
Chapter 8

Maxwell Field

All electrodynamic processes are described by the Maxwell equations. Surprisingly they repre-

sent the equations of motion of a first-quantized theory, although the Planck constant h̄ does

not appear explicitly. This apparent contradiction is resolved by the following consideration.

If the quanta of the Maxwell field, i.e. the photons, had a finite rest mass M , then it would

appear due to dimensional reasons together with spatio-temporal derivatives as a mass term in

the equations of motion in form of the inverse Compton wave length (7.21). Thus, performing

the limit of a vanishing rest mass, i.e.M → 0, also the Planck constant h̄ vanishes automatically

from the respective equations of motion.

In this chapter we first review the relativistic covariant formulation of this first-quantized

Maxwell theory. Afterwards, we invoke the canonical field quantization formalism and work

out systematically the second quantization of the Maxwell theory. In particular, we have to

deal with the intricate consequences of the underlying local gauge symmetry, which is due to

the vanishing rest mass of the quanta of the Maxwell field. In this way we determine step by

step the respective properties of a single photon as, for instance, its energy, its momentum, and

its spin. Finally, we discuss the photon propagator, which represents an important building

block in the Feynman diagrams of quantum electrodynamics describing the interaction between

light and matter.

8.1 Maxwell Equations

Forces of an electromagnetic field upon electric charges, which are at rest or move, are mediated

by both the electric field strength E and the magnetic induction B. Physically both vector

fields are generated by the charge density ρ and the current density j. Mathematically they

are determined by partial differential equations, which were first formulated by James Clerk

Maxwell. The general structure of the Maxwell equations is prescribed by the Helmholtz

vector decomposition theorem, which states that any vector field is uniquely determined by its

respective divergence and rotation in combination with appropriate boundary conditions. With
113
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this the electric field strength E follows from

divE =
ρ

ε0
, (8.1)

rotE = −∂B

∂t
, (8.2)

whereas the magnetic induction B is defined by

divB = 0 , (8.3)

rotB = µ0 j+
1

c2
∂E

∂t
. (8.4)

Here the vacuum dielectric constant �0, the vacuum permeability µ0, and the vacuum light

velocity c are related via

c =
1√
ε0µ0

. (8.5)

We remark that (8.1), (8.4) and (8.2), (8.3) are denoted as the inhomogeneous and homogeneous

Maxwell equations, respectively. Furthermore, we read off from the inhomogeneous Maxwell

equations (8.1) and (8.4) the consistency equation that charge density ρ and current density j

are not independent from each other but must fulfill the continuity equation

∂ρ

∂t
+ div j = 0 , (8.6)

which corresponds to the charge conservation similar to the discussion in (7.39)–(7.41). Note

that we formulate the Maxwell equations (8.1)–(8.4) according to the International System of

Units, which is abbreviated by SI from the French Système international d’unités. Instead,

in quantum field theory quite often the rational Lorentz-Heaviside unit system is used, where

one assumes ε0 = µ0 = c = 1 in order to simplify the notation. But we stick consistently to

the SI unit system, although this might be considered to be more cumbersome, as this has

the advantage that at each stage of the calculation one obtains results, which are, at least in

principle, directly accessible in an experiment.

8.2 Local Gauge Symmetry

From the homogeneous Maxwell equations (8.2) and (8.3) we conclude straight-forwardly that

both the electric field strength E and the magnetic induction B follow from differentiation of

a scalar field ϕ and a vector potential A:

B = rotA , (8.7)

E = −gradϕ− ∂A

∂t
. (8.8)
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From the inhomogeneous Maxwell equations (8.1) and (8.4) as well as from (8.7) and (8.8)

we then determine coupled partial differential equations for the scalar field ϕ and the vector

potential A:

−Δϕ− ∂

∂t
divA =

ρ

ε0
, (8.9)

1

c2
∂2A

∂t2
−ΔA+ grad

�
1

c2
∂ϕ

∂t
+ divA

�
= µ0 j . (8.10)

The equations (8.7)–(8.10) turn out to be invariant with respect to a local gauge transformation

with an arbitrary gauge function Λ:

ϕ� = ϕ+
∂Λ

∂t
(8.11)

A� = A− gradΛ . (8.12)

Thus, a local gauge transformation does not have any physical consequences, but it changes

the mathematical description of the electromagnetic field. For instance, choosing a particular

gauge allows to decouple the coupled equations of motion (8.9) and (8.10). In the following we

briefly discuss the two most prominent gauges.

The Coulomb gauge assumes that the longitudinal part of the vector potential A vanishes, i.e.

divA = 0 . (8.13)

With this (8.9) and (8.10) reduce to

Δϕ = − ρ

ε0
, (8.14)

1

c2
∂2A

∂t2
−ΔA = µ0 j−

1

c2
∂

∂t
gradϕ . (8.15)

As the scalar potential ϕ(x, t) obeys the Poisson equation (8.14), it is determined at each time

instant t by the corresponding value of the charge density ρ(x, t) according to

ϕ(x, t) =

�
d3x� ρ(x�, t)

4πε0|x− x�| . (8.16)

Due to (8.13) and (8.16) we conclude that from the original four fields ϕ and A only two

of them represent dynamical degrees of freedom. As a consequence, the quantization of the

electromagnetic field thus yields later on two types of photons. The advantage of the Coulomb

gauge is that the remaining two dynamical degrees of freedom of the electromagnetic field can

be physically identified with the two transversal degrees of freedom of the vector potential A.

The disadvantage of the Coulomb gauge is that it is not manifestly Lorentz invariant. Thus,

the Coulomb gauge is only valid in a particular inertial system.

The Lorentz gauge is defined via

1

c2
∂ϕ

∂t
+ divA = 0 . (8.17)
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With this the coupled equations of motions (8.9) and (8.10) yield uncoupled wave equations:

1

c2
∂2ϕ

∂t2
−Δϕ =

ρ

ε0
, (8.18)

1

c2
∂2A

∂t2
−ΔA = µ0 j . (8.19)

The advantage is here that the Lorentz gauge (8.17) as well as the decoupled equations of motion

(8.18), (8.19) are Lorentz invariant. On the other hand, the quantization of the electromagnetic

field on the basis of the Lorentz gauge, as worked out by Suraj Gupta and Konrad Bleuler,

turns out to have an essential disadvantage. Namely, apart from the two physical transversal

degrees of freedom also an unphysical longitudinal degree of freedom of the electromagnetic

field emerges, which has to be eliminated afterwards with some effort.

