Quantum Mechanics II

Problem 25: Path Integral for Harmonic Oscillator on Finite Time Lattice

The path integral for a one-dimensional harmonic oscillator of mass M and frequency ω is defined in the continuum limit of a vanishing time lattice spacing according to

$$
\begin{equation*}
G\left(x_{b}, t_{b} ; x_{a}, t_{a}\right)=\lim _{\substack{\varepsilon \rightarrow 0 \\ \text { NS } \\ \varepsilon N=t_{b}-t_{a}}} G_{N}^{(\varepsilon)}\left(x_{b}, t_{b} ; x_{a}, t_{a}\right), \tag{1}
\end{equation*}
$$

where the discretized path integral on an equidistant time lattice with spacing $\varepsilon=\left(t_{b}-t_{a}\right) / N$ reads

$$
\begin{equation*}
G_{N}^{(\varepsilon)}\left(x_{b}, t_{b} ; x_{a}, t_{a}\right)=\int d^{N-1} x\left(\frac{M}{2 \pi i \hbar \varepsilon}\right)^{N / 2} \exp \left\{\frac{i}{\hbar} \varepsilon \sum_{j=0}^{N-1}\left[\frac{M}{2}\left(\frac{x_{j+1}-x_{j}}{\varepsilon}\right)^{2}-\frac{M}{2} \omega^{2} x_{j}^{2}\right]\right\} \tag{2}
\end{equation*}
$$

a) Rewrite (2) in the form of the $(N-1)$-dimensional Fresnel integral

$$
\begin{equation*}
G_{N}^{(\varepsilon)}\left(x_{b}, t_{b} ; x_{a}, t_{a}\right)=\int d^{N-1} x\left(\frac{M}{2 \pi i \hbar \varepsilon}\right)^{N / 2} \exp \left[-\frac{M}{2 i \hbar \varepsilon}\left(\mathbf{x}^{\mathrm{T}} A \mathbf{x}-2 \mathbf{b}^{\mathrm{T}} \mathbf{x}+c\right)\right] \tag{3}
\end{equation*}
$$

and show that A is the $(N-1) \times(N-1)$ tridiagonal band matrix

$$
A=\left(\begin{array}{ccccccc}
a & b & 0 & \ldots & 0 & 0 & 0 \tag{4}\\
b & a & b & \ldots & 0 & 0 & 0 \\
0 & b & a & & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a & b & 0 \\
0 & 0 & 0 & \cdots & b & a & b \\
0 & 0 & 0 & \cdots & 0 & b & a
\end{array}\right) .
$$

Determine the coefficients a and b as well as the vector \mathbf{b} and the constant c .
b) Calculate the D-dimensional Gauß integral

$$
\begin{equation*}
I=\int d^{D} x \exp \left(-\frac{1}{2} \mathbf{x}^{\mathrm{T}} A \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}\right) \tag{5}
\end{equation*}
$$

for a positive definite matrix A with the symmetry $A=A^{\mathrm{T}}$ and show that the result is given by

$$
\begin{equation*}
I=\sqrt{\frac{(2 \pi)^{D}}{\operatorname{Det} A}} \exp \left(\frac{1}{2} \mathbf{b}^{\mathrm{T}} A^{-1} \mathbf{b}\right) . \tag{6}
\end{equation*}
$$

c) Calculate the determinant $D_{N-1}=\operatorname{Det} A$ along the following way.
i) Show that the determinant fulfills a recursion relation of the form

$$
\begin{equation*}
D_{N-1}=c_{1}(a, b) D_{N-2}+c_{2}(a, b) D_{N-3} \tag{7}
\end{equation*}
$$

and determine the coefficients $c_{1}(a, b)$ and $c_{2}(a, b)$.
ii) Such a homogeneous difference equation of second order with constant coefficients is solved in close analogy to a homogeneous differential equation of second order with constant coefficients. Solve (7) therefore with the ansatz $D_{N-1}=\lambda^{N-1}$ and derive the characteristic equation for λ. Show that λ can have the two values $\lambda_{ \pm}=e^{ \pm i \varepsilon \tilde{\omega}}$. How does the lattice frequency $\tilde{\omega}$ depend on both ω and ε ?
iii) The general solution of the difference equation (7) is given by

$$
\begin{equation*}
D_{N-1}=c_{+} \lambda_{+}^{N-1}+c_{-} \lambda_{-}^{N-1} \tag{8}
\end{equation*}
$$

Determine the coefficients c_{+}and c_{-}from the initial conditions D_{1} and D_{2}.
iv) Show that the determinant follows as $D_{N-1}=\sin (\varepsilon \tilde{\omega} N) / \sin (\varepsilon \tilde{\omega})$.
d) Calculate the inverse of the $(N-1) \times(N-1)$ tridiagonal band matrix (4), which is defined as

$$
\begin{equation*}
\sum_{l=1}^{N-1} A_{k l} A_{l m}^{-1}=\delta_{k, m} \tag{9}
\end{equation*}
$$

according to the following steps.
i) Consider first the case $k=2, \ldots, m-1$ and solve (9) with the ansatz $A_{l m}^{-1}=\mu^{l}$. Which characteristic equation do you get for μ and what are its solutions?
ii) Solve (9) now for $k=1, \ldots, m-1$ and show that the result reads $A_{l m}^{-1}=c_{m}^{<} \sin (\varepsilon \tilde{\omega} l)$.
iii) Proceed analogously to i), ii) and show that (9) for $k=m+1, \ldots, N-1$ is solved by $A_{l m}^{-1}=c_{m}^{>} \sin [\varepsilon \tilde{\omega}(N-l)]$.
iv) Having determined $A_{l m}^{-1}$ both for $l<m$ in i), ii) and $l>m$ in iii), we now demand continuity for $l=m$. Which relation between $c_{m}^{<}$and $c_{m}^{>}$does this imply?
v) Determine the remaining unknown constant from (9) in case of $k=m$ and show that the inverse matrix of (4) is, finally, given by

$$
A_{l m}^{-1}= \begin{cases}\frac{\sin [\varepsilon \tilde{\omega}(N-m)] \sin (\varepsilon \tilde{\omega} l)}{\sin (\varepsilon \tilde{\omega}) \sin (\varepsilon \tilde{\omega} N)} ; & l=1, \ldots, m \tag{10}\\ \frac{\sin [\varepsilon \tilde{\omega}(N-l)] \sin (\varepsilon \tilde{\omega} m)}{\sin (\varepsilon \tilde{\omega}) \sin (\varepsilon \tilde{\omega} N)} ; & l=m, \ldots, N-1\end{cases}
$$

e) Combine all previous results and write down the propagator of the harmonic oscillator on a finite time lattice. Does $G_{N=1}^{(\varepsilon)}\left(x_{b}, t_{b} ; x_{a}, t_{a}\right)$ reproduce the proper short-time propagator? Which result do you get in the continuum limit (1) for the long-time propagator?

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until January 9 at 12.00.

