t�)

E2 − E2
p + iη

= − i

2h̄Ep

e
i
h̄
Ep(t−t�) . (7.165)

Here we have used the fact that the residue of a function f(z) with a simple pole at z = z0 is

determined via

Res
z = z0

f(z) = lim
z→z0

(z − z0) f(z) . (7.166)

Both results (7.164), (7.165) can be summarized as follows:

I (t− t�) = − i

2h̄Ep

�
Θ(t− t�) e−

i
h̄
Ep(t−t�) +Θ(t� − t) e

i
h̄
Ep(t−t�)

�
= − i

2h̄Ep

e−
i
h̄
Ep|t−t�| . (7.167)

Inserting (7.163) and (7.167) into (7.141) leads at first to

G(x, t;x�, t�) = 2ih̄Mc2 lim
η↓0

�
d3p

(2πh̄)3

�
dE

2πh̄

1

E2 − p2c2 −M2c4 + iη

× exp

�
− i

h̄

�
E (t− t�)− p (x− x�)

��
. (7.168)

This can be rewritten in a manifestly Lorentz covariant form as follows:

G(xλ; x�λ) = 2ih̄Mc lim
η↓0

�
d4p

(2πh̄)4
1

gµνpµpν −M2c2 + iη
exp

�
− i

h̄
gµν p

µ (xν − x�ν)

�
. (7.169)
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In this form the equation of motion of the Klein-Gordon propagator (7.130) is obviously fulfilled:

�
gµν p̂

µp̂ν +
M2c2

h̄2

�
G(xλ; x�λ) = 2ih̄Mc lim

η↓0

�
d4p

(2πh̄)4
gµν

−i
h̄
pµ −i

h̄
pν + M2c2

h̄2

gµνpµpν −M2c2 + iη

× exp

�
− i

h̄
gµν p

µ (xν − x�ν)

�
= −2iMc

h̄

�
d4p

(2πh̄)4
exp

�
− i

h̄
gµν p

µ (xν − x�ν)

�

= −2iMc

h̄
δ(4)(x− x�) = −2iM

h̄
δ(t− t�) δ (x− x�) . (7.170)

Comparing (7.169) with the four-dimensional Fourier transformation the Klein-Gordon propa-

gator

G(xλ; x�λ) =

�
d4p

(2πh̄)4
G(pλ) exp

�
− i

h̄
gµν p

µ (xν − x�ν)

�
, (7.171)

we read off

G(pλ) = G(p, E) = lim
η↓0

2ih̄Mc

E2 − p2c2 −M2c4 + iη
. (7.172)

Here a singularity appears when the energy variable E coincides with the physical energy of a

relativistic massive particle, which is given by the energy-momentum dispersion (7.66). In the

non-relativistic limit c → ∞ the Fourier transformed of the Klein-Gordon propagator (7.172)

goes over into the Fourier transformed of the Schrödinger propagator:

g(p, E) = lim
c→∞

1

c
G(p, E +Mc2) = lim

η↓0
lim
c→∞

2ih̄M

(E/c+Mc)2 − p2 −M2c2 + iη

= lim
η↓0

lim
c→∞

ih̄

E − p2

2M
+ E2

2Mc2
+ iη

= lim
η↓0

ih̄

E − p2

2M
+ iη

. (7.173)

Indeed, solving the inhomogeneous Schrödinger equation (7.133) via a four-dimensional Fourier

transformation

g(x, t;x�, t�) =

� ∞

−∞

dE

2πh̄

�
d3p

(2πh̄)3
g(p, E) exp

�
i

h̄

�
p (x− x�)− E(t− t�)

��
(7.174)

yields straight-forwardly (7.174).