8.3 Field Strength Tensors

In view of a manifestly Lorentz invariant formulation of the Maxwell theory both the electric

field strength E and the magnetic induction B are considered as elements of an anti-symmetric

4 × 4 matrix F , which is called the electromagnetic field strength tensor. Its contravariant

components read

(F µν) =
�
F µν(E,B)

�
=




0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


 , (8.20)

which fulfill, indeed, the anti-symmetry condition:

F µν = −F νµ . (8.21)

Its corresponding covariant components

Fµν = gµλgνκ F
λκ (8.22)

are given by

(Fµν) =
�
F µν(−E,B)

�
=




0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0


 . (8.23)

Furthermore, it turns out to be useful to introduce in addition the dual electromagnetic field

strength tensor ∗F by contracting the electromagnetic field strength tensor F with the totally

anti-symmetric unity tensor �, which was already used in (6.140):

∗F µν =
1

2
�µνλκ Fλκ . (8.24)
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Thus, its contravariant components turn out to be

(∗F µν) =
�
F µν(cB,−E/c)

�
=




0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0


 (8.25)

and the covariant components

∗Fµν = gµλgνκ
∗F λκ (8.26)

result in

(∗Fµν) =
�
F µν(−cB,−E/c)

�
=




0 Bx By Bz

−Bx 0 Ez/c −Ey/c

−By −Ez/c 0 Ex/c

−Bz Ey/c −Ex/c 0


 . (8.27)

With these definitions we can now concisely summarize the homogeneous Maxwell equations

(8.2), (8.3) with the help of the dual electromagnetic field strength tensor ∗F

∂µ
∗F µν = 0 , (8.28)

whereas, correspondingly, the inhomogeneous Maxwell equations (8.1), (8.4) can be united with

the help of the electrodynamic field strength tensor F :

∂µF
µν = µ0 j

ν . (8.29)

Here the contravariant current density four-vector jλ consists of both the charge density ρ in

the temporal component and the current density j in the spatial components:
�
jλ
�
= (cρ, j) . (8.30)

Indeed, taking into account (6.99), an explicit calculation reproduces the homogeneous Maxwell

equations

(∂µ
∗F µν) =

�
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

�



0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0




=

�
divB,−1

c
rotE− 1

c

∂B

∂t

�
= (0,0) (8.31)

as well as also the inhomogeneous Maxwell equations

(∂µF
µν) =

�
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

�



0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0




=

�
1

c
divE, rotB− 1

c2
∂E

∂t

�
= µ0(cρ, j) . (8.32)
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Evaluating the four-divergence of (8.29) one obtains due to the anti-symmetry (8.21) a consis-

tency condition, which is the continuity equation for the contravariant current density

∂ν∂µF
µν = µ0 ∂νj

ν =⇒ ∂νj
ν = 0 . (8.33)

Note that (8.33) represents the manifest Lorentz invariant formulation of (8.6).

8.4 Four-Vector Potential

We now combine both the scalar potential ϕ and the vector potential A to the contravariant

four-vector potential

�
Aλ
�
=
�ϕ
c
,A
�
. (8.34)

With this the relations (8.7) and (8.8) between the electric field strength E and the magnetic

induction B as well as the scalar potential ϕ and the vector potential A are combined into

one single relation between the electromagnetic field strength tensor F µν and the four-vector

potential Aλ:

F µν = ∂µAν − ∂νAµ . (8.35)

Here the contravariant nabla four-vector is defined via

(∂µ) =

�
1

c

∂

∂t
,−∇

�
. (8.36)

For instance, we obtain from (8.34)–(8.36):

F 01 = ∂0A1 − ∂1A0 =
1

c

∂Ax

∂t
+

1

c

∂ϕ

∂x
= −1

c
Ex , (8.37)

F 12 = ∂1A2 − ∂2A1 =
∂Ax

∂y
− ∂Ay

∂x
= −Bz . (8.38)

We remark that the definitions (8.24) and (8.35) have the consequence that the homogeneous

Maxwell equations (8.28) are automatically fulfilled:

∂µ
∗F µν =

1

2
�µνλκ ∂µFλκ =

1

2
�µνλκ (∂µ∂λAκ − ∂µ∂κAλ) = 0 . (8.39)

Note that we have used here the anti-symmetry of the � tensor and that we have assumed

that the covariant four-vector potential fulfills the theorem of Schwarz, i.e. partial derivatives

commute:

(∂µ∂ν − ∂ν∂µ)Aκ = 0 . (8.40)

Furthermore, due to the definition (8.35) the inhomogeneous Maxwell equations (8.29) go over

into the manifest Lorentz invariant formulation of the coupled equations of motion (8.9) and

(8.10):

∂µ∂
µAν − ∂ν∂µA

µ = µ0 j
ν . (8.41)
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And, finally, the manifest Lorentz invariant formulation of the local gauge transformation (8.11),

(8.12) reads

A�µ = Aµ + ∂µΛ . (8.42)

Due to such local gauge transformations (8.42) the electromagnetic field strength tensor F

defined via (8.35) does not change

F �µν = ∂µA�ν − ∂νA�µ = ∂µAν + ∂µ∂νΛ− ∂νAµ − ∂ν∂µΛ = ∂µAν − ∂νAµ = F µν , (8.43)

provided that the gauge function Λ also fulfills the theorem of Schwarz:

(∂µ∂ν − ∂ν∂µ)Λ = 0 . (8.44)

Furthermore, we conclude from (8.24) and (8.43) that then also the dual electromagnetic field

strength tensor ∗F is gauge invariant:

∗F �µν = ∗F µν . (8.45)

Thus, finally, we conclude that the local gauge transformation (8.42) leaves both the homoge-

neous and the inhomogeneous Maxwell equations (8.28) and (8.29) invariant.

8.5 Euler-Lagrange Equations

Now we set up a covariant variational principle, whose Euler-Lagrange equations are equivalent

to the Maxwell equations. According to (8.35) the electromagnetic field strength tensor is

completely determined from the knowledge of the four-vector potential. Therefore, we take here

the point of view that the primary dynamical degree of freedom is provided by the four-vector

potential. As the homogeneous Maxwell equations (8.28) are already automatically fulfilled

by defining (8.35), the covariant variational principle must only reproduce the inhomogeneous

Maxwell equations (8.29) or (8.41).

The action A as a functional of the covariant components Aν of the four-vector potential is

defined as an integral of a Lagrange density L over a volume Ω of the four-dimensional space-

time:

A [Aν(•)] =
1

c

�

Ω

d4xL . (8.46)

As the inhomogeneous Maxwell equations (8.29) or (8.41) are of second order in the derivatives

of the four-vector potential, the Lagrange density can only contain derivatives up to first order:

L = L
�
Aν

�
xλ
�
; ∂µAν

�
xλ
��

. (8.47)

Then the corresponding Hamilton principle states that the functional derivative of the action

with respect to the covariant components of the four-vector potential vanishes:

δA
δAν(xλ)

= 0 . (8.48)
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The resulting Euler-Lagrange equations of this classical field theory then read

∂L
∂Aν(xλ)

− ∂µ
∂L

∂(∂µAν (xλ))
= 0 . (8.49)

Thus, it remains to find a Lagrange density, whose Euler-Lagrange equations (8.49) coincide

with the inhomogeneous Maxwell equations (8.29) or (8.41). As the Maxwell equations are

Lorentz invariant, the same must also hold for the Lagrange density. To this end we perform

the following covariant ansatz for the Lagrange density of the electrodynamic field:

L = αF λκ Fλκ + βjλ Aλ . (8.50)

Here α and β denote some constants, which are fixed below. Taking into account (8.35) the

ansatz (8.50) reduces after some straight-forward algebraic transformations to the expression

L = 2αgλρgκσ (∂ρAσ − ∂σAρ) ∂λAκ + βjλAλ . (8.51)

With this we obtain the partial derivative

∂L
∂Aν

= βjν (8.52)

and, correspondingly, due to (8.35) also

∂L
∂(∂µAν)

= 4αF µν . (8.53)

Thus, with (8.52) and (8.53) the Euler-Lagrange equations (8.49) turn out to be of the form

∂µF
µν =

β

4α
jν . (8.54)

A comparison of (8.54) with the inhomogeneous Maxwell equations (8.29) allows to fix the

constant β according to

β

4α
= µ0 =⇒ β = 4αµ0 . (8.55)

Due to (8.55) the Lagrange density (8.50) is then given by

L = αF µνFµν + 4αµ0 j
νAν , (8.56)

where the constant α is still not yet determined.

8.6 Hamilton Function

We consider now the free electrodynamic field, where neither electric charges nor currents are

present:

ρ(x, t) = 0 , j(x, t) = 0 . (8.57)
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Furthermore, we restrict ourselves from now on to the Coulomb gauge (8.13) as it represents

the basis of the standard formulation for the second quantization of the Maxwell theory and is

commonly used in quantum optics. From (8.13), (8.16), and (8.57) we then conclude that the

scalar potential vanishes:

ϕ(x, t) = 0 . (8.58)

Note that (8.13) and (8.58) together is also known as the radiation gauge. From (8.14), (8.57),

and (8.58) we then read off that the vector potential obeys the wave equation:

1

c2
∂2A(x, t)

∂t2
−ΔA(x, t) = 0 . (8.59)

Thus, in radiation gauge the vector potential A(x, t) is determined from solving the wave

equation (8.59) by taking into account the Coulomb gauge (8.13). Once the vector potential is

known, one obtains from (8.7) the magnetic induction, whereas the electric field (8.8) reduces

due to the radiation gauge (8.13) and (8.58) to

E(x, t) = −∂A(x, t)

∂t
. (8.60)

Furthermore, the Lagrange density of the free electrodynamic field reads due to (8.20), (8.23),

(8.56), and (8.57)

L = 2α

�
B2 − E2

c2

�
. (8.61)

Due to (8.7) and (8.60) the Lagrange density (8.61) can be expressed in terms of the vector

potential:

L = 2α

��
∇×A(x, t)

�2
− 1

c2

�
∂A(x, t)

∂t

�2�
. (8.62)

With this the momentum field π, which is canonically conjugated to the vector potential A,

follows as

π(x, t) =
δA [A(•, •)]
δ ∂A(x,t)

∂t

=
∂L

∂ ∂A(x,t)
∂t

= −4α

c2
∂A(x, t)

∂t
. (8.63)

A subsequent Legendre transformation

H = π(x, t)
∂A(x, t)

∂t
− L (8.64)

converts then the Lagrange density (8.62) to the Hamilton density

H = − c2

8α
π(x, t)2 − 2α

�
∇×A(x, t)

�2
, (8.65)

which should coincide with the well-known energy density of the free electromagnetic field in

SI units

H =
�0
2

�
∂A(x, t)

∂t

�2
+

1

2µ0

�
∇×A(x, t)

�2
. (8.66)
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By taking into account (8.5) and (8.63) this fixes the parameter α according to

α = − 1

4µ0

. (8.67)

Thus, we obtain from (8.5), (8.63), and (8.67) the following result for the momentum field:

π(x, t) = �0
∂A(x, t)

∂t
. (8.68)

This corresponds to the classical expression for the momentum p = mẋ, provided we identify

the coordinate x with the vector potential A and the mass m with the vacuum dielectric

constant ε0. Furthermore, a spatial integral over the Hamilton density yields the Hamilton

function

H =

�
d3xH , (8.69)

which follows from (8.66) to be

H =
1

2

�
d3x

�
1

�0
π(x, t)2 +

1

µ0

�
∇×A(x, t)

�2�
. (8.70)

Note that the first (second) term represents the kinetic (potential) energy of the electromagnetic

field. With an additional calculation the Hamilton function (8.70) can be simplified. To this

end we consider

(∇×A)2 = �jkl ∂kAl �jmn ∂mAn , (8.71)

which reduces with the help of (6.56) to

(∇×A)2 = ∂kAl∂kAl − ∂k (Al∂lAk) + Al∂l∂kAk . (8.72)

Inserting (8.72) into (8.70), the second term vanishes due to applying the theorem of Gauß and

the third term is zero in the Coulomb gauge (8.13), so we end up with

H =
1

2

�
d3x

�
1

�0
πk(x, t)πk(x, t) +

1

µ0

∂kAl(x, t)∂kAl(x, t)

�
. (8.73)

8.7 Canonical Field Quantization

The electrodynamic field is now quantized by exchanging the fields Aj(x, t) and πj(x, t) with

their corresponding field operators Âj(x, t) and π̂j(x, t). To this end we perform a bosonic field

quantization and demand equal-time commutation relations. At first, we demand that the field

operators Âj(x, t) and π̂j(x, t) commute, as usual, among themselves, respectively:
�
Âk(x, t), Âl(x

�, t)
�
−

= 0, (8.74)
�
π̂k(x, t), π̂l(x

�, t)
�
−

= 0. (8.75)
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But when it comes to the equal-time commutation relations between the field operators Âj(x, t)

and π̂j(x, t), the situation turns out to be more intriguing. Let us investigate whether naive

equal-time commutation relations of the form
�
Âk(x, t), π̂l(x

�, t)
�
−
= ih̄ δklδ(x− x�) (8.76)

are possible. On the one hand, a derivative with respect to xk then yields at the left-hand side

of (8.76) to

∂k

�
Âk(x, t), π̂l(x

�, t)
�
−
=
�
∂kÂk(x, t), π̂l(x

�, t)
�
−
= 0 , (8.77)

as we have to demand the quantized version of the Coulomb gauge (8.13):

∂jÂj(x, t) = 0 . (8.78)

On the other, a derivative with respect to xk at the right-hand side of (8.76) leads to

ih̄ δkl∂kδ(x− x�) = ih̄ ∂lδ(x− x�) �= 0 , (8.79)

i.e. to an expression, which is non-zero in obvious contradiction to (8.77). Therefore, we are

forced to modify the naive equal-time commutation relations (8.76) in such a way that it

becomes compatible with the quantized version of the Coulomb gauge (8.78). To this end we

consider the Fourier transformed of the right-hand side of (8.76)

ih̄ δklδ(x− x�) = ih̄

�
d3k

(2π)3
δkl e

ik(x−x�) (8.80)

and substitute this expression by a yet to be determined transversal delta function

ih̄ δTkl(x− x�) = ih̄

�
d3k

(2π)3
δTkl(k) e

ik(x−x�) . (8.81)

The Fourier transformed of the transversal delta function is then fixed from demanding that

the derivative of (8.81) with respect to xk vanishes, i.e.

ih̄ ∂kδ
T
kl(x− x�) = ih̄

�
d3k

(2π)3
ikk δ

T
kl(k) e

ik(x−x�) = 0 . (8.82)

For this to be valid it is sufficient that the transversality condition

kk δ
T
kl(k) = 0 (8.83)

is fulfilled. By comparing (8.80) and (8.81) a suitable ansatz for the Fourier transformed of the

transversal delta function reads

δTkl(k) = δkl + kkkl f(k) . (8.84)

The yet unknown function f(k) follows then from inserting (8.84) into (8.83):

f(k) = − 1

k2
. (8.85)
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Thus, from (8.81), (8.84), and (8.85) we then conclude for the transversal delta function

δTkl(x− x�) = δklδ(x− x�) + ∂�
k∂

�
l

�
d3k

(2π)3
1

k2
eik(x−x�) . (8.86)

The remaining integral is known, for instance, within the realm of electrostatics from deter-

mining the Green function of the Poisson equation and yields the Coulomb potential. Thus,

we obtain for the transversal delta function

δTkl(x− x�) = δkl δ(x− x�) +
1

4π
∂

�
k∂

�
l

1

|x− x�| . (8.87)

And, finally, we summarize our derivation by stating that the naive equal-time commutation

relations (8.76) have to be modified by
�
Âk(x, t), π̂l(x

�, t)
�
−

= ih̄ δTkl(x− x�) (8.88)

in order to be compatible with the quantized version of the Coulomb gauge (8.78).

However, one should be aware that a derivation of commutation relations always has an essential

caveat. As hard as one tries to consistently determine such basic principles, they are always

attached with heuristic elements. Whether commutation relations are at the end correct or

not can only be verified by checking any prediction following from them against experimental

measurements. In this spirit we will show later on that demanding the bosonic equal-time

commutation relations (8.74), (8.75), and (8.88) leads, indeed, to a consistent description of

the electromagnetic field with the help of usual annihilation and creation operators for photons,

i.e. the quanta of light.

8.8 Heisenberg Equations

Furthermore, proceeding with the second-quantized formalism, we obtain from the Hamilton

function (8.73) the Hamilton operator

Ĥ =
1

2

�
d3x�

�
1

�0
π̂k(x

�, t)π̂k(x
�, t) +

1

µ0

∂�
kÂl(x

�, t)∂�
kÂl(x

�, t)

�
. (8.89)

Note that the order of the operators in (8.89) does not play a role due to the commutation

relations (8.74) and (8.75). Let us now evaluate the Heisenberg equation (3.62) for the field

operator

ih̄
∂Âj(x, t)

∂t
=
�
Âj(x, t), Ĥ

�
−

(8.90)

by inserting therein the Hamilton operator (8.89). After applying (3.10) as well as the equal-

time commutation relations (8.74), (8.75), and (8.88) we get at first

ih̄
∂Âj(x, t)

∂t
=

ih̄

�0

�
d3x� δTjk(x− x�) π̂k(x

�, t) . (8.91)
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Taking into account the transversal delta function (8.87), a partial integration yields

ih̄
∂Âj(x, t)

∂t
=

ih̄

�0

�
π̂j(x, t)−

1

4π

�
d3x�

�
∂�
j

1

|x− x�|

�
∂�
kπ̂k(x

�, t)

�
. (8.92)

With this we reproduce the quantized version of (8.68), as the last term in (8.92) vanishes due

to the quantized version of the Coulomb gauge (8.78):

∂Âj(x, t)

∂t
=

1

�0
π̂j(x, t) . (8.93)

Correspondingly, the Heisenberg equation (3.62) for the momentum field operator reads

ih̄
∂π̂j(x, t)

∂t
=
�
π̂j(x, t), Ĥ

�
−
. (8.94)

Using (3.10) as well as the equal-time commutation relations (8.74), (8.75), and (8.88) we get

at first

ih̄
∂π̂j(x, t)

∂t
=

−ih̄

µ0

�
d3x� ∂�

kδ
T
jl(x− x�) ∂�

kÂl(x
�, t) , (8.95)

so a partial integration yields

ih̄
∂π̂j(x, t)

∂t
=

ih̄

µ0

�
d3x� δTjl(x− x�)Δ�Âl(x

�, t) , (8.96)

Due to the explicit form of the transversal delta function (8.87) and a partial integration we

then get

ih̄
∂π̂j(x, t)

∂t
=

ih̄

µ0

�
∂k∂kÂj(x, t)−

1

4π

�
d3x�

�
∂�
j

1

|x− x�|

�
Δ� ∂�

lÂl(x
�, t)

�
. (8.97)

With the quantized version of the Coulomb gauge (8.78) this reduces finally to

∂π̂j(x, t)

∂t
=

1

µ0

ΔÂj(x, t) . (8.98)

Thus, we conclude from (8.5), (8.93), and (8.98) that the field operator Â(x, t) obeys like the

classical field A(x, t) in (8.59) the wave equation:

1

c2
∂2Â(x, t)

∂t2
−ΔÂ(x, t) = 0 . (8.99)

8.9 Decomposition in Plane Waves

The wave equation (8.99) can be solved with a Fourier decomposition into plane waves:

Â(x, t) =

�
d3k Â(k, t) eikx . (8.100)
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Inserting (8.100) into (8.99) one obtains for the expansion operators Â(k, t) the differential

equation of a harmonic oscillator:

∂2Â(k, t)

∂t2
+ ω2

k Â(k, t) = 0 , (8.101)

where the dispersion relation is given by

ωk = c|k| . (8.102)

The general solution of (8.101) reads

Â(k, t) = Â(1)(k) e−iωkt + Â(2)(k) e+iωkt . (8.103)

so that the field operator (8.100) results in

Â(x, t) =

�
d3k

�
Â(1)(k)ei(kx−ωkt) + Â(2)(k)ei(kx+ωkt)

�
. (8.104)

Performing in the second integral the substitution k → −k and taking into account the sym-

metry of the dispersion relation (8.102), i.e.

ωk = ω−k , (8.105)

the Fourier decomposition (8.104) is converted into

Â(x, t) =

�
d3k

�
Â(1)(k)ei(kx−ωkt) + Â(2)(−k)e−i(kx−ωkt)

�
. (8.106)

Thus, the adjoint field operator reads

Â†(x, t) =

�
d3k

�
Â(1)†(k)e−i(kx−ωkt) + Â(2)†(−k)ei(kx−ωkt)

�
(8.107)

As the vector potential of electrodynamics is real, we demand that the field operator as its

second-quantized counterpart is self-adjoint, i.e.

Â(x, t) = Â†(x, t) , (8.108)

and conclude from (8.106) and (8.107):

Â(k) = Â(1)(k) , Â†(k) = Â(2)(−k) , (8.109)

Inserting the finding (8.109) into the Fourier decomposition (8.106), we finally obtain

Â(x, t) =

�
d3k

�
Â(k)ei(kx−ωkt) + Â†(k)e−i(kx−ωkt)

�
. (8.110)
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8.10 Construction of Polarization Vectors

Before we can continue with working out the second quantization of the Maxwell theory we

have to acquire beforehand a more detailed understanding of the description of plane waves. To

this end we define two linearly polarized plane waves with the wave vector k and the dispersion

(8.102) via

A1(x, t) = A1�1e
i(kx−ωkt) , A2(x, t) = A2�2e

i(kx−ωkt) . (8.111)

Here A1, A2 represent the respective complex-valued amplitudes and �1, �2 denote two complex-

valued polarization vectors, which are normalized according to

�1�
∗
1 = �2�

∗
2 = 1 . (8.112)

Let us consider now the sum of those two linearly polarized plane waves:

A(x, t) = A1(x, t) +A2(x, t) = (A1�1 + A2�2) e
i(kx−ωkt) . (8.113)

Provided that both complex amplitudes A1 = |A1|eiϕ and A2 = |A2|eiϕ have the same phase ϕ,

also their sum (8.113) is linearly polarized and we get

A(x, t) = A�ei(kx−ωkt) . (8.114)

Here the resulting amplitude A is given by

A =
�

|A1|2 + |A2|2 eiϕ (8.115)

and the resulting polarization vector � has the angle

ϑ = arctan
|A2|
|A1|

(8.116)

with respect to �1, see Fig. 8.1. However, in the more general case that both complex amplitudes

A1 = |A1|eiϕ1 and A2 = |A2|eiϕ2 have different phases ϕ1 �= ϕ2, the sum (8.113) represents an

ellipticly polarized plane wave. Let us illustrate this for the simpler situation of a circularly

polarized plane wave, which occurs provided that both complex amplitudes A1 and A2 have

the same absolute value and their phases differ by 90◦:

A1 =
A0√
2
, A2 = ±i

A0√
2
. (8.117)

Inserting (8.117) into (8.113) we obtain for the sum of the two linearly polarized plane waves

A(x, t) =
A0√
2
(�1 ± i�2) e

i(kx−ωkt) . (8.118)
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Figure 8.1: Adding two linearly polarized plane waves according to (8.113) with complex am-

plitudes A1 and A2, which have the same phase.

In order to be concrete we choose now the coordinate axes in such a way that the plane wave

propagates in z-direction, whereas the two polarization vectors �1 and �2, which are normalized

according to (8.112), point in x- and y-direction:

k = k



0

0

1


 , �1 =



1

0

0


 , �2 =



0

0

1


 . (8.119)

With this Eq. (8.118) reduces to

A(x, t) =
A0√
2




1

±i

0


 ei(kezx−ωkez t) . (8.120)

Considering the real part of the vector potential A(x, t) at a fixed space point x, it represents

a vector in the xy-plane with constant absolute value A0, which rotates on a circle with the

frequency ωkez :

ReAx(x, t) =
A0√
2
cos (kz − ωkezt) ,ReAy(x, t) = ∓A0√

2
sin (kz − ωkezt) ,ReAz(x, t) = 0 .(8.121)

For the upper (lower) sign the rotation is performed anti-clockwise (clockwise) for an observer

looking in the direction of the oncoming light beam. Such a plane wave is called in optics

left-(right-) circularly polarized light, whereas in elementary particle physics one says that such

a plane wave has positive (negative) helicity, see Fig. 8.2.

In view of a more detailed discussion of the helicity we remind us upon its definition in

Eq. (6.185). Here the spin vector (6.163) of the electromagnetic field is given by the repre-

sentation matrices Nαβ of the Lorentz algebra in the space of the four-vector potential, which

coincide with the representation matrices Lαβ of the Lorentz algebra in the Minkowskian space-

time according to (6.108) and (6.113). Thus, taking into account (6.53) and restricting us upon

the spatial components, the helicity operator

ĥ(k) =
k

k
L (8.122)
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Figure 8.2: Adding two linearly polarized plane waves according to (8.113) with complex am-

plitudes A1 and A2 with the same absolute value and phases, which differ by 90◦.

turns out to be defined by

ĥ(k) =
i

k




0 −kz ky

kz 0 −kx

−ky kx 0


 . (8.123)

Now we introduce the polariation vectors �(k,λ) for plane waves which propagate with the

wave vector k and the helicity λ = ±1:

A(x, t) = A�(k,λ)ei(kx−ωkt) . (8.124)

Here the polarization vectors �(k,λ) represent the eigenvectors of the helicity operator (8.122)

with the eigenvalues λ:

ĥ(k)�(k,λ) = λ�(k,λ) . (8.125)

From (8.120) and (8.124) we read off the polarization vectors �(kez,λ) for a propagation in

z-direction:

�(kez,λ) =
1√
2




1

λi

0


 . (8.126)

Indeed, the polarization vectors (8.126) fulfill due to (8.123) the eigenvalue problem

ĥ(kez)�(kez,λ) = λ�(kez,λ) . (8.127)

Now we construct the polarization vectors �(k,λ) with a general wave vector k by rotating the

polarization vectors �(kez,λ) in the same way as the original wave vector kez. To this end

we need the rotation matrix R(θ,φ), which rotates the original wave vector kez to the general

wave vector k, where the latter is described in terms of spherical coordinates k, θ, and φ:

k = k



sin θ cosφ

sin θ sinφ

cosφ


 . (8.128)
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Here the rotation matrix R(θ,φ) is constructed such that first the rotation Ry(θ) around the

y-axis with angle θ and then the rotation Rz(φ) around the z-axis with angle φ is applied:

R(θ,φ) = Rz(φ)Ry(θ) . (8.129)

The individual rotation matrices follow from evaluating matrix exponential functions

Rz(φ) = e−iL3φ =




cosφ sinφ 0

− sinφ cosφ 0

0 0 1


 , (8.130)

Ry(θ) = e−iL2θ =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 , (8.131)

where the respective generators stem from (6.53). As a result we obtain for the rotation (8.129)

R(θ,φ) =



cos θ cosφ − sinφ sin θ cosφ

cos θ sinφ cosφ sin θ sinφ

− sin θ 0 cos θ


 . (8.132)

Indeed, the rotation matrix R(θ,φ) maps the original wave vector kez to the general wave

vector (8.128) as follows from the third column of (8.132):

R(θ,φ)kez = k . (8.133)

Transforming correspondingly also the polarization vectors �(kez,λ) from (8.126) with the

rotation matrix R(θ,φ), i.e.

�(k,λ) = R(θ,φ)�(kez,λ) , (8.134)

we obtain the explicit result

�(k,λ) =
1√
2



cos θ cosφ− λi sinφ

cos θ sinφ+ λi cosφ

− sin θ


 . (8.135)

Indeed, taking into account (8.123) and (8.128) one can show that the polarization vectors

(8.135) fulfill the eigenvalue problem of the helicity operator (8.125). Furthermore, as expected,

the polarization vectors (8.135) reduce for the special case θ = φ = 0 to the original polarization

vectors (8.126).

8.11 Properties of Polarization Vectors

Due to the second-quantized formulation of the Coulomb gauge (8.78) the Fourier operators

Â(k) in the decomposition (8.110) must obey the transversality condition

kÂ(k) = 0 . (8.136)
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This means that the Fourier operators Â(k) have two transversal dynamical degrees of freedom.

Performing the ansatz

Â(k) = Nk

�

λ=±1

�(k,λ)âk,λ (8.137)

with some normalization constants Nk the transversality condition (8.136) is fulfilled provided

that the polarization vectors �(k,λ) are perpendicular to the propagation direction, which is

defined by the wave vector k:

k�(k,λ) = 0 . (8.138)

Due to (8.128) it is straight-forward to show that the polarization vectors determined in (8.135)

obey (8.138).

As another property of the polarization vectors (8.135) we investigate whether they obey or-

thonormality relations. Showing separately

�(k,λ)�(k,λ)∗ = 1 , (8.139)

�(k,λ)�(k,−λ)∗ = 0 , (8.140)

we arrive, indeed, due to λ = ±1 at the orthonormality relations

�(k,λ)�(k,λ�)∗ = δλ,λ� . (8.141)

Another property of the polarization vectors (8.135), which will turn out to be quite useful

for later calculations, is their behaviour concerning the inversion k → −k. Obviously, such an

inversion is obtained in spherical coordinates (8.126) via

φ → φ+ π : sinφ → − sinφ , cosφ → − cosφ , (8.142)

θ → θ − π : sin θ → sin θ , cos θ → − cos θ . (8.143)

With this we then conclude from (8.135

�(−k,λ) =
1√
2



cos θ cosφ+ λi sinφ

cos θ sinφ− λi cosφ

− sin θ


 . (8.144)

Thus, from (8.135) and (8.144) we read off

�(−k,λ) = �(k,−λ) = �(k,λ)∗ . (8.145)

And, inserting the decomposition (8.137) into (8.110) by taking into account (8.145), we finally

get

Â(x, t) =
�

λ=±1

�
d3k Nk

�
�(k,λ)ei(kx−ωkt)âk,λ + �(k,λ)∗e−i(kx−ωkt)â†k,λ

�
. (8.146)
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Note that this plane wave decomposition fulfills, indeed, the Coulomb gauge (8.78) due to the

transversality condition (8.138). In the following we aim at unravelling the physical interpre-

tation of the Fourier operators âk,λ and â†k,λ in the plane wave decomposition (8.146), which

leads to straight-forward but quite lengthy calculations. Therefore, we relegate the respective

technical details to the exercises and restrict ourselves in the subsequent four sections to present

a concise summary of the corresponding derivations.

8.12 Fourier Operators

We start with noting the plane wave decomposition for the momentum field operator, which

follows from (8.93) and (8.146):

π̂(x, t) =
�

λ=±1

�
d3k �0 Nk

�
− iωk�(k,λ)e

i(kx−ωkt)âk,λ + iωk�(k,λ)
∗e−i(kx−ωkt)â†k,λ

�
. (8.147)

The plane wave decompositions (8.146) and (8.147) for both the field operator Â(x, t) and the

momentum field operator π̂(x, t) can now be solved for the Fourier operators âk,λ and â†k,λ:

âk,λ =
1

2(2π)3Nk

�
d3x �(k,λ)∗e−i(kx−ωkt)

�
Â(x, t) + i

π̂(x, t)

�0ωk

�
, (8.148)

â†k,λ =
1

2(2π)3Nk

�
d3x �(k,λ)ei(kx−ωkt)

�
Â(x, t)− i

π̂(x, t)

�0ωk

�
. (8.149)

This allows us now to determine the commutator relations between the Fourier operators âk,λ

and â†k,λ from the equal-time commutator relations (8.74), (8.75), and (8.88) for the field oper-

ator Â(x, t) and the momentum field operator π̂(x, t):
�
âk,λ, âk�,λ�

�
−

= 0 , (8.150)
�
â†k,λ, â

†
k�,λ�

�
−

= 0 , (8.151)

�
âk,λ, â

†
k�,λ�

�
−

=
h̄

2(2π)3�0ωkN2
k

δλλ� δ(k− k�) . (8.152)

Thus, fixing the yet undetermined normalization constant according to

Nk =

�
h̄

2(2π)3�0ωk

, (8.153)

we end up with the bosonic canonical commutation relation
�
âk,λ, â

†
k�,λ�

�
−
= δλλ� δ(k− k�) . (8.154)

This means that the Fourier operators âk,λ and â†k,λ can be interpreted as the annihilation and

creation operators of bosonic particles, which are characterized by the wave vector k and the

polarization λ. In order to determine the respective properties of these particles we investigate

in the subsequent three sections their contribution to the energy, the momentum, and the spin

angular momentum of the electromagnetic field in second quantization.
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8.13 Energy

Taking into account the normalization constant (8.153) in the plane wave decompositions

(8.146) and (8.147) for both the field operator Â(x, t) and the momentum field operator π̂(x, t)

we get

Â(x, t) =
�

λ=±1

�
d3k

�
h̄

2(2π)3�0ωk

�
�(k,λ)ei(kx−ωkt)âk,λ + �(k,λ)∗e−i(kx−ωkt)â†k,λ

�
, (8.155)

π̂(x, t) =
�

λ=±1

�
d3k

�
h̄�0ωk

2(2π)3

�
− i�(k,λ)ei(kx−ωkt)âk,λ + i�k(k,λ)

∗e−i(kx−ωkt)â†k,λ

�
. (8.156)

Inserting (8.155) and (8.156) in the expression for the Hamilton operator (8.89) and using (8.5),

(8.102), and (8.105) we yield

Ĥ =
1

2

�

λ=±1

�
d3k h̄ωk

�
â†k,λâk,λ + âk,λâ

†
k,λ

�
. (8.157)

Thus, comparing (3.6) with (8.157) we recognize that the second quantized electromagnetic

field consists of independent harmonic oscillators, where each energy h̄ωk is doubly degenerate

due to the polarization degree of freedome λ. Defining the vacuum state as usual

âk,λ|0� = 0 ⇐⇒ �0|â†k,λ = 0 , (8.158)

we find that the vacuum energy of the electrodynamic field is given by a sum of the zero-point

energy of all independent harmonic oscillators

�0|Ĥ|0� =
�

d3k h̄ωk , (8.159)

which turns out to be divergent due to the linear dispersion (8.102). Therefore, using the

commutator relation (8.154) we obtain for the renormalized Hamilton operator

Ĥ = Ĥ − �0|Ĥ|0� (8.160)

the normal ordered result

Ĥ =
�

λ=±1

�
d3k h̄ωk â

†
k,λâk,λ . (8.161)

Here â†k,λâk,λ represents the occupation number operator, which counts the number of photons

with wave vector k and polarization λ once it is applied to a photon state.

8.14 Momentum

Due to classical electrodynamics the momentum of the electromagnetic field is defined by

P =

�
d3x

S(x, t)

c2
(8.162)
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with the Poynting vector

S(x, t) =
1

µ0

E(x, t)×B(x, t) . (8.163)

Taking into account (8.5), (8.7), and (8.60), the momentum (8.163) is expressed in terms of the

vector potential and the canonically conjugated momentum field via

P =

�
d3x [∇×A(x, t)]× π(x, t) . (8.164)

Thus, in second quantization, the momentum operator of the electromagnetic field reads

P̂ =

�
d3x

�
∇× Â(x, t)

�
× π̂(x, t) . (8.165)

The further evaluation is based on taking into account the plane wave decompositions (8.155)

and (8.156) for both the field operator Â(x, t) and the momentum field operator π̂(x, t). Fur-

thermore, the symmetry of the dispersion relation (8.105), the vector identity

(a× b)× c = (ac)b− (bc)a , (8.166)

the transversality condition (8.138), the orthonormality relation (8.141), and (8.145) are needed.

Subsequently, performing the substitution k → −k and applying (8.105), (8.150), (8.151), we

get the expression

P =
�

λ=±1

�
d3k

h̄k

2

�
â†k,λâk,λ + âk,λâ

†
k,λ

�
. (8.167)

Note that the vacuum state has a vanishing momentum

�0|P̂|0� =
�

d3k h̄k = 0 (8.168)

due to the odd symmetry of the integrand. Thus, taking into account the commutator relation

(8.154) we recognize that (8.167) coincides with the renormalized momentum operator

P̂ = P̂− �0|P̂|0� , (8.169)

which finally yields the normal ordered result

P̂ =
�

λ=±1

�
d3k h̄k â†k,λâk,λ . (8.170)

8.15 Spin Angular Momentum

According to the Noether theorem, which is explored and applied to the electromagnetic field

in the Appendix, the spin angular momentum of the electromagnetic is given by

S =

�
d3xA(x, t)× π(x, t) . (8.171)
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Thus, the corresponding second quantized spin angular momentum operator reads

Ŝ =

�
d3x Â(x, t)× π̂(x, t) . (8.172)

Inserting the plane wave decompositions (8.155) and (8.156) for both the field operator Â(x, t)

and the momentum field operator π̂(x, t) and performing the substitution k → −k then yields

the intermediate result

Ŝ =
�

λ=±1

�

λ�=±1

�
d3k

ih̄

2

�
�(k,λ)× �(k,λ�)∗âk,λâ

†
k,λ� + �(k,λ�)× �(k,λ)∗â†k,λâk,λ�

�
. (8.173)

Now we evaluate the vector product between two polarization vectors. At first we obtain from

(8.145)

�(k,λ)× �(k,−λ)∗ = 0 , (8.174)

whereas we get from (8.128) and (8.135)

�(k,λ)× �(k,λ) = −iλ
k

k
. (8.175)

Thus, both (8.174) and (8.175) can be summarized by

�(k,λ)× �(k,λ�)∗ = −iλ
k

k
δλλ� . (8.176)

With this the intermediate result (8.173) for the spin angular momentum operator of the

electromagnetic field reduces to

Ŝ =
�

λ=±1

�
d3k λ

h̄

2

k

k

�
â†k,λâk,λ + âk,λâ

†
k,λ

�
. (8.177)

Thus, the vacuum state has a vanishing spin angular momentum

�0|Ŝ|0� = h̄

��

λ=±1

λ

���
d3k

k

k

�
= 0 (8.178)

due to the odd symmetry in both the summand and the integrand. Using the commutator

relation (8.154) we read off that (8.177) coincides with the renormalized spin angular momentum

operator

Ŝ = Ŝ− �0|Ŝ|0� , (8.179)

leading to the normal ordered result

Ŝ =
�

λ=±1

�
d3k λh̄

k

k
â†k,λâk,λ . (8.180)

We observe that the decompositions of the second quantized expressions for the energy (8.161),

the momentum (8.170), and the spin angular momentum (8.180) of the electromagnetic field

turn out to be time independent and, thus, represent conserved quantities. Together with the

commutator relations (8.150), (8.151), and (8.154) we furthermore conclude that the Fourier

operators âk,λ and â†k,λ represent the annihilation and creation operators of photons with the

energy h̄ωk, the momentum h̄k, and the spin angular momentum λh̄k/k, where the latter

amounts to the helicity λh̄.
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8.16 Definition of Maxwell Propagator

In close analogy to the Klein-Gordon propagator (7.123) we now define also the Maxwell prop-

agator as the vacuum expectation value of the time-ordered product of two field operators

Âµ(x, t) and Âν(x�, t�):

Dµν(x, t;x�, t�) =
�
0
���T̂
�
Âµ(x, t)Âν(x�, t�)

���� 0
�
. (8.181)

Taking into account the definition of the time ordering operator (7.124) the Maxwell propagator

reads explicitly

Dµν(x, t;x�, t�) = Θ(t− t�)�0|Âµ(x, t)Âν(x�, t�)|0�+Θ(t� − t)�0|Âν(x�, t�)Âµ(x, t)|0� . (8.182)

Due to the radiation gauge (8.13) and (8.58) the zeroth component of the field operator Âµ(x, t)

vanishes, so only the spatial components of the Maxwell propagator can be non-zero:

Dµν(x, t;x�, t�) = 0 if either µ = 0 or ν = 0 . (8.183)

In order to determine the equation of motion for the spatial components of the Maxwell prop-

agator we evaluate initially their first temporal partial derivative. To this end we take into

account (7.125) as well as (8.74) and get from (8.182)

∂Djk(x, t;x�, t�)

∂t
= Θ(t− t�)

�
0

�����
∂Âj(x, t)

∂t
Âk(x

�, t�)

����� 0
�

+Θ(t� − t)

�
0

�����Âk(x
�, t�)

∂Âj(x, t)

∂t

����� 0
�

. (8.184)

A subsequent time derivative then yields by applying (7.125), (8.88), (8.93), and (8.99)

∂2Djk(x, t;x�, t�)

∂t2
=

−ih̄

�0
δ(t− t�) δTjk(x− x�)

+c2Δ
�
Θ(t− t�) �0|Âj(x, t)Âk(x

�, t�)|0�+Θ(t� − t) �0|Âk(x
�, t�)Âj(x, t)|0�

�
. (8.185)

From (8.182) and (8.185) we then obtain the result that the Maxwell propagator represents the

Green function of the wave equation

�
1

c2
∂2

∂t2
−Δ

�
Djk(x, t;x�, t�) = −ih̄µ0 δ

T
jk(x− x�)δ(t− t�) . (8.186)

We remark that not the delta function but the transversal delta function appears at the right-

hand side of the inhomogeneous wave equation (8.186) due to the chosen Coulomb gauge.

Therefore, one calls Djk(x, t;x�, t�) more specifically to be the transveral Maxwell propagator.
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8.17 Calculation of Maxwell Propagator

In order to further evaluate the spatial components of the Maxwell propagator (8.182), we insert

the plane wave decomposition (8.155) for the field operator Â(x, t) and use the commutation

relation (8.154):

Djk(x, t;x�, t�) =
�

λ=±1

�
d3k

h̄

2(2π)3�0ωk

�
Θ(t− t�)�j(k,λ)�k(k,λ)

∗ ei[k(x−x�)−ωk(t−t�)]

+Θ(t� − t)�k(k,λ)�j(k,λ)
∗ e−i[k(x−x�)−ωk(t−t�)]

�
. (8.187)

Performing in the second term the substitution λ → −λ, this reduces due to (8.145) to

Djk(x, t;x�, t�) =

�
d3k

h̄

2(2π)3�0ωk

P jk(k)
�
Θ(t− t�)ei[k(x−x�)−ωk(t−t�)]

+Θ(t� − t)e−i[k(x−x�)−ωk(t−t�)]
�

. (8.188)

Here we have introduced the polarization sum

P jk(k) =
�

λ=±1

�j(k,λ)�k(k,λ)
∗ , (8.189)

which is symmetric with respect to the wave vector according to (8.145)

P jk(−k) = P jk(k) . (8.190)

The latter symmetry property allows to simplify (8.188) further by performing the substitution

k → −k in the second term, yielding

Djk(x, t;x�, t�) =

�
d3k

h̄P jk(k)

2(2π)3�0ωk

eik(x−x�)
�
Θ(t− t�)e−iωk(t−t�) +Θ(t� − t)eiωk(t−t�)

�
. (8.191)

Now we evaluate the polarization sum (8.189) explicitly by taking into account the polar co-

ordinate representations for both the wave vector in (8.128) and the polarization vectors in

(8.135). This yields

�
P jk(k)

�
=



1− k2

x/k
2 −kxky/k

2 −kxkz/k
2

−kxky/k
2 1− k2

y/k
2 −kykz/k

2

−kxkz/k
2 kykz/k

2 1− k2
z/k

2


 , (8.192)

which is concisely summarized by

P jk(k) = δjk −
kjkk
|k|2 . (8.193)

With this we read off the transversality property of the polarization sum

kjP
jk(k) = 0 , (8.194)
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which implies the corresponding transversality property of the Maxwell propagator (8.191)

∂jD
jk(x, t;x�, t�) = 0 . (8.195)

Due to this transversality property, which originally stems from having chosen the Coulomb

gauge, the transversal Maxwell propagator (8.191) is not Lorentz invariant. Therefore, we aim

now for decomposing the transversal Maxwell propagator into a Lorentz invariant and a Lorentz

non-invariant contribution.

8.18 Four-Dimensional Fourier Representation

To this end we rewrite at first the three-dimensional Fourier representation of the Maxwell

propagator in (8.191) in terms of a four-dimensional Fourier representation by using an integral

identity, which is analogous to one obtained in (7.163) and (7.167):

lim
η↓0

� ∞

−∞

dω

2π

e−iω(t−t�)

ω2 − ω2
k + iη

=
−i

2ωk

�
Θ(t− t�)e−iωk(t−t�) +Θ(t� − t)eiωk(t−t�)

�
. (8.196)

With this we obtain

Djk(x, t;x�, t�) = lim
η↓0

�
d3k

(2π)3

� ∞

−∞

dω

2π

ih̄

�0
P jk(k)

ei[k(x−x�)−ω(t−t�)]

ω2 − ω2
k + iη

. (8.197)

Note that the four-dimensional Fourier representation of the Maxwell propagator (8.197) solves

evidently the equation of motion (8.186) by taking into account (8.5), (8.87), and (8.193).

Introducing the contravariant four-wave vector

�
kλ
�
=
�
k0,k

�
= (ω/c,k) (8.198)

and edging the spatial components of the Maxwell propagator with zeros, we deduce from

(8.197) by taking into account the dispersion (8.102)

Dµν(xλ; x�λ) = lim
η↓0

�
d4k

(2π)4
ih̄

c�0

e−ikλ(x
λ−x�λ)

kλkλ + iη
P µν(kλ) , (8.199)

where the polarization sum does not explicitly depend on k0:

P µν(kλ) = −gµν +

�
1 0

0 −kjkk/k
2

�µν

. (8.200)

This polarization sum projects due to the transversality property (8.194) into the two-dimensional

subspace perpendicular to (0,k). But this projection is not covariant as the zeroth component

of the four-vector potential vanishes due to the radiation gauge (8.13) and (8.58). In order to

investigate the non-covariance of the polarization sum and, thus, of the transversal Maxwell

propagator, in more detail we introduce the time-like vector

(ξλ) =

�
1

0

�
(8.201)
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and a space-like vector perpendicular to it

(k̄λ) =

�
0

k/|k|

�
. (8.202)

An explicit calculation then yields the following decomposition:

k̄λ =
kλ − (kξ)ξλ�
(kξ)2 − k2

. (8.203)

From (8.200)–(8.203) we then obtain for the polarization sum

P µν(kλ) = −gµν − k2 ξµξν

(kξ)2 − k2
− kµkν − (kξ)(kµξν + kνξµ)

(kξ)2 − k2
. (8.204)

All terms, which contain the time-like vector ξ, are not covariant. Inserting the polarization

sum (8.204) into (8.199) the transversal Maxwell propagator decomposes into three terms:

Dµν(x; x�) = Dµν
F (x; x�)−Dµν

C (x; x�)−Dµν
R (x; x�) . (8.205)

The first term is the covariant Maxwell propagator of Feynman

Dµν
F (x; x�) = lim

η↓0

�
d4k

(2π)4
h̄

c�0

igµν

k2 + iη
e−ik(x−x�) , (8.206)

which also follows from the Gupta-Bleuler quantization of the electromagnetic field. Later on,

when we discuss the perturbative calculation of quantum electrodynamic processes, it turns out

that the Maxwell propagator in Feynman diagrams can be identified without loss of generality

with (8.206). The other two non-covariant terms in the transversal Maxwell propagator (8.205)

turn out to not contribute to any physical result. The second term reads

Dµν
C (x, t;x�, t�) = lim

η↓0

�
d4k

(2π)4
ih̄

c�0

k2ξµξν

(kξ)2 − k2

e−ik(x−x�)

k2 + iη
. (8.207)

Note that (8.207) reduces due to (8.6), (8.198), and (8.201) to

Dµν
C (x, t;x�, t�) =

ih̄µ0

4π
δµ0δν0

δ(t− t�)

|x− x�| . (8.208)

With this we conclude that this contribution of the transversal Maxwell propagator is instan-

taneous and couples exclusively to the zeroth component of the four-current density, i.e. the

charge density. And the third residual term in (8.205) reads

Dµν
R (x; x�) = lim

η↓0

�
d4k

(2π)4
ih̄

c�0

kµkν − (kξ)(kµξν + ξµkν)

(kξ)2 − k2

e−ikx

k2 + iη
. (8.209)

It contains contributions, which are proportional to either kµ or kν . As the electromagnetic

field couples to four-current densities, which fulfill the continuity equation (8.33), we have in

Fourier space

jµ(k)k
µ = 0 . (8.210)
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Therefore the integral over Dµν
R (x; x�) contracted with conserved currents j

(1)
µ (x) and j

(2)
ν (x�)

produces a vanishing result:

�
d4x

�
d4x� j(1)µ (x)Dµν

R (xλ; x�λ)j(2)ν (x�) =

�
d4k

(2π)4
jµ(−k)Dµν

R (k)jν(k) = 0 . (8.211)

Later on we demonstrate explicitly by discussing the concrete example of a scattering process

that both contributions (8.207) and (8.209) of the transversal Maxwell propagator do, indeed,

not contribute to any observable quantity like the cross section.


